CHAPTER II.

The foods upon which bacteria live are in endless variety, almost every product of animal or vegetable life serving to supply their needs. Some species appear to require somewhat definite kinds of food, and have therefore rather narrow conditions of life, but the majority may live upon a great variety of organic compounds. As they consume the material which serves them as food they produce chemical changes therein. These changes are largely of a nature that the chemist knows as decomposition changes. By this is meant that the bacteria, seizing hold of ingredients which constitute their food, break them to pieces chemically. The molecule of the original food matter is split into simpler molecules, and the food is thus changed in its chemical nature. As a result, the compounds which appear in the decomposing solution are commonly simpler than the original food molecules. Such products are in general called decomposition products, or sometimes cleavage products. Sometimes, however, the bacteria have, in addition to their power of pulling their food to pieces, a further power of building other compounds out of the fragments, thus building up as well as pulling down. But, however they do it, bacteria when growing in any food material have the power of giving rise to numerous products which did not exist in the food mass before. Because of their extraordinary powers of reproduction they are capable of producing these changes very rapidly and can give rise in a short time to large amounts of the peculiar products of their growth.

It is to these powers of producing chemical changes in their food that bacteria owe all their importance in the world. Their power of chemically destroying the food products is in itself of no little importance, but the products which arise as the result of this series of chemical changes are of an importance in the world which we are only just beginning to appreciate. In our attempt to outline the agency which bacteria play in our industries and in natural processes as well, we shall notice that they are sometimes of value simply for their power of producing decomposition; but their greatest value lies in the fact that they are important agents because of the products of their life.

We may notice, in the first place, that in the arts there are several industries which may properly be classed together as maceration industries, all of which are based upon the decomposition powers of bacteria. Hardly any animal or vegetable substance is able to resist their softening influence, and the artisan relies upon this power in several different directions.

Linen.—Linen consists of certain woody fibres of the stem of the flax. The flax stem is not made up entirely of the valuable fibres, but largely of more brittle wood fibres, which are of no use. The valuable fibres are, however, closely united with the wood and with each other in such an intimate fashion that it is impossible to separate them by any mechanical means. The whole cellular substance of the stem is bound together by some cementing materials which hold it in a compact mass, probably a salt of calcium and pectinic acid. The art of preparing flax is a process of getting rid of the worthless wood fibres and preserving the valuable, longer, tougher, and more valuable fibres, which are then made into linen. But to separate them it is necessary first to soften the whole tissue. This is always done through the aid of bacteria. The flax stems, after proper preparation, are exposed to the action of moisture and heat, which soon develops a rapid bacterial growth. Sometimes this is done by simply exposing the flax to the dew and rain and allowing it to lie thus exposed for some time. By another process the stems are completely immersed in water and allowed to remain for ten to fourteen days. By a third process the water in which the flax is immersed is heated from 75 degrees to 90 degrees F., with the addition of certain chemicals, for some fifty to sixty hours. In all cases the effect is the same. The moisture and the heat cause a growth of bacteria which proceeds with more or less rapidity according to the temperature and other conditions. A putrefactive fermentation is thus set up which softens the gummy substance holding the fibres together. The process is known as "retting," and after it is completed the fibres are easily isolated from each other. A purely mechanical process now easily separates the valuable fibres from the wood fibres. The whole process is a typical fermentation. A disagreeable odour arises from the fermenting flax, and the liquid after the fermentation is filled with products which make valuable manure. The process has not been scientifically studied until very recently. The bacillus which produces the "retting" is known now, however, and it has been shown that the "retting" is a process of decomposition of the pectin cement. No method of separating the linen fibres in the flax from the wood fibres has yet been devised which dispenses with the aid of bacteria.

Jute and Hemp.—Almost exactly the same use is made of bacterial action in the manufacture of jute und hemp. The commercial aspect of the jute industry has grown to be a large one, involving many millions of dollars. Like linen, jute is a fibre of the inner bark of a plant, and is mixed in the bark with a mass of other useless fibrous material. As in the case of linen, a fermentation by bacteria is depended upon as a means of softening the material so that the fibres can be disassociated. The process is called "retting," as in the linen manufacture. The details of the process are somewhat different. The jute is commonly fermented in tanks of stagnant water, although sometimes it is allowed to soak in river water for a sufficient length of time to produce the softening. After the fermentation is thus started the jute fibre is separated from the wood, and is of a sufficient flexibility and toughness to be woven into sacking, carpets, curtains, table covers, and other coarse cloth.

Practically the same method is used in separating the tough fibres of the hemp. The hemp plant contains some long flexible fibres with others of no value, and bacterial fermentation is relied upon to soften the tissues so that they may be separated.

Cocoanut fibre, a somewhat similar material is obtained from the husk of the cocoanut by the same means. The unripened husk is allowed to steep and ferment in water for a long time, six months or a year being required. By this time the husk has become so softened that it can be beaten until the fibres separate and can be removed. They are subsequently made into a number of coarse articles, especially valuable for their toughness. Door mats, brushes, ships' fenders, etc., are illustrations of the sort of articles made from them.

In each of these processes the fermentation must have a tendency to soften the desired fibres as well as the connecting substance. Putrefaction attacks all kinds of vegetable tissue, and if this "retting" continues too long the desired fibre is decidedly injured by the softening effect of the fermentation. It is quite probable that, even as commonly carried on, the fermentation has some slight injurious effect upon the fibre, and that if some purely mechanical means could be devised for separating the fibre from the wood it would produce a better material. But such mechanical means has not been devised, and at present a putrefactive fermentation appears to be the only practical method of separating the fibres.

Sponges.—A somewhat similar use is made of bacteria in the commercial preparation of sponges. The sponge of commerce is simply the fibrous skeleton of a marine animal. When it is alive this skeleton is completely filled with the softer parts of the animal, and to fit the sponge for use this softer organic material must be got rid of. It is easily accomplished by rotting. The fresh sponges are allowed to stand in the warm sun and very rapidly decay. Bacteria make their way into the sponge and thoroughly decompose the soft tissues. After a short putrefaction of this sort the softened organic matter can be easily washed out of the skeleton and leave the clean fibre ready for market.

Leather preparation.—The tanning of leather is a purely chemical process, and in some processes the whole operation of preparing the leather is a chemical one. In others, however, especially in America, bacteria are brought into action at one stage. The dried hide which comes to the tannery must first have the hair removed together with the outer skin. The hide for this purpose must be moistened and softened. In some tanneries this is done by steeping it in chemicals. In others, however, it is put into water and slightly heated until fermentation arises. The fermentation softens it so that the outer skin can be easily removed with a knife, and the removal of hair is accomplished at the same time. Bacterial putrefaction in the tannery is thus an assistance in preparing the skin for the tanning proper. Even in the subsequent tanning a bacterial fermentation appears to play a part, but little is yet known in regard to it.

Maceration of skeletons.—The making of skeletons for museums and anatomical instruction in general is no very great industry, and yet it is one of importance. In the making of skeletons the process of maceration is commonly used as an aid. The maceration consists simply in allowing the skeleton to soak in water for a day or two after cleaning away the bulk of the muscles. The putrefaction that arises softens the connective tissues so much that the bones may be readily cleaned of flesh.

