CHAPTER X.THE RESOLVABLE NEBULÆ, STAR-CLUSTERS AND GALAXIES.When we come to consider the nebulæ, and endeavor to learn what part electricity has to play in the phenomena presented by these singular objects, we must recollect, in order to give them their due importance, that they are neither few in number nor uniform in constitution. Of the nebulæ, Professor Proctor (“Star-Clouds and Star-Mist”) says, “When the depths of the heavens are explored with a powerful telescope a number of strange cloud-like objects are brought into view. It is startling to consider that if the eye of man suddenly acquired the light-gathering power of a large telescope, and if at the same time all the single stars disappeared, we should see on the celestial vault a display of the mysterious objects called nebulæ or star-clouds exceeding in number all the stars which can now be seen on the darkest night in winter. The whole sky would seem mottled with these singular objects.” As telescopes, with the advances of constructive art, increased in power, these luminous clouds became more and more clearly defined, and many of them became resolved into clusters of stars, galaxies of suns like the Milky Way, of which latter our solar system is a constituent part, but more distant from us than the separatelyvisible stars of that galaxy, and each separated from the relatively adjacent clusters by intervals of space comparable only with those which separate them from our own system. Of these glorious star-clusters, says Flammarion, in “The Wonders of the Heavens,” “In the bosom of infinite space, the unfathomable depth of which we have tried to comprehend, float rich clusters of stars, each separated by immense intervals. We shall soon show that all the stars are suns like ours, shining with their own light, and foci of as many systems of worlds. Now, the stars are not scattered in all parts of space at hazard; they are grouped as the members of many families. If we compared the ocean of the heavens with the ocean of the earth, we should say that the isles which sprinkle this ocean do not rise separately in all parts of the sea, but that they are united here and there in archipelagoes more or less rich …. They are all collected in tribes, most of which count their members by millions.” Says Professor Nichol, “System on system of majesty unspeakable float through the fathomless ocean of space. Our galaxy, with splendors that seem illimitable, is only a unit among unnumbered throngs; we can think of it, in comparison with creation, but as we were wont to think of one of its own stars. “Of these glorious star-clusters the same writer says, “That no one has ever seen them in a telescope of adequate power without uttering a shout of wonder.” These mist-like star-clouds were successively resolved, nebula by nebula, until science settled into the belief that with telescopesof adequate power all nebulæ might be so resolved, and the capacity of telescopes to thus resolve nebulæ became a test of their power. But spectrum analysis finally entered the lists with new methods of investigation, and the comparatively tiny spectroscope at a single leap passed far beyond the utmost limits of the highest telescopic vision, and at one blow struck the whole category of nebulæ into two widely different classes,—those composed of discrete stars grouped like the suns of our own Milky Way, and exhibiting the characteristic spectra of such bodies, and those composed of diffused gaseous matter not yet condensed into suns, and showing the disconnected spectral lines of simple elemental gases. The line of division was clear, direct, positive, and beyond all dispute. Yet beyond these two classes further research has disclosed certain vast nebulæ in which some portions exhibit true solar spectra more or less modified and others true gaseous spectra, each apparently merging into the other by gradations so faint and delicate that the inference is irresistible that in these nebulæ we see the processes of galactic and solar creation at various stages of their development.Of these nebulæ, Professor Ball says, “In one of his most remarkable papers, Sir W. Herschel presents us with a summary of his observations on the nebulæ, arranged in such a manner as to suggest his theory of the gradual transmutation of nebulæ into stars. He first shows us that there are regions in the heavens where a faint diffusednebulosity is all that can be detected by the telescope. There are other nebulæ in which a nucleus can be just discerned, others again in which the nucleus is easily seen, and still others where the nucleus is a bright star-like point. The transition from an object of this kind to a nebulous star is very natural, while the nebulous stars pass into the ordinary stars by a few graduated stages. It is thus possible to enumerate a series of objects, beginning at one end with the most diffused nebulosity and ending at the other with an ordinary fixed star or group of stars. Each object in the series differs but slightly from the object just before it and just after it.” And of these composite nebulæ, he adds, “The great nebula in Orion is known to be the most glorious body of its class that the heavens display. Seen through a powerful telescope, … the appearance of this grand ‘light stain’ is of indescribable glory. It is a vast volume of bluish gaseous material with hues of infinite softness and delicacy. Here it presents luminous tracts which glow with an exquisite blue light; there it graduates off until it is impossible to say where the nebula ceases and the black sky begins.”With reference to these distant galaxies of apparently complete solar systems like our own, the same principles must regulate the conversion of this energy of planetary electricity into the energy of solar light and heat as we see manifested in our own sun. The light of the individual stars is sufficient evidence of this; but the question may beasked, Is the electrical interaction between separate galaxies and between different solar systems in the same galaxy universal, or are these operations merely local? In other words, Is the source and the mode of solar energy in accordance with a single universal law of and between all created universes, or is it limited in effective energy to the members of each individual solar system alone? The answer is, that it is not less universal than the law of gravitation and no more so. There is a prevalent popular fallacy that the force of gravity is such that the movements, not only of solar systems, but of whole galaxies, and of all the illimitable systems of galaxies, are under its effective control, and that the whole universe of boundless space acknowledges its overwhelming sway. But nothing can be further from the truth. We know, of course, that the law is universal, as expressed in the statement of its terms by Newton, but the mere statement of the law itself, as applied to interstellar distances, refutes the idea that solar systems and galaxies can rotate around any common center by virtue of the attraction of gravitation as a controlling force. The universality of the law itself has even been doubted. Professor Ball says, “In the first book about astronomy which I read in my boyhood there was a glowing description …. I allude to the discovery, or the alleged discovery, of a certain ‘central sun’ about which it was believed or stated that all the bodies in the universe revolved …. It was too good to be true. No one ever hears anything about the central sunhypothesis nowadays …. It must be, then, admitted that when the law of gravitation is spoken of as being universal, we are using language infinitely more general than the facts absolutely warrant. At the present moment we only know that gravitation exists to a very small extent in a certain indefinite small portion of space. Our knowledge would have to be enormously increased before we could assert that gravitation was in operation throughout this very limited region; and even when we have proved this, we should only have made an infinitesimal advance to a proof that gravitation is absolutely universal.”Anyone who chooses may prove for himself that the force exercised by gravitation between the multitudinous suns of our own galaxy, the Milky Way, and our earth must be quite infinitesimal, and totally unable to control the motions of our own solar system in a definite orbit through universal space. We know that the law which regulates the intensity of light at various distances is the same as the law of gravity,—that is to say, the proportion is directly as the mass and inversely as the square of the distance. We know also that the stars which compose the Milky Way are similarly constituted, generally considered, to our own sun, and that under similar circumstances the emission of light, roughly speaking, will vary according to the magnitude of these distant suns. Now, if any one will stand, at the darkest hour of the night, when the moon is absent and the sky perfectly cloudless, when the“Stars that oversprinkle all the heavens seem to twinkleWith a crystalline delight,”and sweep with his gaze all the concave hemisphere of the sky, and then compare the light which is radiated around him with the gorgeous effulgence of the noonday summer sun, he can pretty closely compare the relative attraction of gravity which all those distant suns together can exercise upon our earth with that of our own sun. Under control of the latter, the earth sweeps around in her orbit at the rate of about twenty miles per second; all these suns could not give our solar system even a minute fraction of that. Of this starlight Professor Ball says, “The sun certainly must receive some heat by the radiation from the stars; but this is quite infinitesimal in comparison with his own stupendous radiation.” Any such attraction, of course, could not control the motions of our solar system, and much less that of many of the others.“The night has a thousand eyes, and the day but one,But the light of the whole world dies when the day is done.”We can also demonstrate the fact mathematically by an exceedingly rough calculation, which, however, will be sufficient for our purpose. Of the Milky Way, which comprises only the stars of our own sidereal system, Professor Ball says, “One hundred million stars are presumed to be disposed in a flat circular layer of such dimensions that a ray of light would require thirty thousand years to traverse one diameter.” (The most recent estimatesmake the number of the stars which compose the Milky Way several times one hundred million, occupying a correspondingly greater amplitude of space. The number in any case is sufficiently stupendous.) Our solar system is located in space at the apex of a vast transverse cleft, and nearly at the center of this disk. Let us leave out of consideration the lower half of the Milky Way, as we look upward on a starlit night, and conceive this galaxy to extend only across the midnight sky above us like an archway, with fifty million suns, visible and invisible, exposed in the field of our vision. The nearest of all the fixed stars to us is that known as Alpha Centauri,—not visible, however, in our northern skies. This star is about two hundred and thirty thousand times as far from our sun as is the earth. If of the same mass as our sun, it must exert upon us an attractive force of gravity one fifty-three-billionth that of our own sun. Next in distance is the star No. 61 of the constellation Cygnus. This may be three times as distant, and is certainly not less than twice. The light of the former will reach the earth in three and one-quarter years; that of the latter in not less than six and one-half years, perhaps much more. These are our nearest stellar neighbors. While the former will attract us with only one fifty-three-thousand-millionth that of the sun, the latter