Citric acid.—Bacterial fermentation is employed also in the ordinary preparation of citric acid. The acid is made chiefly from the juice of the lemon. The juice is pressed from the fruit and then allowed to ferment. The fermentation aids in separating a mucilaginous mass and making it thus possible to obtain the citric acid in a purer condition. The action is probably similar to the maceration processes described above, although it has not as yet been studied by bacteriologists.

While bacteria thus play a part in our industries simply from their power of producing decomposition, it is primarily because of the products of their action that they are of value. Wherever bacteria seize hold of organic matter and feed upon it, there are certain to be developed new chemical compounds, resulting largely from decomposition, but partly also from constructive processes. These new compounds are of great variety. Different species of bacteria do not by any means produce the same compounds even when growing in and decomposing the same food material. Moreover, the same species of bacteria may give rise to different products when growing in different food materials. Some of the compounds produced by such processes are poisonous, others are harmless. Some are gaseous, others are liquids. Some have peculiar odours, as may be recognised from the smell arising from a bit of decaying meat. Others have peculiar tastes, as may be realized in the gamy taste of meat which is in the incipient stages of putrefaction. By purely empirical means mankind has learned methods of encouraging the development of some of these products, and is to-day making practical use of this power, possessed by bacteria, of furnishing desired chemical compounds. Industries involving the investment of hundreds of millions of dollars are founded upon the products of bacterial life, and they have a far more important relation to our everyday life than is commonly imagined. In many cases the artisan who is dependent upon this action of microscopic life is unaware of the fact. His processes are those which experience has taught produce desired results, but, nevertheless, his dependence upon bacteria is none the less fundamental.

We may notice, first, several miscellaneous instances of the application of bacteria to various fermentative industries where their aid is of more or less value to man. In some of the examples to be mentioned the influence of bacteria is profound and fundamental, while in others it is only incidental. The fermentative industries of civilization are gigantic in extent, and have come to be an important factor in modern civilized life. The large part of the fermentation is based upon the growth of a class of microscopic plants which we call yeasts. Bacteria and yeasts are both microscopic plants, and perhaps somewhat closely related to each other. The botanist finds a difference between them, based upon their method of multiplication, and therefore places them in different classes (Fig. 2, page 19). In their general power of producing chemical changes in their food products, yeasts agree closely with bacteria, though the kinds of chemical changes are different. The whole of the great fermentative industries, in which are invested hundreds of millions of dollars, is based upon chemical decompositions produced by microscopic plants. In the great part of commercial fermentations alcohol is the product desired, and alcohol, though it is sometimes produced by bacteria, is in commercial quantities produced only by yeasts. Hence it is that, although the fermentations produced by bacteria are more common in Nature than those produced by yeasts and give rise to a much larger number of decomposition products, still their commercial aspect is decidedly less important than that of yeasts. Nevertheless, bacteria are not without their importance in the ordinary fermentative processes. Although they are of no importance as aids in the common fermentative processes, they are not infrequently the cause of much trouble. In the fermentation of malt to produce beer, or grape juice to produce wine, it is the desire of the brewer and vintner to have this fermentation produced by pure yeasts, unmixed with bacteria. If the yeast is pure the fermentation is uniform and successful. But the brewer and vintner have long known that the fermentation is frequently interfered with by irregularities. The troubles which arise have long been known, but the bacteriologist has finally discovered their cause, and in general their remedy. The cause of the chief troubles which arise in the fermentation is the presence of contaminating bacteria among the yeasts. These bacteria have been more or less carefully studied by bacteriologists, and their effect upon the beer or wine determined. Some of them produce acid and render the products sour; others make them bitter; others, again, produce a slimy material which makes the wine or beer "ropy." Something like a score of bacteria species have been found liable to occur in the fermenting material and destroy the value of the product of both the wine maker and the beer brewer. The species of bacteria which infect and injure wine are different from those which infect and injure beer. They are ever present as possibilities in the great alcoholic fermentations. They are dangers which must be guarded against. In former years the troubles from these sources were much greater than they are at present. Since it has been demonstrated that the different imperfections in the fermentative process are due to bacterial impurities, commonly in the yeasts which are used to produce the fermentation, methods of avoiding them are readily devised. To-day the vintner has ready command of processes for avoiding the troubles which arise from bacteria, and the brewer is always provided with a microscope to show him the presence or absence of the contaminating bacteria. While, then, the alcoholic fermentations are not dependent upon bacteria, the proper management of these fermentations requires a knowledge of their habits and characters.

There are certain other fermentative processes of more or less importance in their commercial aspects, which are directly dependent upon bacterial action, Some of them we should unhesitatingly look upon as fermentations, while others would hardly be thought of as belonging to the fermentation industries.

The commercial importance of the manufacture of vinegar, though large, does not, of course, compare in extent with that of the alcoholic fermentations. Vinegar is a weak solution of acetic acid, together with various other ingredients which have come from the materials furnishing the acid. In the manufacture of vinegar, alcohol is always used as the source of the acetic acid. The production of acetic acid from alcohol is a simple oxidation. The equation C2H6O + O2 = C2H4O2 + H2O shows the chemical change that occurs. This oxidation can be brought about by purely chemical means. While alcohol will not readily unite with oxygen under common conditions, if the alcohol is allowed to pass over a bit of platinum sponge the union readily occurs and acetic acid results. This method of acetic-acid production is possible experimentally, but is impracticable on any large scale. In the ordinary manufacture of vinegar the oxidation is a true fermentation, and brought about by the growth of bacteria.

In the commercial manufacture of vinegar several different weak alcoholic solutions are used. The most common of these are fermented malt, weak wine, cider, and sometimes a weak solution of spirit to which is added sugar and malt. If these solutions are allowed to stand for a time in contact with air, they slowly turn sour by the gradual conversion of the alcohol into acetic acid. At the close of the process practically all of the alcohol has disappeared. Ordinarily, however, not all of it has been converted into acetic acid, for the oxidation does not all stop at this step. As the oxidation goes on, some of the acid is oxidized into carbonic dioxide, which is, of course, dissipated at once into the air, and if the process is allowed to continue unchecked for a long enough period much of the acetic acid will be lost in this way.

The oxidation of the alcohol in all commercial production of vinegar is brought about by the growth of bacteria in the liquid. When the vinegar production is going on properly, there is formed on the top of the liquid a dense felted mass known as the "mother of vinegar." This mass proves to be made of bacteria which have the power of absorbing oxygen from the air, or, at all events, of causing the alcohol to unite with oxygen. It was at first thought that a single species of bacterium was thus the cause of the oxidation of alcohol, and this was named Mycoderma aceti. But further study has shown that several have the power, and that even in the commercial manufacture of vinegar several species play a part (Fig. 18), although the different species are not yet very thoroughly studied. Each appears to act best under different conditions. Some of them act slowly, and others rapidly, the slow- growing species appearing to produce the larger amount of acid in the end. After the amount of acetic acid reaches a certain percentage, the bacteria are unable to produce more, even though there be alcohol still left unoxidized. A percentage as high as fourteen per cent, commonly destroys all their power of growth. The production of the acid is wholly dependent upon the growth of the bacteria, and the secret of the successful vinegar manufacture is the skilful manipulation of these bacteria so as to keep them in the purest condition and to give them the best opportunity for growth.