will attract us with less than one two-hundred-thousand-millionth that of our sun. Conceive, then, a square pyramid extending radially upward for three thousand times the mean of these distances to the upperprobable limits of the Milky Way, a light-distance of fifteen thousand years, and that this pyramid expands according to the squares of its distances, so that it will contain within it, equally distributed, all the stars (fifty million) of the upper half of the disk of the Milky Way; the sum total of all these attractions could not reach one twenty-millionth part of that of our sun upon the earth. If we continue to pile galaxies, in the same perpetual recession, behind each other to all infinity, we still could not engender sufficient attractive force to control the observed movements of the multitudinous stars of space. The very statement of the law of gravitation itself disproves it; for if we multiply orbs and systems according to any principle of aggregation that we know of in the way of distribution of such systems, or anything possible, with due regard to their own mutually interacting movements in space, we could never reach the inside limits of such a sphere of control, because the piling up of orb behind orb adds but an infinitesimal fraction to the force of gravity, for as the orbs themselves multiply in distance progressively by hundreds, their relative attractions inversely diminish by ten thousands. No possible increase of suns directly in mass could compensate for such an inverse ratio of squares, even if all intergalactic space were peopled with suns, instead of being, in fact, like a vast ocean, with a few small clusters of islands scattered here and there throughout its illimitable extent.Of these vast realms of space, Professor Ballasks, “Is our sidereal system to be regarded as an oceanic island in space, or is it in such connection with the systems in other parts of space as might lead us to infer that the various systems had a common character? The evidence seems to show that the stars in our system are probably not permanently associated together, but that in the course of time some stars enter our system and other stars leave it, in such manner as to suggest that the bodies visible to us are fairly typical of the general contents of the universe. The strongest evidence that can be presented on this subject is met with in the peculiar circumstances of one particular star. The star in question is known as No. 1830 of Groombridge’s catalogue. It is a small star, not to be seen without the aid of a telescope …. We shall probably be quite correct in assuming that the distance is not less than two hundred billions of miles …. The velocity is no less than two hundred miles per second …. The star sweeps along through our system with this stupendous velocity …. The velocity being over twenty-five miles a second, the attraction can never overcome the velocity, so that the star seems destined to escape.” Of the star Alcyone he says, “Doubtless that star is thousands of billions of miles from the earth; doubtless the light from it requires thousands of years—and some astronomers have said millions of years—to span the abyss which intervenes between our globe and those distant regions.” And yet these stars, these galaxies, and even all the nebulæ we see or ever shall see, are merely in thevestibule of space; we have scarcely even yet lifted the outer curtain at the entrance of those vast realms. That the popular, but pseudo-scientific, idea of a series of ever-widening concentric orbits, increasing at every new expansion by an inconceivable ratio, is incredible we can well understand, and it is a satisfaction to know that such a wild hypothesis finds no warrant in the dicta or the demonstrations of science. And it is in the failure of gravity to control over the intervening space which lies between those vastly distant centers that we may hope to find the inklings of a more far-reaching law, by which nebulæ like that of Orion crystallize out into separate star systems, just as in the rocks, whether igneous, metamorphic, or sedimentary, we find the attraction of cohesion yield to that of crystallization, until the whole cleft rock blazes with countless garnets in the schist and quartz crystals in the gneiss, or reveals the yellow specks of olivine in volcanic ejections.We shall find in the processes concerned with the development of living things the workings of a similar great law, perhaps the same. Wherever there is the possibility of life, there we find life. There seems to be an all-pervading vital tension, so to speak, an energizing force, which drives the evolution and ascent of life forward and upward by successive leaps, as it were, from type to type, from race to race, and even from nation to nation. In this universal forward movement we may dimly discern the primordial creative and developing impulse, constantly acting, but manifesting visiblechange only at intervals as gathering forces accumulate and equilibrium is disturbed. It manifests itself in all the fields of nature,—vital, chemical, molecular, molar, systemic. It is the ever-acting, eternal past, present, and future, the macrocosm and the microcosm, the panurgus, the Brahma, the Ancient of Days, and cannot be silenced or evaded:“They reckon ill who leave me out,Whenmethey fly I am the wings.”R. Kalley Miller, in his “Romance of Astronomy,” says, “It would be hopeless to attempt expressing in ordinary language the vast distance at which these clusters of stars are situated from us. If we were to reckon it in miles, or even in millions of miles, figures would pile upon figures till in their number all definite idea of their value was lost. We must choose another unit to measure these infinitudes of space,—a unit compared with which the dimensions of our own solar system shrink into absolute nothingness. The velocity of light is such that it would flash fifteen times from pole to pole of our earth between two beats of the pendulum. It bridges the huge chasm that separates us from the sun in little more than eight minutes. But the light that shows us these faint star-clusters has been travelling with this frightful velocity for more than two million years since it left its distant source. We see them to-day in the fields of our telescopes, not as they are now, but as they were countless ages before the creation ofman upon the earth. What they are now who can tell?”The movements of solar systems through space are unquestionably controlled by some wider law than that of gravitation, and it still remains for science to seek its hidden principles and discover its mode of operation. We know that some stars travel alone, like the star already noted, No. 1830 of Groombridge’s catalogue; that others travel in pairs, like the double star Mizar and its companion Alcor; and others in groups, like the stars Beta, Gamma, Delta, Epsilon and Zeta, of the constellation Ursa Major; that we are driving towards the constellation Lyra and leaving behind us Sirius and its fellows, and that many, if not all, of the stars whose motions we can measure have a rapid movement through space, but under what control, in accord with what hidden harmony, and under what general plan they move, we do not know; but the laws of electrical action of the circling planets upon their central suns, and of these upon space, we can readily account for by the similar operation of the same laws within our own solar domain; and we know by the similar terms of the ratio of distribution of light that this is commensurate in extent with the law of gravity, and operates in a like proportion of energy over all intervening distances; so that wherever our sun presents a visible point of light, there it is pouring its energy into space, and every sun we can see, every galaxy, every star-cluster, nay, every nebula, is likewise pouring into the interplanetary space of our ownsolar system its proportionate quota of energy. The very fact that we can see the star shine is itself the fullest evidence that this is so, and evidence also that the law of gravitation there, too, is still in force, operating over these same distances, and with the same proportionate energy.Knowing all this, we can read with a new light the grand vistas of the skies, with their starry denizens, and claim them all as parts of our own family; and the mutual interchange of attractive energy and of light and heat will not fail between us until those inconceivable distances shall have been reached which human knowledge can never span and where speculation fails; and even there, from out those dark abysses,—dark to our human eyes,—the call will still faintly reach us, and our response will reach them also, though we shall never have tangible evidence that such mutual ties continue to exist. Industriously our planets gather their mighty energies from the surrounding springs of space, as one dips water from a crystal stream; we hand it over to our sun, and he, the royal high-priest, sprinkles it in glittering diamond-sprays over all those countless suns and their subject worlds, and they are baptized with an eternal baptism into our common brotherhood and we into theirs. Our familiar planets, Mars, Jupiter, Neptune, the earth, and even our little moon, seem to raise their voices and take actual part in the councils of almighty power, to move about as perpetual benefactors, gathering and spreading beneficence abroad, instead of cowering, a hapless few, likestorm-stayed travellers, around the dying embers of our poor old sun, passive recipients of the light and heat and life which we have been taught to believe are slowly sinking into ashes and fading away in eternal darkness and death. One swift glance into these boundless truths is better for the human soul than the slow passage of whole hopeless centuries, which leave as their inevitable legacy on earth a vast and final catastrophe, in which everything that gave us light and heat and being must perish forever. Has it, indeed, come to this, that the last word which science has to offer is, “After us the deluge”? By no means. We have merely been endeavoring to measure the right hand of God by weighing and measuring a single isolated one of his countless multitude of suns.It is as though one standing beside a great water-wheel should estimate its power and rotation by measuring the width and depth of the buckets and calculating the weight of water which its thirty-two receptacles contain, saying, “at its present rate in so many seconds it will cease to move.” But we take him to the water-gate, and show it wide open; to the great dam above it which contains cubic miles of water; and still beyond that to the mighty fountains bursting forth with their rush and roar from the rock-ribbed fastnesses of the eternal hills, and pouring their unfailing flood-tide down forever and ever. And we do not pause even here: we show him the vapors rising from the spent water again, condensing into clouds, pouring down in torrents of rain among the hills, and that thesecontinuously feed the sources of the fountains, which in turn supply the wheel almost to bursting. And so it is with the glorious mechanism of the heavens.The source of solar energy is not to be found in the sun itself, but in his environment; and he himself, in all his glory, is but the king, crowned with gold, blazing with rich apparel, and scattering benefits among his satellites, not from his own private treasury, but who himself is enriched by the mighty tribute with which his willing subjects continually endow him, and to whom alone he owes all his pride and power and wealth and magnificence, and which he, in turn, so freely expends, transmuted in form alone, in the perpetual improvement and welfare of his domain. He is the faithful ruler, but not the creator; the beneficent monarch, but not the god.
CHAPTER X.THE RESOLVABLE NEBULÆ, STAR-CLUSTERS AND GALAXIES.When we come to consider the nebulæ, and endeavor to learn what part electricity has to play in the phenomena presented by these singular objects, we must recollect, in order to give them their due importance, that they are neither few in number nor uniform in constitution. Of the nebulæ, Professor Proctor (“Star-Clouds and Star-Mist”) says, “When the depths of the heavens are explored with a powerful telescope a number of strange cloud-like objects are brought into view. It is startling to consider that if the eye of man suddenly acquired the light-gathering power of a large telescope, and if at the same time all the single stars disappeared, we should see on the celestial vault a display of the mysterious objects called nebulæ or star-clouds exceeding in number all the stars which can now be seen on the darkest night in winter. The whole sky would seem mottled with these singular objects.” As telescopes, with the advances of constructive art, increased in power, these luminous clouds became more and more clearly defined, and many of them became resolved into clusters of stars, galaxies of suns like the Milky Way, of which latter our solar system is a constituent part, but more distant from us than the separatelyvisible stars of that galaxy, and each separated from the relatively adjacent clusters by intervals of space comparable only with those which separate them from our own system. Of these glorious star-clusters, says Flammarion, in “The Wonders of the Heavens,” “In the bosom of infinite space, the unfathomable depth of which we have tried to comprehend, float rich clusters of stars, each separated by immense intervals. We shall soon show that all the stars are suns like ours, shining with their own light, and foci of as many systems of worlds. Now, the stars are not scattered in all parts of space at hazard; they are grouped as the members of many families. If we compared the ocean of the heavens with the ocean of the earth, we should say that the isles which sprinkle this ocean do not rise separately in all parts of the sea, but that they are united here and there in archipelagoes more or less rich …. They are all collected in tribes, most of which count their members by millions.” Says Professor Nichol, “System on system of majesty unspeakable float through the fathomless ocean of space. Our galaxy, with splendors that seem illimitable, is only a unit among unnumbered throngs; we can think of it, in comparison with creation, but as we were wont to think of one of its own stars. “Of these glorious star-clusters the same writer says, “That no one has ever seen them in a telescope of adequate power without uttering a shout of wonder.” These mist-like star-clouds were successively resolved, nebula by nebula, until science settled into the belief that with telescopesof adequate power all nebulæ might be so resolved, and the capacity of telescopes to thus resolve nebulæ became a test of their power. But spectrum analysis finally entered the lists with new methods of investigation, and the comparatively tiny spectroscope at a single leap passed far beyond the utmost limits of the highest telescopic vision, and at one blow struck the whole category of nebulæ into two widely different classes,—those composed of discrete stars grouped like the suns of our own Milky Way, and exhibiting the characteristic spectra of such bodies, and those composed of diffused gaseous matter not yet condensed into suns, and showing the disconnected spectral lines of simple elemental gases. The line of division was clear, direct, positive, and beyond all dispute. Yet beyond these two classes further research has disclosed certain vast nebulæ in which some portions exhibit true solar spectra more or less modified and others true gaseous spectra, each apparently merging into the other by gradations so faint and delicate that the inference is irresistible that in these nebulæ we see the processes of galactic and solar creation at various stages of their development.Of these nebulæ, Professor Ball says, “In one of his most remarkable papers, Sir W. Herschel presents us with a summary of his observations on the nebulæ, arranged in such a manner as to suggest his theory of the gradual transmutation of nebulæ into stars. He first shows us that there are regions in the heavens where a faint diffusednebulosity is all that can be detected by the telescope. There are other nebulæ in which a nucleus can be just discerned, others again in which the nucleus is easily seen, and still others where the nucleus is a bright star-like point. The transition from an object of this kind to a nebulous star is very natural, while the nebulous stars pass into the ordinary stars by a few graduated stages. It is thus possible to enumerate a series of objects, beginning at one end with the most diffused nebulosity and ending at the other with an ordinary fixed star or group of stars. Each object in the series differs but slightly from the object just before it and just after it.” And of these composite nebulæ, he adds, “The great nebula in Orion is known to be the most glorious body of its class that the heavens display. Seen through a powerful telescope, … the appearance of this grand ‘light stain’ is of indescribable glory. It is a vast volume of bluish gaseous material with hues of infinite softness and delicacy. Here it presents luminous tracts which glow with an exquisite blue light; there it graduates off until it is impossible to say where the nebula ceases and the black sky begins.”With reference to these distant galaxies of apparently complete solar systems like our own, the same principles must regulate the conversion of this energy of planetary electricity into the energy of solar light and heat as we see manifested in our own sun. The light of the individual stars is sufficient evidence of this; but the question may beasked, Is the electrical interaction between separate galaxies and between different solar systems in the same galaxy universal, or are these operations merely local? In other words, Is the source and the mode of solar energy in accordance with a single universal law of and between all created universes, or is it limited in effective energy to the members of each individual solar system alone? The answer is, that it is not less universal than the law of gravitation and no more so. There is a prevalent popular fallacy that the force of gravity is such that the movements, not only of solar systems, but of whole galaxies, and of all the illimitable systems of galaxies, are under its effective control, and that the whole universe of boundless space acknowledges its overwhelming sway. But nothing can be further from the truth. We know, of course, that the law is universal, as expressed in the statement of its terms by Newton, but the mere statement of the law itself, as applied to interstellar distances, refutes the idea that solar systems and galaxies can rotate around any common center by virtue of the attraction of gravitation as a controlling force. The universality of the law itself has even been doubted. Professor Ball says, “In the first book about astronomy which I read in my boyhood there was a glowing description …. I allude to the discovery, or the alleged discovery, of a certain ‘central sun’ about which it was believed or stated that all the bodies in the universe revolved …. It was too good to be true. No one ever hears anything about the central sunhypothesis nowadays …. It must be, then, admitted that when the law of gravitation is spoken of as being universal, we are using language infinitely more general than the facts absolutely warrant. At the present moment we only know that gravitation exists to a very small extent in a certain indefinite small portion of space. Our knowledge would have to be enormously increased before we could assert that gravitation was in operation throughout this very limited region; and even when we have proved this, we should only have made an infinitesimal advance to a proof that gravitation is absolutely universal.”Anyone who chooses may prove for himself that the force exercised by gravitation between the multitudinous suns of our own galaxy, the Milky Way, and our earth must be quite infinitesimal, and totally unable to control the motions of our own solar system in a definite orbit through universal space. We know that the law which regulates the intensity of light at various distances is the same as the law of gravity,—that is to say, the proportion is directly as the mass and inversely as the square of the distance. We know also that the stars which compose the Milky Way are similarly constituted, generally considered, to our own sun, and that under similar circumstances the emission of light, roughly speaking, will vary according to the magnitude of these distant suns. Now, if any one will stand, at the darkest hour of the night, when the moon is absent and the sky perfectly cloudless, when the“Stars that oversprinkle all the heavens seem to twinkleWith a crystalline delight,”and sweep with his gaze all the concave hemisphere of the sky, and then compare the light which is radiated around him with the gorgeous effulgence of the noonday summer sun, he can pretty closely compare the relative attraction of gravity which all those distant suns together can exercise upon our earth with that of our own sun. Under control of the latter, the earth sweeps around in her orbit at the rate of about twenty miles per second; all these suns could not give our solar system even a minute fraction of that. Of this starlight Professor Ball says, “The sun certainly must receive some heat by the radiation from the stars; but this is quite infinitesimal in comparison with his own stupendous radiation.” Any such attraction, of course, could not control the motions of our solar system, and much less that of many of the others.“The night has a thousand eyes, and the day but one,But the light of the whole world dies when the day is done.”We can also demonstrate the fact mathematically by an exceedingly rough calculation, which, however, will be sufficient for our purpose. Of the Milky Way, which comprises only the stars of our own sidereal system, Professor Ball says, “One hundred million stars are presumed to be disposed in a flat circular layer of such dimensions that a ray of light would require thirty thousand years to traverse one diameter.” (The most recent estimatesmake the number of the stars which compose the Milky Way several times one hundred million, occupying a correspondingly greater amplitude of space. The number in any case is sufficiently stupendous.) Our solar system is located in space at the apex of a vast transverse cleft, and nearly at the center of this disk. Let us leave out of consideration the lower half of the Milky Way, as we look upward on a starlit night, and conceive this galaxy to extend only across the midnight sky above us like an archway, with fifty million suns, visible and invisible, exposed in the field of our vision. The nearest of all the fixed stars to us is that known as Alpha Centauri,—not visible, however, in our northern skies. This star is about two hundred and thirty thousand times as far from our sun as is the earth. If of the same mass as our sun, it must exert upon us an attractive force of gravity one fifty-three-billionth that of our own sun. Next in distance is the star No. 61 of the constellation Cygnus. This may be three times as distant, and is certainly not less than twice. The light of the former will reach the earth in three and one-quarter years; that of the latter in not less than six and one-half years, perhaps much more. These are our nearest stellar neighbors. While the former will attract us with only one fifty-three-thousand-millionth that of the sun, the latter will attract us with less than