One method of vinegar manufacture which is quite rapid is carried on in a slightly different manner. A tall cylindrical chamber is filled with wood shavings, and a weak solution of alcohol is allowed to trickle slowly through it. The liquid after passing over the shavings comes out after a number of hours well charged with acetic acid. This process at first sight appears to be a purely chemical one, and reminds us of the oxidation which occurs when alcohol is allowed to pass over a platinum sponge. It has been claimed, indeed, that this is a chemical oxidation in which bacteria play no part. But this appears to be an error. It is always found necessary in this method to start the process by pouring upon the shavings some warm vinegar. Unless in this way the shavings become charged with the vinegar-holding bacteria the alcohol will not undergo oxidation during its passage over them, and after the bacteria thus introduced have grown enough to coat the shavings thoroughly the acetic-acid production is much more rapid than at first. If vinegar is allowed to trickle slowly down a suspended string, so that its bacteria may distribute themselves through the string, and then alcohol be allowed to trickle over it in the same way, the oxidation takes place and acetic acid is formed. From the accumulation of such facts it has come to be recognised that all processes for the commercial manufacture of vinegar depend upon the action of bacteria. While the oxidation of alcohol into acetic acid may take place by purely chemical means, these processes are not practical on a large scale, and vinegar manufacturers everywhere depend upon bacteria as their agents in producing the oxidation. These bacteria, several species in all, feed upon the nitrogenous matter in the fermenting mass and produce the desired change in the alcohol.

This vinegar fermentation is subject to certain irregularities, and the vinegar manufacturers can not always depend upon its occurring in a satisfactory manner. Just as in brewing, so here, contaminating bacteria sometimes find their way into the fermenting mass and interfere with its normal course. In particular, the flavour of the vinegar is liable to suffer from such causes. As yet our vinegar manufacturers have not applied to acetic fermentation the same principle which has been so successful in brewing—namely, the use, as a starter of the fermentation, of a pure culture of the proper species of bacteria. This has been done experimentally and proves to be feasible. In practice, however, vinegar makers find that simpler methods of obtaining a starter—by means of which they procure a culture nearly though not absolutely pure—are perfectly satisfactory. It is uncertain whether really pure cultures will ever be used in this industry.

The manufacture of lactic acid is an industry of less extent than that of acetic acid, and yet it is one which has some considerable commercial importance. Lactic acid is used in no large quantity, although it is of some value as a medicine and in the arts. For its production we are wholly dependent upon bacteria. It is this acid which, as we shall see, is produced in the ordinary souring of milk, and a large number of species of bacteria are capable of producing the acid from milk sugar. Any sample of sour milk may therefore always be depended upon to contain plenty of lactic organisms. In its manufacture for commercial purposes milk is sometimes used as a source, but more commonly other substances. Sometimes a mixture of cane sugar and tartaric acid is used. To start the fermentation the mixture is inoculated with a mass of sour milk or decaying cheese, or both, such a mixture always containing lactic organisms. To be sure, it also contains many other bacteria which have different effects, but the acid producers are always so abundant and grow so vigorously that the lactic fermentation occurs in spite of all other bacteria. Here also there is a possibility of an improvement in the process by the use of pure cultures of lactic organisms. Up to the present, however, there has been no application of such methods. The commercial aspects of the industry are not upon a sufficiently large scale to call for much in this direction.

At the present time the only method we have for the manufacture of lactic acid is dependent upon bacteria. Chemical processes for its manufacture are known, but not employed commercially. There are several different kinds of lactic acid. They differ from each other in the relations of the atoms within their molecule, and in their relation to polarized light, some forms rotating the plane of polarized light to the right, others to the left, while others are inactive in this respect. All the types are produced by fermentation processes, different species of bacteria having powers of producing the different types.

Butyric acid is another acid for which we are chiefly dependent upon bacteria. This acid is of no very great importance, and its manufacture can hardly be called an industry; still it is to a certain extent made, and is an article of commerce. It is an acid that can be manufactured by chemical means, but, as in the case of the last two acids, its commercial manufacture is based upon bacterial action. Quite a number of species of bacteria can produce butyric acid, and they produce it from a variety of different sources. Butyric acid is a common ingredient in old milk and in butter, and its formation by bacteria was historically one of the first bacterial fermentations to be clearly understood. It can be produced also in various sugar and starchy solutions. Glycerine may also undergo a butyric fermentation. The presence of this acid is occasionally troublesome, since it is one of the factors in the rancidity of butter and other similar materials.

The preparation of indigo from the indigo plant is a fermentative process brought about by a specific bacterium. The leaves of the plant are immersed in water in a large vat, and a rapid fermentation arises. As a result of the fermentation the part of the plant which is the basis of the indigo is separated from the leaves and dissolved in the water; and as a second feature of the fermentation the soluble material is changed in its chemical nature into indigo proper. As this change occurs the characteristic blue colour is developed, and the material is rendered insoluble in water. It therefore makes its appearance as a blue mass separated from the water, and is then removed as indigo.

Of the nature of the process we as yet know very little. That it is a fermentation is certain, and it has been proved that it is produced by a definite species of bacterium which occurs on the indigo leaves. If the sterilized leaves are placed in sterile water no fermentation occurs and no indigo is formed. If, however, some of the specific bacteria are added to the mass the fermentation soon begins and the blue colour of the indigo makes its appearance. It is plain, therefore, that indigo is a product of bacterial fermentation, and commonly due to a single definite species of bacterium. Of the details of the formation, however, we as yet know little, and no practical application of the facts have yet been made.

A fermentative process of quite a different nature, but of immense commercial value, is found in the preparation of tobacco. The process by which tobacco is prepared is a long and somewhat complicated one, consisting of a number of different stages. The tobacco, after being first dried in a careful manner, is subsequently allowed to absorb moisture from the atmosphere, and is then placed in large heaps to undergo a further change. This process appears to be a fermentation, for the temperature of the mass rises rapidly, and every indication of a fermentative action is seen. The tobacco in these heaps is changed occasionally, the heap being thrown down and built up again in such a way that the portion which was first at the bottom comes to the top, and in this way all parts of the heap may become equally affected by the process. After this process the tobacco is sent to the different manufacturers, who finish the process of curing. The further treatment it receives varies widely according to the desired product, whether for smoking or for snuff, etc. In all cases, however, fermentations play a prominent part. Sometimes the leaves are directly inoculated with fermenting material. In the preparation of snuff the details of the process are more complicated than in the preparation of smoking tobacco. The tobacco, after being ground and mixed with certain ingredients, is allowed to undergo a fermentation which lasts for weeks, and indeed for months. In the different methods of preparing snuff the fermentations take place in different ways, and sometimes the tobacco is subjected to two or three different fermentative actions. The result of the whole is the slow preparation of the commercial product. It is during the final fermentative processes that the peculiar colour and flavour of the snuff are developed, and it is during the fermentation of the leaves of the smoking tobacco—either the original fermentation or the subsequent ones— that the special flavours and aromas of tobacco are produced.

It can not be claimed for a moment that these changes by which the tobacco is cured and finally brought to a marketable condition are due wholly to bacteria. There is no question that chemical and physical phenomena play an important part in them. Nevertheless, from the moment when the tobacco is cut in the fields until the time it is ready for market the curing is very intimately associated with bacteria and fermentative organisms in general. Some of these processes are wholly brought about by bacterial life; in others the micro-organisms aid the process, though they perhaps can not be regarded as the sole agents.

At the outset the tobacco producer has to contend with a number of micro-organisms which may produce diseases in his tobacco. During the drying process, if the temperature or the amount of moisture or the access of air is not kept in a proper condition, various troubles arise and various diseases make their appearance, which either injure or ruin the value of the product. These appear to be produced by micro-organisms of different sorts. During the fermentation which follows the drying the producer has to contend with micro-organisms that are troublesome to him; for unless the phenomena are properly regulated the fermentation that occurs produces effects upon the tobacco which ruin its character. From the time the tobacco is cut until the final stage in the curing the persons engaged in preparing it for market must be on a constant watch to prevent the growth within it of undesirable organisms. The preparation of tobacco is for this reason a delicate operation, and one that will be very likely to fail unless the greatest care is taken. In the several fermentative processes which occur in the preparation there is no question that micro-organisms aid the tobacco producer and manufacturer. Bacteria produce the first fermentation that follows the drying, and it is these organisms too, in large measure, that give rise to all the subsequent fermentations, although seemingly in some cases purely chemical processes materially aid. Now the special quality of the tobacco is in part dependent upon the peculiar type of fermentation which occurs in one or another of these fermenting actions. It is the fermentation that gives rise to the peculiar flavour and to the aroma of the different grades of tobacco. Inasmuch as the various flavours which characterize tobacco of different grades are developed, at least to a large extent, during the fermentation processes, it is a natural supposition that the different qualities of the tobacco, so far as concerns flavour, are due to the different types of fermentation. The number of species of bacteria which are found upon the tobacco leaves in the various stages of its preparation is quite large, and from what we have already learned it is inevitable that the different kinds of bacteria will produce different results in the fermenting process. It would seem natural, therefore, to assume that the different flavours of different grades may not unlikely be due to the fact that the tobacco in the different cases has been fermented under the influence of different kinds of bacteria.

Nor is this simply a matter of inference. To a certain extent experimental evidence has borne out the conclusion, and has given at least a slight indication of practical results in the future. Acting upon the suggestion that the difference between the high grades of tobacco and the poorer grades is due to the character of the bacteria that produce the fermentation, certain bacteriologists have attempted to obtain from a high quality of tobacco the species of bacteria which are infesting it. These bacteria have then been cultivated by bacteriological methods and used in experiments for the fermentation of tobacco. If it is true that the flavour of high grade tobacco is in large measure, or even in part, due to the action of the peculiar microbes from the soil where it grows, it ought to be possible to produce similar flavours in the leaves of tobacco grown in other localities, if the fermentation of the leaves is carried on by means of the pure cultures of bacteria obtained from the high grade tobacco. Not very much has been done or is known in this connection as yet. Two bacteriologists have experimented independently in fermenting tobacco leaves by the action of pure cultures of bacteria obtained from such sources. Each of them reports successful experiments. Each claims that they have been able to improve the quality of tobacco by inoculating the leaves with a pure culture of bacteria obtained from tobacco having high quality in flavour. In addition to this, several other bacteriologists have carried on experiments sufficient to indicate that the flavours of the tobacco and the character of the ripening may be decidedly changed by the use of different species of micro-organisms in the fermentations that go on during the curing processes.

In regard to the whole matter, however, we must recognise that as yet we have very little knowledge. The subject has been under investigation for only a short time; and, while considerable information has been derived, this information is not thoroughly understood, and our knowledge in regard to the matter is as yet in rather a chaotic condition. It seems certain, however, that the quality of tobacco is in large measure dependent upon the character of the fermentations that occur at different stages of the curing. It seems certain also that these fermentations are wholly or chiefly produced by microorganisms, and that the character of the fermentation is in large measure dependent upon the species of micro-organisms that produce it. If these are facts, it would seem not improbable that a further study may produce practical results for this great industry. The study of yeasts and the methods of keeping yeast from contaminations has revolutionised the brewing industry. Perhaps in this other fermentative industry, which is of such great commercial extent, the use of pure cultures of bacteria may in the future produce as great revolutions in methods as it has in the industry of the alcoholic fermentation.

It must not, however, be inferred that the differences in grades of tobacco grown in different parts of the world are due solely to variations in the curing processes and to the types of fermentation. There are differences in the texture of the leaves, differences in the chemical composition of the tobaccoes, which are due undoubtedly to the soils and the climatic conditions in which they grow, and these, of course, will never be affected by changing the character of the ferment active processes. It is, however, probable that in so far as the flavours that distinguish the high and low grades of tobacco are due to the character of the fermentative processes, they may be in the future, at least to a large extent, controlled by the use of pure cultures in curing processes. Seemingly, then, there is as great a future in the development of this fermentative industry as there has been in the past in the development of the fermentative industry associated with brewing and vinting.

Opium for smoking purposes is commonly allowed to undergo a curing process which lasts several months. This appears to be somewhat similar to the curing of tobacco. Apparently it is a fermentation due to the growth of microorganisms. The organisms in question are not, however, bacteria in this case, but a species of allied fungus. The plant is a mould, and it is claimed that inoculation of the opium with cultures of this mould hastens the curing.

Before leaving this branch of the subject it is necessary to notice some of the troublesome fermentations which are ever interfering with our industries, requiring special methods, or, indeed, sometimes developing special industries to meet them. As agents of decomposition, bacteria will of course be a trouble whenever they get into material which it is desired to preserve. Since they are abundant everywhere, it is necessary to count upon their attacking with certainty any fermentable substance which is exposed to air and water. Hence they are frequently the cause of much trouble. In the fermentative industries they occasionally cause an improper sort of fermentation to occur unless care is taken to prevent undesired species of bacteria from being present. In vinegar making, improper species of bacteria obtaining access to the solution give rise to undesirable flavours, greatly injuring the product. In tobacco curing it is very common for the wrong species of bacteria to gain access to the tobacco at some stage of the curing and by their growth give rise to various troubles. It is the ubiquitous presence of bacteria which makes it impossible to preserve fruits, meats, or vegetables for any length of time without special methods. This fact in itself has caused the development of one of our most important industries. Canning meats or fruits consists in nothing more than bringing them into a condition in which they will be preserved from attack of these micro-organisms. The method is extremely simple in theory. It is nothing more than heating the material to be preserved to a high temperature and then sealing it hermetically while it is still hot. The heat kills all the bacteria which may chance to be lodged in it, and the hermetical sealing prevents other bacteria from obtaining access. Inasmuch as all organic decomposition is produced by bacterial growth, such sterilized and sealed material will be preserved indefinitely when the operation is performed carefully enough. The methods of accomplishing this with sufficient care are somewhat varied in different industries, but they are all fundamentally the same. It is an interesting fact that this method of preserving meats was devised in the last century, before the relation of micro-organisms to fermentation and putrefaction was really suspected. For a long time it had been in practical use while scientists were still disputing whether putrefaction could be avoided by preventing the access of bacteria. The industry has, however, developed wonderfully within the last few years, since the principles underlying it have been understood. This understanding has led to better methods of destroying bacterial life and to proper sealing, and these have of course led to greater success in the preservation, until to-day the canning industries are among those which involve capital reckoned in the millions.