one two-hundred-thousand-millionth that of our sun. Conceive, then, a square pyramid extending radially upward for three thousand times the mean of these distances to the upperprobable limits of the Milky Way, a light-distance of fifteen thousand years, and that this pyramid expands according to the squares of its distances, so that it will contain within it, equally distributed, all the stars (fifty million) of the upper half of the disk of the Milky Way; the sum total of all these attractions could not reach one twenty-millionth part of that of our sun upon the earth. If we continue to pile galaxies, in the same perpetual recession, behind each other to all infinity, we still could not engender sufficient attractive force to control the observed movements of the multitudinous stars of space. The very statement of the law of gravitation itself disproves it; for if we multiply orbs and systems according to any principle of aggregation that we know of in the way of distribution of such systems, or anything possible, with due regard to their own mutually interacting movements in space, we could never reach the inside limits of such a sphere of control, because the piling up of orb behind orb adds but an infinitesimal fraction to the force of gravity, for as the orbs themselves multiply in distance progressively by hundreds, their relative attractions inversely diminish by ten thousands. No possible increase of suns directly in mass could compensate for such an inverse ratio of squares, even if all intergalactic space were peopled with suns, instead of being, in fact, like a vast ocean, with a few small clusters of islands scattered here and there throughout its illimitable extent.Of these vast realms of space, Professor Ballasks, “Is our sidereal system to be regarded as an oceanic island in space, or is it in such connection with the systems in other parts of space as might lead us to infer that the various systems had a common character? The evidence seems to show that the stars in our system are probably not permanently associated together, but that in the course of time some stars enter our system and other stars leave it, in such manner as to suggest that the bodies visible to us are fairly typical of the general contents of the universe. The strongest evidence that can be presented on this subject is met with in the peculiar circumstances of one particular star. The star in question is known as No. 1830 of Groombridge’s catalogue. It is a small star, not to be seen without the aid of a telescope …. We shall probably be quite correct in assuming that the distance is not less than two hundred billions of miles …. The velocity is no less than two hundred miles per second …. The star sweeps along through our system with this stupendous velocity …. The velocity being over twenty-five miles a second, the attraction can never overcome the velocity, so that the star seems destined to escape.” Of the star Alcyone he says, “Doubtless that star is thousands of billions of miles from the earth; doubtless the light from it requires thousands of years—and some astronomers have said millions of years—to span the abyss which intervenes between our globe and those distant regions.” And yet these stars, these galaxies, and even all the nebulæ we see or ever shall see, are merely in thevestibule of space; we have scarcely even yet lifted the outer curtain at the entrance of those vast realms. That the popular, but pseudo-scientific, idea of a series of ever-widening concentric orbits, increasing at every new expansion by an inconceivable ratio, is incredible we can well understand, and it is a satisfaction to know that such a wild hypothesis finds no warrant in the dicta or the demonstrations of science. And it is in the failure of gravity to control over the intervening space which lies between those vastly distant centers that we may hope to find the inklings of a more far-reaching law, by which nebulæ like that of Orion crystallize out into separate star systems, just as in the rocks, whether igneous, metamorphic, or sedimentary, we find the attraction of cohesion yield to that of crystallization, until the whole cleft rock blazes with countless garnets in the schist and quartz crystals in the gneiss, or reveals the yellow specks of olivine in volcanic ejections.We shall find in the processes concerned with the development of living things the workings of a similar great law, perhaps the same. Wherever there is the possibility of life, there we find life. There seems to be an all-pervading vital tension, so to speak, an energizing force, which drives the evolution and ascent of life forward and upward by successive leaps, as it were, from type to type, from race to race, and even from nation to nation. In this universal forward movement we may dimly discern the primordial creative and developing impulse, constantly acting, but manifesting visiblechange only at intervals as gathering forces accumulate and equilibrium is disturbed. It manifests itself in all the fields of nature,—vital, chemical, molecular, molar, systemic. It is the ever-acting, eternal past, present, and future, the macrocosm and the microcosm, the panurgus, the Brahma, the Ancient of Days, and cannot be silenced or evaded:“They reckon ill who leave me out,Whenmethey fly I am the wings.”R. Kalley Miller, in his “Romance of Astronomy,” says, “It would be hopeless to attempt expressing in ordinary language the vast distance at which these clusters of stars are situated from us. If we were to reckon it in miles, or even in millions of miles, figures would pile upon figures till in their number all definite idea of their value was lost. We must choose another unit to measure these infinitudes of space,—a unit compared with which the dimensions of our own solar system shrink into absolute nothingness. The velocity of light is such that it would flash fifteen times from pole to pole of our earth between two beats of the pendulum. It bridges the huge chasm that separates us from the sun in little more than eight minutes. But the light that shows us these faint star-clusters has been travelling with this frightful velocity for more than two million years since it left its distant source. We see them to-day in the fields of our telescopes, not as they are now, but as they were countless ages before the creation ofman upon the earth. What they are now who can tell?”The movements of solar systems through space are unquestionably controlled by some wider law than that of gravitation, and it still remains for science to seek its hidden principles and discover its mode of operation. We know that some stars travel alone, like the star already noted, No. 1830 of Groombridge’s catalogue; that others travel in pairs, like the double star Mizar and its companion Alcor; and others in groups, like the stars Beta, Gamma, Delta, Epsilon and Zeta, of the constellation Ursa Major; that we are driving towards the constellation Lyra and leaving behind us Sirius and its fellows, and that many, if not all, of the stars whose motions we can measure have a rapid movement through space, but under what control, in accord with what hidden harmony, and under what general plan they move, we do not know; but the laws of electrical action of the circling planets upon their central suns, and of these upon space, we can readily account for by the similar operation of the same laws within our own solar domain; and we know by the similar terms of the ratio of distribution of light that this is commensurate in extent with the law of gravity, and operates in a like proportion of energy over all intervening distances; so that wherever our sun presents a visible point of light, there it is pouring its energy into space, and every sun we can see, every galaxy, every star-cluster, nay, every nebula, is likewise pouring into the interplanetary space of our ownsolar system its proportionate quota of energy. The very fact that we can see the star shine is itself the fullest evidence that this is so, and evidence also that the law of gravitation there, too, is still in force, operating over these same distances, and with the same proportionate energy.Knowing all this, we can read with a new light the grand vistas of the skies, with their starry denizens, and claim them all as parts of our own family; and the mutual interchange of attractive energy and of light and heat will not fail between us until those inconceivable distances shall have been reached which human knowledge can never span and where speculation fails; and even there, from out those dark abysses,—dark to our human eyes,—the call will still faintly reach us, and our response will reach them also, though we shall never have tangible evidence that such mutual ties continue to exist. Industriously our planets gather their mighty energies from the surrounding springs of space, as one dips water from a crystal stream; we hand it over to our sun, and he, the royal high-priest, sprinkles it in glittering diamond-sprays over all those countless suns and their subject worlds, and they are baptized with an eternal baptism into our common brotherhood and we into theirs. Our familiar planets, Mars, Jupiter, Neptune, the earth, and even our little moon, seem to raise their voices and take actual part in the councils of almighty power, to move about as perpetual benefactors, gathering and spreading beneficence abroad, instead of cowering, a hapless few, likestorm-stayed travellers, around the dying embers of our poor old sun, passive recipients of the light and heat and life which we have been taught to believe are slowly sinking into ashes and fading away in eternal darkness and death. One swift glance into these boundless truths is better for the human soul than the slow passage of whole hopeless centuries, which leave as their inevitable legacy on earth a vast and final catastrophe, in which everything that gave us light and heat and being must perish forever. Has it, indeed, come to this, that the last word which science has to offer is, “After us the deluge”? By no means. We have merely been endeavoring to measure the right hand of God by weighing and measuring a single isolated one of his countless multitude of suns.It is as though one standing beside a great water-wheel should estimate its power and rotation by measuring the width and depth of the buckets and calculating the weight of water which its thirty-two receptacles contain, saying, “at its present rate in so many seconds it will cease to move.” But we take him to the water-gate, and show it wide open; to the great dam above it which contains cubic miles of water; and still beyond that to the mighty fountains bursting forth with their rush and roar from the rock-ribbed fastnesses of the eternal hills, and pouring their unfailing flood-tide down forever and ever. And we do not pause even here: we show him the vapors rising from the spent water again, condensing into clouds, pouring down in torrents of rain among the hills, and that thesecontinuously feed the sources of the fountains, which in turn supply the wheel almost to bursting. And so it is with the glorious mechanism of the heavens.The source of solar energy is not to be found in the sun itself, but in his environment; and he himself, in all his glory, is but the king, crowned with gold, blazing with rich apparel, and scattering benefits among his satellites, not from his own private treasury, but who himself is enriched by the mighty tribute with which his willing subjects continually endow him, and to whom alone he owes all his pride and power and wealth and magnificence, and which he, in turn, so freely expends, transmuted in form alone, in the perpetual improvement and welfare of his domain. He is the faithful ruler, but not the creator; the beneficent monarch, but not the god.
CHAPTER X.THE RESOLVABLE NEBULÆ, STAR-CLUSTERS AND GALAXIES.