Occasionally bacteria are of some value in food products. The gamy flavour of meats is nothing more than incipient decomposition. Sauer Kraut is a food mass intentionally allowed to ferment and sour. The value of bacteria in producing butter and cheese flavours is noticed elsewhere. But commonly our aim must be to prevent the growth of bacteria in foods. Foods must be dried or cooked or kept on ice, or some other means adopted for preventing bacterial growth in them. It is their presence that forces us to keep our ice box, thus founding the ice business, as well as that of the manufacture of refrigerators. It is their presence, again, that forces us to smoke hams, to salt mackerel, to dry fish or other meats, to keep pork in brine, and to introduce numerous other details in the methods of food preparation and preservation.

Dairying is one of the most primitive of our industries. From the very earliest period, ever since man began to keep domestic cattle, he has been familiar with dairying. During these many centuries certain methods of procedure have been developed which produce desired results. These methods, however, have been devised simply from the accumulation of experience, with very little knowledge as to the reasons underlying them. The methods of past centuries are, however, ceasing to be satisfactory. The advance of our civilization during the last half century has seen a marked expansion in the extent of the dairy industry. With this expansion has appeared the necessity for new methods, and dairymen have for years been looking for them. The last few years have been teaching us that the new methods are to be found along the line of the application of the discoveries of modern bacteriology. We have been learning that the dairyman is more closely related to bacteria and their activities than almost any other class of persons. Modern dairying, apart from the matter of keeping the cow, consists largely in trying to prevent bacteria from growing in milk or in stimulating their growth in cream, butter, and cheese. These chief products of the dairy will be considered separately.

The first fact that claims our attention is, that milk at the time it is secreted from the udder of the healthy cow contains no bacteria. Although bacteria are almost ubiquitous, they are not found in the circulating fluids of healthy animals, and are not secreted by their glands. Milk when first secreted by the milk gland is therefore free from bacteria. It has taken a long time to demonstrate this fact, but it has been finally satisfactorily proved. Secondly, it has been demonstrated that practically all of the normal changes which occur in milk after its secretion are caused by the growth of bacteria. This, too, was long denied, and for quite a number of years after putrefactions and fermentations were generally acknowledged to be caused by the growth of micro- organisms, the changes which occurred in milk were excepted from the rule. The uniformity with which milk will sour, and the difficulty, or seeming impossibility, of preventing this change, led to the belief that the souring of milk was a normal change characteristic of milk, just as clotting is characteristic of blood. This was, however, eventually disproved, and it was finally demonstrated that, beyond a few physical changes connected with evaporation and a slight oxidation of the fat, milk, if kept free from bacteria, will undergo no change. If bacteria are not present, it will remain sweet indefinitely.

But it is impossible to draw milk from the cow in such a manner that it will be free from bacteria except by the use of precautions absolutely impracticable in ordinary dairying. As milk is commonly drawn, it is sure to be contaminated by bacteria, and by the time it has entered the milk pail it contains frequently as many as half a million, or even a million, bacteria in every cubic inch of the milk. This seems almost incredible, but it has been demonstrated in many cases and is beyond question. Since these bacteria are not in the secreted milk, they must come from some external sources, and these sources are the following:

The first in importance is the cow herself; for while her milk when secreted is sterile, and while there are no bacteria in her blood, nevertheless the cow is the most prolific source of bacterial contamination. In the first place, the milk ducts are full of them. After each milking a little milk is always left in the duct, and this furnishes an ideal place for bacteria to grow. Some bacteria from the air or elsewhere are sure to get into these ducts after the milking, and they begin at once to multiply rapidly. By the next milking they become very abundant in the ducts, and the first milk drawn washes most of them at once into the milk pail, where they can continue their growth in the milk. Again, the exterior of the cow's body contains them in abundance. Every hair, every particle of dirt, every bit of dried manure, is a lurking place for millions of bacteria. The hind quarters of a cow are commonly in a condition of much filth, for the farmer rarely grooms his cow, and during the milking, by her movements, by the switching of her tail, and by the rubbing she gets from the milker, no inconsiderable amount of this dirt and filth is brushed off and falls into the milk pail The farmer understands this source of dirt and usually feels it necessary to strain the milk after the milking. But the straining it receives through a coarse cloth, while it will remove the coarser particles of dirt, has no effect upon the bacteria, for these pass through any strainer unimpeded. Again, the milk vessels themselves contain bacteria, for they are never washed absolutely clean. After the most thorough washing which the milk pail receives from the kitchen, there will always be left many bacteria clinging in the cracks of the tin or in the wood, ready to begin to grow as soon as the milk once more fills the pail The milker himself contributes to the supply, for he goes to the milking with unclean hands, unclean clothes, and not a few bacteria get from him to his milk pail. Lastly, we find the air of the milking stall furnishing its quota of milk bacteria. This source of bacteria is, how ever, not so great as was formerly believed. That the air may contain many bacteria in its dust is certain, and doubtless these fall in some quantity into the milk, especially if the cattle are allowed to feed upon dusty hay before and during the milking. But unless the air is thus full of dust this source of bacteria is not very great, and compared with the bacteria from the other sources the air bacteria are unimportant.

The milk thus gets filled with bacteria, and since it furnishes an excellent food these bacteria begin at once to grow. The milk when drawn is warm and at a temperature which especially stimulates bacterial growth. They multiply with great rapidity, and in the course of a few hours increase perhaps a thousandfold. The numbers which may be found after twenty-four hours are sometimes inconceivable; market milk may contain as many as five hundred millions per cubic inch; and while this is a decidedly extreme number, milk that is a day old will almost always contain many millions in each cubic inch, the number depending upon the age of the milk and its temperature. During this growth the bacteria have, of course, not been without their effect. Recognising as we do that bacteria are agents for chemical change, we are prepared to see the milk undergoing some modifications during this rapid multiplication of bacteria. The changes which these bacteria produce in the milk and its products are numerous, and decidedly affect its value. They are both advantageous and disadvantageous to the dairyman. They are nuisances so far as concerns the milk producer, but allies of the butter and cheese maker.

The first and most universal change effected in milk is its SOURING. So universal is this phenomenon that it is generally regarded as an inevitable change which can not be avoided, and, as already pointed out, has in the past been regarded as a normal property of milk. To-day, however, the phenomenon is well understood. It is due to the action of certain of the milk bacteria upon the milk sugar which converts it into lactic acid, and this acid gives the sour taste and curdles the milk. After this acid is produced in small quantity its presence proves deleterious to the growth of the bacteria, and further bacterial growth is checked. After souring, therefore, the milk for some time does not ordinarily undergo any further changes.