When we come to consider the nebulæ, and endeavor to learn what part electricity has to play in the phenomena presented by these singular objects, we must recollect, in order to give them their due importance, that they are neither few in number nor uniform in constitution. Of the nebulæ, Professor Proctor (“Star-Clouds and Star-Mist”) says, “When the depths of the heavens are explored with a powerful telescope a number of strange cloud-like objects are brought into view. It is startling to consider that if the eye of man suddenly acquired the light-gathering power of a large telescope, and if at the same time all the single stars disappeared, we should see on the celestial vault a display of the mysterious objects called nebulæ or star-clouds exceeding in number all the stars which can now be seen on the darkest night in winter. The whole sky would seem mottled with these singular objects.” As telescopes, with the advances of constructive art, increased in power, these luminous clouds became more and more clearly defined, and many of them became resolved into clusters of stars, galaxies of suns like the Milky Way, of which latter our solar system is a constituent part, but more distant from us than the separatelyvisible stars of that galaxy, and each separated from the relatively adjacent clusters by intervals of space comparable only with those which separate them from our own system. Of these glorious star-clusters, says Flammarion, in “The Wonders of the Heavens,” “In the bosom of infinite space, the unfathomable depth of which we have tried to comprehend, float rich clusters of stars, each separated by immense intervals. We shall soon show that all the stars are suns like ours, shining with their own light, and foci of as many systems of worlds. Now, the stars are not scattered in all parts of space at hazard; they are grouped as the members of many families. If we compared the ocean of the heavens with the ocean of the earth, we should say that the isles which sprinkle this ocean do not rise separately in all parts of the sea, but that they are united here and there in archipelagoes more or less rich …. They are all collected in tribes, most of which count their members by millions.” Says Professor Nichol, “System on system of majesty unspeakable float through the fathomless ocean of space. Our galaxy, with splendors that seem illimitable, is only a unit among unnumbered throngs; we can think of it, in comparison with creation, but as we were wont to think of one of its own stars. “Of these glorious star-clusters the same writer says, “That no one has ever seen them in a telescope of adequate power without uttering a shout of wonder.” These mist-like star-clouds were successively resolved, nebula by nebula, until science settled into the belief that with telescopesof adequate power all nebulæ might be so resolved, and the capacity of telescopes to thus resolve nebulæ became a test of their power. But spectrum analysis finally entered the lists with new methods of investigation, and the comparatively tiny spectroscope at a single leap passed far beyond the utmost limits of the highest telescopic vision, and at one blow struck the whole category of nebulæ into two widely different classes,—those composed of discrete stars grouped like the suns of our own Milky Way, and exhibiting the characteristic spectra of such bodies, and those composed of diffused gaseous matter not yet condensed into suns, and showing the disconnected spectral lines of simple elemental gases. The line of division was clear, direct, positive, and beyond all dispute. Yet beyond these two classes further research has disclosed certain vast nebulæ in which some portions exhibit true solar spectra more or less modified and others true gaseous spectra, each apparently merging into the other by gradations so faint and delicate that the inference is irresistible that in these nebulæ we see the processes of galactic and solar creation at various stages of their development.Of these nebulæ, Professor Ball says, “In one of his most remarkable papers, Sir W. Herschel presents us with a summary of his observations on the nebulæ, arranged in such a manner as to suggest his theory of the gradual transmutation of nebulæ into stars. He first shows us that there are regions in the heavens where a faint diffusednebulosity is all that can be detected by the telescope. There are other nebulæ in which a nucleus can be just discerned, others again in which the nucleus is easily seen, and still others where the nucleus is a bright star-like point. The transition from an object of this kind to a nebulous star is very natural, while the nebulous stars pass into the ordinary stars by a few graduated stages. It is thus possible to enumerate a series of objects, beginning at one end with the most diffused nebulosity and ending at the other with an ordinary fixed star or group of stars. Each object in the series differs but slightly from the object just before it and just after it.” And of these composite nebulæ, he adds, “The great nebula in Orion is known to be the most glorious body of its class that the heavens display. Seen through a powerful telescope, … the appearance of this grand ‘light stain’ is of indescribable glory. It is a vast volume of bluish gaseous material with hues of infinite softness and delicacy. Here it presents luminous tracts which glow with an exquisite blue light; there it graduates off until it is impossible to say where the nebula ceases and the black sky begins.”With reference to these distant galaxies of apparently complete solar systems like our own, the same principles must regulate the conversion of this energy of planetary electricity into the energy of solar light and heat as we see manifested in our own sun. The light of the individual stars is sufficient evidence of this; but the question may beasked, Is the electrical interaction between separate galaxies and between different solar systems in the same galaxy universal, or are these operations merely local? In other words, Is the source and the mode of solar energy in accordance with a single universal law of and between all created universes, or is it limited in effective energy to the members of each individual solar system alone? The answer is, that it is not less universal than the law of gravitation and no more so. There is a prevalent popular fallacy that the force of gravity is such that the movements, not only of solar systems, but of whole galaxies, and of all the illimitable systems of galaxies, are under its effective control, and that the whole universe of boundless space acknowledges its overwhelming sway. But nothing can be further from the truth. We know, of course, that the law is universal, as expressed in the statement of its terms by Newton, but the mere statement of the law itself, as applied to interstellar distances, refutes the idea that solar systems and galaxies can rotate around any common center by virtue of the attraction of gravitation as a controlling force. The universality of the law itself has even been doubted. Professor Ball says, “In the first book about astronomy which I read in my boyhood there was a glowing description …. I allude to the discovery, or the alleged discovery, of a certain ‘central sun’ about which it was believed or stated that all the bodies in the universe revolved …. It was too good to be true. No one ever hears anything about the central sunhypothesis nowadays …. It must be, then, admitted that when the law of gravitation is spoken of as being universal, we are using language infinitely more general than the facts absolutely warrant. At the present moment we only know that gravitation exists to a very small extent in a certain indefinite small portion of space. Our knowledge would have to be enormously increased before we could assert that gravitation was in operation throughout this very limited region; and even when we have proved this, we should only have made an infinitesimal advance to a proof that gravitation is absolutely universal.”Anyone who chooses may prove for himself that the force exercised by gravitation between the multitudinous suns of our own galaxy, the Milky Way, and our earth must be quite infinitesimal, and totally unable to control the motions of our own solar system in a definite orbit through universal space. We know that the law which regulates the intensity of light at various distances is the same as the law of gravity,—that is to say, the proportion is directly as the mass and inversely as the square of the distance. We know also that the stars which compose the Milky Way are similarly constituted, generally considered, to our own sun, and that under similar circumstances the emission of light, roughly speaking, will vary according to the magnitude of these distant suns. Now, if any one will stand, at the darkest hour of the night, when the moon is absent and the sky perfectly cloudless, when the“Stars that oversprinkle all the heavens seem to twinkleWith a crystalline delight,”and sweep with his gaze all the concave hemisphere of the sky, and then compare the light which is radiated around him with the gorgeous effulgence of the noonday summer sun, he can pretty closely compare the relative attraction of gravity which all those distant suns together can exercise upon our earth with that of our own sun. Under control of the latter, the earth sweeps around in her orbit at the rate of about twenty miles per second; all these suns could not give our solar system even a minute fraction of that. Of this starlight Professor Ball says, “The sun certainly must receive some heat by the radiation from the stars; but this is quite infinitesimal in comparison with his own stupendous radiation.” Any such attraction, of course, could not control the motions of our solar system, and much less that of many of the others.“The night has a thousand eyes, and the day but one,But the light of the whole world dies when the day is done.”We can also demonstrate the fact mathematically by an exceedingly rough calculation, which, however, will be sufficient for our purpose. Of the Milky Way, which comprises only the stars of our own sidereal system, Professor Ball says, “One hundred million stars are presumed to be disposed in a flat circular layer of such dimensions that a ray of light would require thirty thousand years to traverse one diameter.” (The most recent estimatesmake the number of the stars which compose the Milky Way several times one hundred million, occupying a correspondingly greater amplitude of space. The number in any case is sufficiently stupendous.) Our solar system is located in space at the apex of a vast transverse cleft, and nearly at the center of this disk. Let us leave out of consideration the lower half of the Milky Way, as we look upward on a starlit night, and conceive this galaxy to extend only across the midnight sky above us like an archway, with fifty million suns, visible and invisible, exposed in the field of our vision. The nearest of all the fixed stars to us is that known as Alpha Centauri,—not visible, however, in our northern skies. This star is about two hundred and thirty thousand times as far from our sun as is the earth. If of the same mass as our sun, it must exert upon us an attractive force of gravity one fifty-three-billionth that of our own sun. Next in distance is the star No. 61 of the constellation Cygnus. This may be three times as distant, and is certainly not less than twice. The light of the former will reach the earth in three and one-quarter years; that of the latter in not less than six and one-half years, perhaps much more. These are our nearest stellar neighbors. While the former will attract us with only one fifty-three-thousand-millionth that of the sun, the latter will attract us with less than one two-hundred-thousand-millionth that of our sun. Conceive, then, a square pyramid extending radially upward for three thousand times the mean of these distances to the upperprobable limits of the Milky Way, a light-distance of fifteen thousand years, and that this pyramid expands according to the squares of its distances, so that it will contain within it, equally distributed, all the stars (fifty million) of the upper half of the disk of the Milky Way; the sum total of all these attractions could not reach one twenty-millionth part of that of our sun upon the earth. If we continue to pile galaxies, in the same perpetual recession, behind each other to all infinity, we still could not engender sufficient attractive force to control the observed movements of the multitudinous stars of space. The very statement of the law of gravitation itself disproves it; for if we multiply orbs and systems according to any principle of aggregation that we know of in the way of distribution of such systems, or anything possible, with due regard to their own mutually interacting movements in space, we could never reach the inside limits of such a sphere of control, because the piling up of orb behind orb adds but an infinitesimal fraction to the force of gravity, for as the orbs themselves multiply in distance progressively by hundreds, their relative attractions inversely diminish by ten thousands. No possible increase of suns directly in mass could compensate for such an inverse ratio of squares, even if all intergalactic space were peopled with suns, instead of being, in fact, like a vast ocean, with a few small clusters of islands scattered here and there throughout its illimitable extent.Of these vast realms of space, Professor Ballasks, “Is our sidereal system to be regarded as an oceanic island in space, or is it in such connection with the systems in other parts of space as might lead us to infer that the various systems had a common character? The evidence seems to show that the stars in our system are probably not permanently associated together, but that in the course of time some stars enter our system and other stars leave it, in such manner as to suggest that the bodies visible to us are fairly typical of the general contents of the universe. The strongest evidence that can be presented on this subject is met with in the peculiar circumstances of one particular star. The star in question is known as No. 1830 of Groombridge’s catalogue. It is a small star, not to be seen without the aid of a telescope …. We shall probably be quite correct in assuming that the distance is not less than two hundred billions of miles …. The velocity is no less than two hundred miles per second …. The star sweeps along through our system with this stupendous velocity …. The velocity being over twenty-five miles a second, the attraction can never overcome the velocity, so that the star seems destined to escape.” Of the star Alcyone he says, “Doubtless that star is thousands of billions of miles from the earth; doubtless the light from it requires thousands of years—and some astronomers have said millions of years—to span the abyss which intervenes between our globe and those distant regions.” And yet these stars, these galaxies, and even all the nebulæ we see or ever shall see, are merely in thevestibule of space; we have scarcely even yet lifted the outer curtain at the entrance of those vast realms. That the popular, but pseudo-scientific, idea of a series of ever-widening concentric orbits, increasing at every new expansion by an inconceivable ratio, is incredible we can well understand, and it is a satisfaction to know that such a wild hypothesis finds no warrant in the dicta or the demonstrations of science. And it is in the failure of gravity to control over the intervening space which lies between those vastly distant centers that we may hope to find the inklings of a more far-reaching law, by which nebulæ like that of Orion crystallize out into separate star systems, just as in the rocks, whether igneous, metamorphic, or sedimentary, we find the attraction of cohesion yield to that of crystallization, until the whole cleft rock blazes with countless garnets in the schist and quartz crystals in the gneiss, or reveals the yellow specks of olivine in volcanic ejections.We shall find in the processes concerned with the development of living things the workings of a similar great law, perhaps the same. Wherever there is the possibility of life, there we find life. There seems to be an all-pervading vital tension, so to speak, an energizing force, which drives the evolution and ascent of life forward and upward by successive leaps, as it were, from type to type, from race to race, and even from nation to nation. In this universal forward movement we may dimly discern the primordial creative and developing impulse, constantly acting, but manifesting visiblechange only at intervals as gathering forces accumulate and equilibrium is disturbed. It manifests itself in all the fields of nature,—vital, chemical, molecular, molar, systemic. It is the ever-acting, eternal past, present, and future, the macrocosm and the microcosm, the panurgus, the Brahma, the Ancient of Days, and cannot be silenced or evaded:“They reckon ill who leave me out,Whenmethey fly I am the wings.”R. Kalley Miller, in his “Romance of Astronomy,” says, “It would be hopeless to attempt expressing in ordinary language the vast distance at which these clusters of stars are situated from us. If we were to reckon it in miles, or even in millions of miles, figures would pile upon figures till in their number all definite idea of their value was lost. We must choose another unit to measure these infinitudes of space,—a unit compared with which the dimensions of our own solar system shrink into absolute nothingness. The velocity of light is such that it would flash fifteen times from pole to pole of our earth between two beats of the pendulum. It bridges the huge chasm that separates us from the sun in little more than eight minutes. But the light that shows us these faint star-clusters has been travelling with this frightful velocity for more than two million years since it left its distant source. We see them to-day in the fields of our telescopes, not as they are now, but as they were countless ages before the creation ofman upon the earth. What they are now who can tell?”The movements of solar systems through space are unquestionably controlled by some wider law than that of gravitation, and it still remains for science to seek its hidden principles and discover its mode of operation. We know that some stars travel alone, like the star already noted, No. 1830 of Groombridge’s catalogue; that others travel in pairs, like the double star Mizar and its companion Alcor; and others in groups, like the stars Beta, Gamma, Delta, Epsilon and Zeta, of the constellation Ursa Major; that we are driving towards the constellation Lyra and leaving behind us Sirius and its fellows, and that many, if not all, of the stars whose motions we can measure have a rapid movement through space, but under what control, in accord with what hidden harmony, and under what general plan they move, we do not know; but the laws of electrical action of the circling planets upon their central suns, and of these upon space, we can readily account for by the similar operation of the same laws within our own solar domain; and we know by the similar terms of the ratio of distribution of light that this is commensurate in extent with the law of gravity, and operates in a like proportion of energy over all intervening distances; so that wherever our sun presents a visible point of light, there it is pouring its energy into space, and every sun we can see, every galaxy, every star-cluster, nay, every nebula, is likewise pouring into the interplanetary space of our ownsolar system its proportionate quota of energy. The very fact that we can see the star shine is itself the fullest evidence that this is so, and evidence also that the law of gravitation there, too, is still in force, operating over these same distances, and with the same proportionate energy.Knowing all this, we can read with a new light the grand vistas of the skies, with their starry denizens, and claim them all as parts of our own family; and the mutual interchange of attractive energy and of light and heat will not fail between us until those inconceivable distances shall have been reached which human knowledge can never span and where speculation fails; and even there, from out those dark abysses,—dark to our human eyes,—the call will still faintly reach us, and our response will reach them also, though we shall never have tangible evidence that such mutual ties continue to exist. Industriously our planets gather their mighty energies from the surrounding springs of space, as one dips water from a crystal stream; we hand it over to our sun, and he, the royal high-priest, sprinkles it in glittering diamond-sprays over all those countless suns and their subject worlds, and they are baptized with an eternal baptism into our common brotherhood and we into theirs. Our familiar planets, Mars, Jupiter, Neptune, the earth, and even our little moon, seem to raise their voices and take actual part in the councils of almighty power, to move about as perpetual benefactors, gathering and spreading beneficence abroad, instead of cowering, a hapless few, likestorm-stayed travellers, around the dying embers of our poor old sun, passive recipients of the light and heat and life which we have been taught to believe are slowly sinking into ashes and fading away in eternal darkness and death. One swift glance into these boundless truths is better for the human soul than the slow passage of whole hopeless centuries, which leave as their inevitable legacy on earth a vast and final catastrophe, in which everything that gave us light and heat and being must perish forever. Has it, indeed, come to this, that the last word which science has to offer is, “After us the deluge”? By no means. We have merely been endeavoring to measure the right hand of God by weighing and measuring a single isolated one of his countless multitude of suns.It is as though one standing beside a great water-wheel should estimate its power and rotation by measuring the width and depth of the buckets and calculating the weight of water which its thirty-two receptacles contain, saying, “at its present rate in so many seconds it will cease to move.” But we take him to the water-gate, and show it wide open; to the great dam above it which contains cubic miles of water; and still beyond that to the mighty fountains bursting forth with their rush and roar from the rock-ribbed fastnesses of the eternal hills, and pouring their unfailing flood-tide down forever and ever. And we do not pause even here: we show him the vapors rising from the spent water again, condensing into clouds, pouring down in torrents of rain among the hills, and that thesecontinuously feed the sources of the fountains, which in turn supply the wheel almost to bursting. And so it is with the glorious mechanism of the heavens.The source of solar energy is not to be found in the sun itself, but in his environment; and he himself, in all his glory, is but the king, crowned with gold, blazing with rich apparel, and scattering benefits among his satellites, not from his own private treasury, but who himself is enriched by the mighty tribute with which his willing subjects continually endow him, and to whom alone he owes all his pride and power and wealth and magnificence, and which he, in turn, so freely expends, transmuted in form alone, in the perpetual improvement and welfare of his domain. He is the faithful ruler, but not the creator; the beneficent monarch, but not the god.