Milk souring has been commonly regarded as a single phenomenon, alike in all cases. When it was first studied by bacteriologists it was thought to be due in all cases to a single species of micro-organism which was discovered to be commonly present and named Bacillus acidi lactici (Fig. 19). This bacterium has certainly the power of souring milk rapidly, and is found to be very common in dairies in Europe. As soon as bacteriologists turned their attention more closely to the subject it was found that the spontaneous souring of milk was not always caused by the same species of bacterium. Instead of finding this Bacillus acidi lactici always present, they found that quite a number of different species of bacteria have the power of souring milk, and are found in different specimens of soured milk. The number of species of bacteria which have been found to sour milk has increased until something over a hundred are known to have this power. These different species do not affect the milk in the same way. All produce some acid, but they differ in the kind and the amount of acid, and especially in the other changes which are effected at the same time that the milk is soured, so that the resulting soured milk is quite variable. In spite of this variety, however, the most recent work tends to show that the majority of cases of spontaneous souring of milk are produced by bacteria which, though somewhat variable, probably constitute a single species, and are identical with the Bacillus acidi lactici (Fig. 19). This species, found common in the dairies of Europe, according to recent investigations occurs in this country as well. We may say, then, that while there are many species of bacteria infesting the dairy which can sour the milk, there is one which is more common and more universally found than others, and this is the ordinary cause of milk souring.

When we study more carefully the effect upon the milk of the different species of bacteria found in the dairy, we find that there is a great variety of changes which they produce when they are allowed to grow in milk. The dairyman experiences many troubles with his milk. It sometimes curdles without becoming acid. Sometimes it becomes bitter, or acquires an unpleasant "tainted" taste, or, again, a "soapy" taste. Occasionally a dairyman finds his milk becoming slimy, instead of souring and curdling in the normal fashion. At such times, after a number of hours, the milk becomes so slimy that it can be drawn into long threads. Such an infection proves very troublesome, for many a time it persists in spite of all attempts made to remedy it. Again, in other cases the milk will turn blue, acquiring about the time it becomes sour a beautiful sky-blue colour. Or it may become red, or occasionally yellow. All of these troubles the dairyman owes to the presence in his milk of unusual species of bacteria which grow there abundantly.

Bacteriologists have been able to make out satisfactorily the connection of all these infections with different species of the bacteria. A large number of species have been found to curdle milk without rendering it acid, several render it bitter, and a number produce a "tainted" and one a "soapy" taste. A score or more have been found which have the power of rendering the milk slimy. Two different species at least have the power of turning the milk to sky-blue colour; two or three produce red pigments (Fig. 20), and one or two have been found which produce a yellow colour. In short, it has been determined beyond question that all these infections, which are more or less troublesome to dairymen, are due to the growth of unusual bacteria in the milk.

These various infections are all troublesome, and indeed it may be said that, so far as concerns the milk producer and the milk consumer, bacteria are from beginning to end a source of trouble. It is the desire of the milk producer to avoid them as far as possible—a desire which is shared also by everyone who has anything to do with milk as milk. Having recognised that the various troubles, which occasionally occur even in the better class of dairies, are due to bacteria, the dairyman is, at least in a measure, prepared to avoid them. The avoiding of these troubles is moderately easy as soon as dairymen recognise the source from which the infectious organisms come, and also the fact that low temperatures will in all cases remedy the evil to a large extent. With this knowledge in hand the avoidance of all these troubles is only a question of care in handling the dairy. It must be recognised that most of these troublesome bacteria come from some unusual sources of infection. By unusual sources are meant those which the exercise of care will avoid. It is true that the souring bacteria appear to be so universally distributed that they can not be avoided by any ordinary means. But all other troublesome bacteria appear to be within control. The milkman must remember that the sources of the troubles which are liable to arise in his milk are in some form of filth: either filth on the cow, or dust in the hay which is scattered through the barn, or dirt on cows' udders, or some other unusual and avoidable source. These sources, from what we have already noticed, will always furnish the milk with bacteria; but under common conditions, and when the cow is kept in conditions of ordinary cleanliness, and frequently even when not cleanly, will only furnish bacteria that produce the universal souring. Recognising this, the dairyman at once learns that his remedies for the troublesome infections are cleanliness and low temperatures. If he is careful to keep his milk vessels scrupulously clean; if he will keep his cow as cleanly as he does his horse; and if he will use care in and around the barn and dairy, and then apply low temperatures to the milk, he need never be disturbed by slimy or tainted milk, or any of these other troubles; or he can remove such infections speedily should they once appear. Pure sweet milk is only a question of sufficient care. But care means labour and expense. As long as we demand cheap milk, so long will we be supplied with milk procured under conditions of filth. But when we learn that cheap milk is poor milk, and when we are willing to pay a little more for it, then only may we expect the use of greater care in the handling of the milk, resulting in a purer product.

Bacteriology has therefore taught us that the whole question of the milk supply in our communities is one of avoiding the too rapid growth of bacteria. These organisms are uniformly a nuisance to the milkman. To avoid their evil influence have been designed all the methods of caring for the dairy and the barn, all the methods of distributing milk in ice cars. Moreover, all the special devices connected with the great industry of milk supply have for their foundation the attempt to avoid, in the first place, the presence of too great a number of bacteria, and. in the second place, the growth of these bacteria.

CREAM RIPENING.—Passing from milk to butter, we find a somewhat different story, inasmuch as here bacteria are direct allies to the dairyman rather than his enemies. Without being aware of it, butter makers have for years been making use of bacteria in their butter making and have been profiting by the products which the bacteria have furnished them. Cream, as it is obtained from milk, will always contain bacteria in large quantity, and these bacteria will grow as readily in the cream as they will in the milk. The butter maker seldom churns his cream when it is freshly obtained from the milk. There are, it is true, some places where sweet cream butter is made and is in demand, but in the majority of butter-consuming countries a different quality of butter is desired, and the cream is subjected to a process known as "ripening" or "souring" before it is churned. In ripening, the cream is simply allowed to stand in a vat for a period varying from twelve hours to two or three days, according to circumstances. During this period certain changes take place therein. The bacteria which were in the cream originally, get an opportunity to grow, and by the time the ripening is complete they become extremely numerous. As a result, the character of the cream changes just as the milk is changed under similar circumstances. It becomes somewhat soured; it becomes slightly curdled, and acquires a peculiarly pleasant taste and an aroma which was not present in the original fresh cream. After this ripening the cream is churned. It is during the ripening that the bacteria produce their effect, for after the churning they are of less importance. Part of them collect in the butter, part of them are washed off from the butter in the buttermilk and the subsequent processes. Most of the bacteria that are left in the butter soon die, not finding there a favourable condition for growth; some of them, however, live and grow for some time and are prominent agents in the changes by which butter becomes rancid. The butter maker is concerned with the ripening rather than with later processes.