When we come to consider the nebulæ, and endeavor to learn what part electricity has to play in the phenomena presented by these singular objects, we must recollect, in order to give them their due importance, that they are neither few in number nor uniform in constitution. Of the nebulæ, Professor Proctor (“Star-Clouds and Star-Mist”) says, “When the depths of the heavens are explored with a powerful telescope a number of strange cloud-like objects are brought into view. It is startling to consider that if the eye of man suddenly acquired the light-gathering power of a large telescope, and if at the same time all the single stars disappeared, we should see on the celestial vault a display of the mysterious objects called nebulæ or star-clouds exceeding in number all the stars which can now be seen on the darkest night in winter. The whole sky would seem mottled with these singular objects.” As telescopes, with the advances of constructive art, increased in power, these luminous clouds became more and more clearly defined, and many of them became resolved into clusters of stars, galaxies of suns like the Milky Way, of which latter our solar system is a constituent part, but more distant from us than the separatelyvisible stars of that galaxy, and each separated from the relatively adjacent clusters by intervals of space comparable only with those which separate them from our own system. Of these glorious star-clusters, says Flammarion, in “The Wonders of the Heavens,” “In the bosom of infinite space, the unfathomable depth of which we have tried to comprehend, float rich clusters of stars, each separated by immense intervals. We shall soon show that all the stars are suns like ours, shining with their own light, and foci of as many systems of worlds. Now, the stars are not scattered in all parts of space at hazard; they are grouped as the members of many families. If we compared the ocean of the heavens with the ocean of the earth, we should say that the isles which sprinkle this ocean do not rise separately in all parts of the sea, but that they are united here and there in archipelagoes more or less rich …. They are all collected in tribes, most of which count their members by millions.” Says Professor Nichol, “System on system of majesty unspeakable float through the fathomless ocean of space. Our galaxy, with splendors that seem illimitable, is only a unit among unnumbered throngs; we can think of it, in comparison with creation, but as we were wont to think of one of its own stars. “Of these glorious star-clusters the same writer says, “That no one has ever seen them in a telescope of adequate power without uttering a shout of wonder.” These mist-like star-clouds were successively resolved, nebula by nebula, until science settled into the belief that with telescopesof adequate power all nebulæ might be so resolved, and the capacity of telescopes to thus resolve nebulæ became a test of their power. But spectrum analysis finally entered the lists with new methods of investigation, and the comparatively tiny spectroscope at a single leap passed far beyond the utmost limits of the highest telescopic vision, and at one blow struck the whole category of nebulæ into two widely different classes,—those composed of discrete stars grouped like the suns of our own Milky Way, and exhibiting the characteristic spectra of such bodies, and those composed of diffused gaseous matter not yet condensed into suns, and showing the disconnected spectral lines of simple elemental gases. The line of division was clear, direct, positive, and beyond all dispute. Yet beyond these two classes further research has disclosed certain vast nebulæ in which some portions exhibit true solar spectra more or less modified and others true gaseous spectra, each apparently merging into the other by gradations so faint and delicate that the inference is irresistible that in these nebulæ we see the processes of galactic and solar creation at various stages of their development.
Of these nebulæ, Professor Ball says, “In one of his most remarkable papers, Sir W. Herschel presents us with a summary of his observations on the nebulæ, arranged in such a manner as to suggest his theory of the gradual transmutation of nebulæ into stars. He first shows us that there are regions in the heavens where a faint diffusednebulosity is all that can be detected by the telescope. There are other nebulæ in which a nucleus can be just discerned, others again in which the nucleus is easily seen, and still others where the nucleus is a bright star-like point. The transition from an object of this kind to a nebulous star is very natural, while the nebulous stars pass into the ordinary stars by a few graduated stages. It is thus possible to enumerate a series of objects, beginning at one end with the most diffused nebulosity and ending at the other with an ordinary fixed star or group of stars. Each object in the series differs but slightly from the object just before it and just after it.” And of these composite nebulæ, he adds, “The great nebula in Orion is known to be the most glorious body of its class that the heavens display. Seen through a powerful telescope, … the appearance of this grand ‘light stain’ is of indescribable glory. It is a vast volume of bluish gaseous material with hues of infinite softness and delicacy. Here it presents luminous tracts which glow with an exquisite blue light; there it graduates off until it is impossible to say where the nebula ceases and the black sky begins.”
With reference to these distant galaxies of apparently complete solar systems like our own, the same principles must regulate the conversion of this energy of planetary electricity into the energy of solar light and heat as we see manifested in our own sun. The light of the individual stars is sufficient evidence of this; but the question may beasked, Is the electrical interaction between separate galaxies and between different solar systems in the same galaxy universal, or are these operations merely local? In other words, Is the source and the mode of solar energy in accordance with a single universal law of and between all created universes, or is it limited in effective energy to the members of each individual solar system alone? The answer is, that it is not less universal than the law of gravitation and no more so. There is a prevalent popular fallacy that the force of gravity is such that the movements, not only of solar systems, but of whole galaxies, and of all the illimitable systems of galaxies, are under its effective control, and that the whole universe of boundless space acknowledges its overwhelming sway. But nothing can be further from the truth. We know, of course, that the law is universal, as expressed in the statement of its terms by Newton, but the mere statement of the law itself, as applied to interstellar distances, refutes the idea that solar systems and galaxies can rotate around any common center by virtue of the attraction of gravitation as a controlling force. The universality of the law itself has even been doubted. Professor Ball says, “In the first book about astronomy which I read in my boyhood there was a glowing description …. I allude to the discovery, or the alleged discovery, of a certain ‘central sun’ about which it was believed or stated that all the bodies in the universe revolved …. It was too good to be true. No one ever hears anything about the central sunhypothesis nowadays …. It must be, then, admitted that when the law of gravitation is spoken of as being universal, we are using language infinitely more general than the facts absolutely warrant. At the present moment we only know that gravitation exists to a very small extent in a certain indefinite small portion of space. Our knowledge would have to be enormously increased before we could assert that gravitation was in operation throughout this very limited region; and even when we have proved this, we should only have made an infinitesimal advance to a proof that gravitation is absolutely universal.”
Anyone who chooses may prove for himself that the force exercised by gravitation between the multitudinous suns of our own galaxy, the Milky Way, and our earth must be quite infinitesimal, and totally unable to control the motions of our own solar system in a definite orbit through universal space. We know that the law which regulates the intensity of light at various distances is the same as the law of gravity,—that is to say, the proportion is directly as the mass and inversely as the square of the distance. We know also that the stars which compose the Milky Way are similarly constituted, generally considered, to our own sun, and that under similar circumstances the emission of light, roughly speaking, will vary according to the magnitude of these distant suns. Now, if any one will stand, at the darkest hour of the night, when the moon is absent and the sky perfectly cloudless, when the
“Stars that oversprinkle all the heavens seem to twinkleWith a crystalline delight,”
“Stars that oversprinkle all the heavens seem to twinkle
With a crystalline delight,”
and sweep with his gaze all the concave hemisphere of the sky, and then compare the light which is radiated around him with the gorgeous effulgence of the noonday summer sun, he can pretty closely compare the relative attraction of gravity which all those distant suns together can exercise upon our earth with that of our own sun. Under control of the latter, the earth sweeps around in her orbit at the rate of about twenty miles per second; all these suns could not give our solar system even a minute fraction of that. Of this starlight Professor Ball says, “The sun certainly must receive some heat by the radiation from the stars; but this is quite infinitesimal in comparison with his own stupendous radiation.” Any such attraction, of course, could not control the motions of our solar system, and much less that of many of the others.
“The night has a thousand eyes, and the day but one,But the light of the whole world dies when the day is done.”
“The night has a thousand eyes, and the day but one,
But the light of the whole world dies when the day is done.”
We can also demonstrate the fact mathematically by an exceedingly rough calculation, which, however, will be sufficient for our purpose. Of the Milky Way, which comprises only the stars of our own sidereal system, Professor Ball says, “One hundred million stars are presumed to be disposed in a flat circular layer of such dimensions that a ray of light would require thirty thousand years to traverse one diameter.” (The most recent estimatesmake the number of the stars which compose the Milky Way several times one hundred million, occupying a correspondingly greater amplitude of space. The number in any case is sufficiently stupendous.) Our solar system is located in space at the apex of a vast transverse cleft, and nearly at the center of this disk. Let us leave out of consideration the lower half of the Milky Way, as we look upward on a starlit night, and conceive this galaxy to extend only across the midnight sky above us like an archway, with fifty million suns, visible and invisible, exposed in the field of our vision. The nearest of all the fixed stars to us is that known as Alpha Centauri,—not visible, however, in our northern skies. This star is about two hundred and thirty thousand times as far from our sun as is the earth. If of the same mass as our sun, it must exert upon us an attractive force of gravity one fifty-three-billionth that of our own sun. Next in distance is the star No. 61 of the constellation Cygnus. This may be three times as distant, and is certainly not less than twice. The light of the former will reach the earth in three and one-quarter years; that of the latter in not less than six and one-half years, perhaps much more. These are our nearest stellar neighbors. While the former will attract us with only one fifty-three-thousand-millionth that of the sun, the latter will attract us with less than one two-hundred-thousand-millionth that of our sun. Conceive, then, a square pyramid extending radially upward for three thousand times the mean of these distances to the upperprobable limits of the Milky Way, a light-distance of fifteen thousand years, and that this pyramid expands according to the squares of its distances, so that it will contain within it, equally distributed, all the stars (fifty million) of the upper half of the disk of the Milky Way; the sum total of all these attractions could not reach one twenty-millionth part of that of our sun upon the earth. If we continue to pile galaxies, in the same perpetual recession, behind each other to all infinity, we still could not engender sufficient attractive force to control the observed movements of the multitudinous stars of space. The very statement of the law of gravitation itself disproves it; for if we multiply orbs and systems according to any principle of aggregation that we know of in the way of distribution of such systems, or anything possible, with due regard to their own mutually interacting movements in space, we could never reach the inside limits of such a sphere of control, because the piling up of orb behind orb adds but an infinitesimal fraction to the force of gravity, for as the orbs themselves multiply in distance progressively by hundreds, their relative attractions inversely diminish by ten thousands. No possible increase of suns directly in mass could compensate for such an inverse ratio of squares, even if all intergalactic space were peopled with suns, instead of being, in fact, like a vast ocean, with a few small clusters of islands scattered here and there throughout its illimitable extent.