The object of the ripening of cream is to render it in a better condition for butter making. The butter maker has learned by long- experience that ripened cream churns more rapidly than sweet cream, and that he obtains a larger yield of butter therefrom. The great object of the ripening, however, is to develop in the butter the peculiar flavour and aroma which is characteristic of the highest product. Sweet cream butter lacks flavour and aroma, having indeed a taste almost identically the same as cream. Butter, however, that is made from ripened cream has a peculiar delicate flavour and aroma which is well known to lovers of butter, and which is developed during the ripening process.

Bacteriologists have been able to explain with a considerable degree of accuracy the object of this ripening. The process is really a fermentation comparable to the fermentation that takes place in a brewer's malt. The growth of bacteria during the ripening produces chemical changes of a somewhat complicated character, and concerns each of the ingredients of the milk. The lactic-acid organisms affect the milk sugar and produce lactic acid; others act upon the fat, producing slight changes therein; while others act upon the casein and the albumens of the milk. As a result, various biproducts of decomposition arise, and it is these biproducts of decomposition that make the difference between the ripened and the unripened cream. They render it sour and curdle it, and they also produce the flavours and aromas that characterize it. Products of decomposition are generally looked upon as undesirable for food, and this is equally true of these products that arise in cream if the decomposition is allowed to continue long enough. If the ripening, instead of being stopped at the end of a day or two, is allowed to continue several days, the cream becomes decayed and the butter made therefrom is decidedly offensive. But under the conditions of ordinary ripening, when the process is stopped at the right moment, the decomposition products are pleasant rather than unpleasant, and the flavours and aromas which they impart to the cream and to the subsequent butter are those that are desired. It is these decomposition products that give the peculiar character to a high quality of butter, and this peculiar quality is a matter that determines the price which the butter maker can obtain for his product.

But, unfortunately, the butter maker is not always able to depend upon the ripening. While commonly it progresses in a satisfactory manner, sometimes, for no reason that he can assign, the ripening does not progress normally. Instead of developing the pleasant aroma and flavour of the properly ripened cream, the cream develops unpleasant tastes. It may be bitter or somewhat tainted, and just as sure as these flavours develop in the cream, so sure does the quality of the butter suffer. Moreover, it has been learned by experience that some creameries are incapable of obtaining an equally good ripening of their cream. While some of them will obtain favourable results, others, with equal care, will obtain a far less favourable flavour and aroma in their butter. The reason for all this has been explained by modern bacteriology. In the milk, and consequently in the cream, there are always found many bacteria, but these are not always of the same kinds. There are scores, and probably hundreds, of species of bacteria common in and around our barns and dairies, and the bacteria that are abundant and that grow in different lots of cream will not be always the same. It makes a decided difference in the character of the ripening, and in the consequent flavours and aromas, whether one or another species of bacteria has been growing in the cream. Some species are found to produce good results with desired flavours, while others, under identical conditions, produce decidedly poor results with undesired flavours. If the butter maker obtains cream which is filled with a large number of bacteria capable of producing good flavours, then the ripening of his cream will be satisfactory and his butter will be of high quality. If, however, it chances that his cream contains only the species which produce unpleasant flavours, then the character of the ripening will be decidedly inferior and the butter will be of a poorer grade. Fortunately the majority of the kinds of bacteria liable to get into the cream from ordinary sources are such as produce either good effects upon the cream or do not materially influence the flavour or aroma. Hence it is that the ripening of cream will commonly produce good results. Bacteriologists have learned that there are some species of bacteria more or less common around our barns which produce undesirable effects upon flavour, and should these become especially abundant in the cream, then the character of the ripening and the quality of the subsequent butter will suffer. These malign species of bacteria, however, are not very common in properly kept barns and dairies. Hence the process that is so widely used, of simply allowing cream to ripen under the influence of any bacteria that happen to be in it, ordinarily produces good results. But our butter makers sometimes find, at the times when the cattle change from winter to summer or from summer to winter feed, that the ripening is abnormal. The reason appears to be that the cream has become infested with an abundance of malign species. The ripening that they produce is therefore an undesirable one, and the quality of the butter is sure to suffer.

So long as butter was made only in private dairies it was a matter of comparatively little importance if there was an occasional falling off in quality of this sort. When it was made a few pounds at a time, and only once or twice a week, it was not a very serious matter if a few churnings of butter did suffer in quality. But to-day the butter-making industries are becoming more and more concentrated into large creameries, and it is a matter of a good deal more importance to discover some means by which a uniformly high quality can be insured. If a creamery which makes five hundred pounds of butter per day suffers from such an injurious ripening, the quality of its butter will fall off to such an extent as to command a lower price, and the creamery suffers materially. Perhaps the continuation of such a trouble for two or three weeks would make a difference between financial success and failure in the creamery. With our concentration of the butter- making industries it is becoming thus desirable to discover some means of regulating this process more accurately.

The remedy of these occasional ill effects in cream ripening has not been within the reach of the butter maker. The butter maker must make butter with the cream that is furnished him, and if that cream is already impregnated with malign species of bacteria he is helpless. It is true that much can be done to remedy these difficulties by the exercise of especial care in the barns of the patrons of the creamery. If the barns, the cows, the dairies, the milk vessels, etc., are all kept in condition of strict cleanliness, if especial care is taken particularly at the seasons of the year when trouble is likely to arise, and if some attention is paid to the kind of food which the cattle eat, as a rule the cream will not become infected with injurious bacteria. It may be taken as a demonstrated fact that these malign bacteria come from sources of filth, and the careful avoidance of all such sources of filth will in a very large measure prevent their occurrence in the cream. Such measures as these have been found to be practicable in many creameries. Creameries which make the highest priced and the most uniform quality of butter are those in which the greatest care is taken in the barns and dairies to insure cleanliness and in the handling of the milk and cream. With such attention a large portion of the trouble which arises in the creameries from malign bacteria may be avoided.

But these methods furnish no sure remedy against evils of improper species of bacteria in cream ripening, and do not furnish any sure means of obtaining uniform flavour in butter. Even under the very best conditions the flavour of the butter will vary with the season of the year. Butter made in the winter is inferior to that made in the summer months; and while this is doubtless due in part to the different food which the cattle have and to the character of the cream resulting therefrom, these differences in the flavour of the butter are also in part dependent upon the different species of bacteria which are present in the ripening of cream at different seasons. The species of bacteria in June cream are different from those that are commonly present in January cream, and this is certainly a factor in determining the difference between winter and summer butter.

Bacteriologists have been for some time endeavouring to aid butter makers in this direction by furnishing them with the bacteria needful for the best results in cream ripening. The method of doing this is extremely simple in principle, but proves to be somewhat difficult in practice. It is only necessary to obtain the species of bacteria that produce the highest results, and then to furnish these in pure culture and in large quantity to the butter makers, to enable them to inoculate their cream with the species of bacteria which will produce the results that they desire. For this purpose bacteriologists have been for several years searching for the proper species of bacteria to produce the best results, and there have been put upon the market for sale several distinct "pure cultures" for this purpose. These have been obtained by different bacteriologists and dairymen in the northern European countries and also in the United States. These pure cultures are furnished to the dairymen in various forms, but they always consist of great quantities of certain kinds of bacteria which experience has found to be advantageous for the purpose of cream ripening.

There have hitherto appeared a number of difficulties in the way of reaching complete success in these directions. The most prominent arises in devising a method of using pure cultures in the creamery. The cream which the butter makers desire to ripen is, as we have seen, already impregnated with bacteria, and would ripen in a fashion of its own even if no pure culture of bacteria were added thereto. Pure cultures can not therefore be used as simply as can yeast in bread dough. It is plain that the simple addition of a pure culture to a mass of cream would not produce the desired effects, because the cream would be ripened then, not by the pure culture alone, but by the pure culture plus all of the bacteria that were originally present. It would, of course, be something of a question as to whether under these conditions the results would be favourable, and it would seem that this method would not furnish any means of getting rid of bad tastes and flavours which have come from the presence of malign species of bacteria. It is plainly desirable to get rid of the cream bacteria before the pure culture is added. This can be readily done by heating it to a temperature of 69 degrees C. (155 degrees F.) for a short time, this temperature being sufficient to destroy most of the bacteria. The subsequent addition of the pure culture of cream-ripening bacteria will cause the cream to ripen under the influence of the added culture alone. This method proves to be successful, and in the butter making countries in Europe it is becoming rapidly adopted.

In this country, however, this process has not as yet become very popular, inasmuch as the heating of the cream is a matter of considerable expense and trouble, and our butter makers have not been very ready to adopt it. For this reason, and also for the purpose of familiarizing butter makers with the use of pure cultures, it has been attempted to produce somewhat similar though less uniform results by the use of pure cultures in cream without previous healing. In the use of pure cultures in this way, the butter maker is directed to add to his cream a large amount of a prepared culture of certain species of bacteria, upon the principle that the addition of such a large number of bacteria to the cream, even though the cream is already inoculated with certain bacteria, will produce a ripening of the cream chiefly influenced by the artificially added culture. The culture thus added, being present in very much greater quantity than the other "wild" species, will have a much greater effect than any of them. This method, of course, cannot insure uniformity. While it may work satisfactorily in many cases, it is very evident that in others, when the cream is already filled with a large number of malign species of bacteria, such an artificial culture would not produce the desired results. This appears to be not only the theoretical but the actual experience. The addition of such pure cultures in many cases produces favourable results, but it does not always do so, and the result is not uniform. While the use of pure cultures in this way is an advantage over the method of simply allowing the cream to ripen normally without such additions, it is a method that is decidedly inferior to that which first pasteurizes the cream and subsequently adds a starter.

There is still another method of adding bacteria to cream to insure a more advantageous ripening, which is frequently used, and, being simpler, is in many cases a decided advantage. This method is by the use of what is called a natural starter. A natural starter consists simply of a lot of cream which has been taken from the most favourable source possible—that is, from the cleanest and best dairy, or from the herd producing the best quality of cream—and allowing this cream to stand in a warm place for a couple of days until it becomes sour. The cream will by that time be filled with large numbers of bacteria, and this is then put as a starter into the vat of cream to be ripened. Of course, in the use of this method the butter maker has no control over the kinds of bacteria that will grow in the starter, but it is found, practically, that if the cream is taken from a good source the results are extremely favourable, and there is produced in this way almost always an improvement in the butter.

The use of pure cultures is still quite new, particularly in this country. In the European butter-making countries they have been used for a longer period and have become very much better known. What the future may develop along this line it is difficult to say; but it seems at least probable that as the difficulties in the details are mastered the time will come when starters will be used by our butter makers for their cream ripening, just as yeast is used by housewives for raising bread, or by brewers for fermenting malt. These starters will probably in time be furnished by bacteriologists. Bacteriology, in other words, is offering in the near future to our butter makers a method of controlling the ripening of the cream in such a way as to insure the obtaining of a high and uniform quality of butter, so far, at least, as concerns flavour and aroma.

Cheese ripening.—The third great product of the dairy industry is cheese, and in connection with this product the dairyman is even more dependent upon bacteria than he is in the production of butter. In the manufacture of cheese the casein of the milk is separated from the other products by the use of rennet, and is collected in large masses and pressed, forming the fresh cheese. This cheese is then set aside for several weeks, and sometimes for months, to undergo a process that is known as ripening. During the ripening there are developed in the cheese the peculiar flavours which are characteristic of the completed product. The taste of freshly made cheese is extremely unlike that of the ripened product. While butter made from unripened cream has a pleasant flavour, and one which is in many places particularly enjoyed, there is nowhere a demand for unripened cheese, for the freshly made cheese has a taste that scarce any one regards as pleasant. Indeed, the whole value of the cheese is dependent upon the flavour of the product, and this flavour is developed during the ripening.

The cheese maker finds in the ripening of his cheese the most difficult part of his manufacture. It is indeed a process over which he has very little control. Even when all conditions seem to be correct, when cheese is made in the most careful manner, it not infrequently occurs that the ripening takes place in a manner that is entirely abnormal, and the resulting cheese becomes worthless. The cheese maker has been at an entire loss to understand these irregularities, nor has he possessed any means of removing them. The abnormal ripening that occurs takes on various types. Sometimes the cheese will become extraordinarily porous, filled with large holes which cause the cheese to swell out of proper shape and become worthless. At other times various spots of red or blue appear in the manufactured cheese; while again unpleasant tastes and flavours develop which render the product of no value. Sometimes a considerable portion of the product of the cheese factory undergoes such irregular ripening, and the product for a long time will thus be worthless. If some means could be discovered of removing these irregularities it would be a great boon to the cheese manufacturer; and very many attempts have been made in one way or another to furnish the cheese maker with some details in the manufacture which will enable him in a measure to control the ripening.

The ripening of the cheese has been subjected to a large amount of study on the part of bacteriologists who have been interested in dairy products. That the ripening of cheese is the result of bacterial growth therein appears to be probable from a priori grounds. Like the ripening of cream, it is a process that occurs somewhat slowly. It is a chemical change which is accompanied by the destruction of proteid matter; it takes place best at certain temperatures, and temperatures which we know are favourable to the growth of micro-organisms, all of which phenomena suggest to us the action of bacteria. Moreover, the flavours and the tastes that arise have a decided resemblance in many cases to the decomposition products of bacteria, strikingly so in Limburger cheese. When we come to study the matter of cheese ripening carefully we learn beyond question that this a priori conclusion is correct. The ripening of any cheese is dependent upon several different factors. The method of preparation, the amount of water left in the curd, the temperature of ripening, and other miscellaneous factors connected with the mechanical process of cheese manufacture, affect its character. But, in addition to all these factors, there is undoubtedly another one, and that is the number and the character of the bacteria that chance to be in the curd when the cheese is made. While it is found that cheeses which are treated by different processes will ripen in a different manner, it is also found that two cheeses which have been made under similar conditions and treated in identically the same way may also ripen in a different manner, so that the resulting flavour will vary. The variations between cheeses thus made may be slight or they may be considerable, but variations certainly do occur. Every one knows the great difference in flavours of different cheeses, and these flavours are due in considerable measure to factors other than the simple mechanical process of making the cheese. The general similarity of the whole process to a bacterial fermentation leads us to believe at the outset that some of the differences in character are due to different kinds of bacteria that multiply in the cheese and produce decomposition therein.


Back to IndexNext