Of these vast realms of space, Professor Ballasks, “Is our sidereal system to be regarded as an oceanic island in space, or is it in such connection with the systems in other parts of space as might lead us to infer that the various systems had a common character? The evidence seems to show that the stars in our system are probably not permanently associated together, but that in the course of time some stars enter our system and other stars leave it, in such manner as to suggest that the bodies visible to us are fairly typical of the general contents of the universe. The strongest evidence that can be presented on this subject is met with in the peculiar circumstances of one particular star. The star in question is known as No. 1830 of Groombridge’s catalogue. It is a small star, not to be seen without the aid of a telescope …. We shall probably be quite correct in assuming that the distance is not less than two hundred billions of miles …. The velocity is no less than two hundred miles per second …. The star sweeps along through our system with this stupendous velocity …. The velocity being over twenty-five miles a second, the attraction can never overcome the velocity, so that the star seems destined to escape.” Of the star Alcyone he says, “Doubtless that star is thousands of billions of miles from the earth; doubtless the light from it requires thousands of years—and some astronomers have said millions of years—to span the abyss which intervenes between our globe and those distant regions.” And yet these stars, these galaxies, and even all the nebulæ we see or ever shall see, are merely in thevestibule of space; we have scarcely even yet lifted the outer curtain at the entrance of those vast realms. That the popular, but pseudo-scientific, idea of a series of ever-widening concentric orbits, increasing at every new expansion by an inconceivable ratio, is incredible we can well understand, and it is a satisfaction to know that such a wild hypothesis finds no warrant in the dicta or the demonstrations of science. And it is in the failure of gravity to control over the intervening space which lies between those vastly distant centers that we may hope to find the inklings of a more far-reaching law, by which nebulæ like that of Orion crystallize out into separate star systems, just as in the rocks, whether igneous, metamorphic, or sedimentary, we find the attraction of cohesion yield to that of crystallization, until the whole cleft rock blazes with countless garnets in the schist and quartz crystals in the gneiss, or reveals the yellow specks of olivine in volcanic ejections.
We shall find in the processes concerned with the development of living things the workings of a similar great law, perhaps the same. Wherever there is the possibility of life, there we find life. There seems to be an all-pervading vital tension, so to speak, an energizing force, which drives the evolution and ascent of life forward and upward by successive leaps, as it were, from type to type, from race to race, and even from nation to nation. In this universal forward movement we may dimly discern the primordial creative and developing impulse, constantly acting, but manifesting visiblechange only at intervals as gathering forces accumulate and equilibrium is disturbed. It manifests itself in all the fields of nature,—vital, chemical, molecular, molar, systemic. It is the ever-acting, eternal past, present, and future, the macrocosm and the microcosm, the panurgus, the Brahma, the Ancient of Days, and cannot be silenced or evaded:
“They reckon ill who leave me out,Whenmethey fly I am the wings.”
“They reckon ill who leave me out,
Whenmethey fly I am the wings.”
R. Kalley Miller, in his “Romance of Astronomy,” says, “It would be hopeless to attempt expressing in ordinary language the vast distance at which these clusters of stars are situated from us. If we were to reckon it in miles, or even in millions of miles, figures would pile upon figures till in their number all definite idea of their value was lost. We must choose another unit to measure these infinitudes of space,—a unit compared with which the dimensions of our own solar system shrink into absolute nothingness. The velocity of light is such that it would flash fifteen times from pole to pole of our earth between two beats of the pendulum. It bridges the huge chasm that separates us from the sun in little more than eight minutes. But the light that shows us these faint star-clusters has been travelling with this frightful velocity for more than two million years since it left its distant source. We see them to-day in the fields of our telescopes, not as they are now, but as they were countless ages before the creation ofman upon the earth. What they are now who can tell?”
The movements of solar systems through space are unquestionably controlled by some wider law than that of gravitation, and it still remains for science to seek its hidden principles and discover its mode of operation. We know that some stars travel alone, like the star already noted, No. 1830 of Groombridge’s catalogue; that others travel in pairs, like the double star Mizar and its companion Alcor; and others in groups, like the stars Beta, Gamma, Delta, Epsilon and Zeta, of the constellation Ursa Major; that we are driving towards the constellation Lyra and leaving behind us Sirius and its fellows, and that many, if not all, of the stars whose motions we can measure have a rapid movement through space, but under what control, in accord with what hidden harmony, and under what general plan they move, we do not know; but the laws of electrical action of the circling planets upon their central suns, and of these upon space, we can readily account for by the similar operation of the same laws within our own solar domain; and we know by the similar terms of the ratio of distribution of light that this is commensurate in extent with the law of gravity, and operates in a like proportion of energy over all intervening distances; so that wherever our sun presents a visible point of light, there it is pouring its energy into space, and every sun we can see, every galaxy, every star-cluster, nay, every nebula, is likewise pouring into the interplanetary space of our ownsolar system its proportionate quota of energy. The very fact that we can see the star shine is itself the fullest evidence that this is so, and evidence also that the law of gravitation there, too, is still in force, operating over these same distances, and with the same proportionate energy.
Knowing all this, we can read with a new light the grand vistas of the skies, with their starry denizens, and claim them all as parts of our own family; and the mutual interchange of attractive energy and of light and heat will not fail between us until those inconceivable distances shall have been reached which human knowledge can never span and where speculation fails; and even there, from out those dark abysses,—dark to our human eyes,—the call will still faintly reach us, and our response will reach them also, though we shall never have tangible evidence that such mutual ties continue to exist. Industriously our planets gather their mighty energies from the surrounding springs of space, as one dips water from a crystal stream; we hand it over to our sun, and he, the royal high-priest, sprinkles it in glittering diamond-sprays over all those countless suns and their subject worlds, and they are baptized with an eternal baptism into our common brotherhood and we into theirs. Our familiar planets, Mars, Jupiter, Neptune, the earth, and even our little moon, seem to raise their voices and take actual part in the councils of almighty power, to move about as perpetual benefactors, gathering and spreading beneficence abroad, instead of cowering, a hapless few, likestorm-stayed travellers, around the dying embers of our poor old sun, passive recipients of the light and heat and life which we have been taught to believe are slowly sinking into ashes and fading away in eternal darkness and death. One swift glance into these boundless truths is better for the human soul than the slow passage of whole hopeless centuries, which leave as their inevitable legacy on earth a vast and final catastrophe, in which everything that gave us light and heat and being must perish forever. Has it, indeed, come to this, that the last word which science has to offer is, “After us the deluge”? By no means. We have merely been endeavoring to measure the right hand of God by weighing and measuring a single isolated one of his countless multitude of suns.
It is as though one standing beside a great water-wheel should estimate its power and rotation by measuring the width and depth of the buckets and calculating the weight of water which its thirty-two receptacles contain, saying, “at its present rate in so many seconds it will cease to move.” But we take him to the water-gate, and show it wide open; to the great dam above it which contains cubic miles of water; and still beyond that to the mighty fountains bursting forth with their rush and roar from the rock-ribbed fastnesses of the eternal hills, and pouring their unfailing flood-tide down forever and ever. And we do not pause even here: we show him the vapors rising from the spent water again, condensing into clouds, pouring down in torrents of rain among the hills, and that thesecontinuously feed the sources of the fountains, which in turn supply the wheel almost to bursting. And so it is with the glorious mechanism of the heavens.
The source of solar energy is not to be found in the sun itself, but in his environment; and he himself, in all his glory, is but the king, crowned with gold, blazing with rich apparel, and scattering benefits among his satellites, not from his own private treasury, but who himself is enriched by the mighty tribute with which his willing subjects continually endow him, and to whom alone he owes all his pride and power and wealth and magnificence, and which he, in turn, so freely expends, transmuted in form alone, in the perpetual improvement and welfare of his domain. He is the faithful ruler, but not the creator; the beneficent monarch, but not the god.