CHAPTER VI.

The chief advantage of knowing the cause of disease is that it gives us a vantage ground from which we may hope to find means of avoiding its evils. The study of medicine in the past history of the world has been almost purely empirical, with a very little of scientific basis. Great hopes are now entertained that these new facts will place this matter upon a more strictly scientific foundation. Certainly in the past twenty-five years, since bacteriology has been studied, more has been done to solve problems connected with disease than ever before. This new knowledge has been particularly directed toward means of avoiding disease. Bacteriology has thus far borne fruit largely in the line of preventive medicine, although to a certain extent also along the line of curative medicine. This chapter will be devoted to considering how the study of bacteriology has contributed directly and indirectly to our power of combating disease.

In the study of medicine in the past centuries the only aim has been to discover methods of curing disease; at the present time a large and increasing amount of study is devoted to the methods of preventing disease. Preventive medicine is a development of the last few years, and is based almost wholly upon our knowledge of bacteria. This subject is yearly becoming of more importance. Forewarned is forearmed, and it has been found that to know the cause of a disease is a long step toward avoiding it. As some of our contagious and epidemic diseases have been studied in the light of bacteriological knowledge, it has been found possible to determine not only their cause, but also how infection is brought about, and consequently how contagion may be avoided. Some of the results which have grown up so slowly as to be hardly appreciated are really great triumphs. For instance, the study of bacteriology first led us to suspect, and then demonstrated, that tuberculosis is a contagious disease, and from the time that this was thus proved there has been a slow, but, it is hoped, a sure decline in this disease. Bacteriological study has shown that the source of cholera infection in cases of raging epidemics is, in large part at least, our drinking water; and since this has been known, although cholera has twice invaded Europe, and has been widely distributed, it has not obtained any strong foothold or given rise to any serious epidemic except in a few cases where its ravages can be traced to recognised carelessness. It is very significant to compare the history of the cholera epidemics of the past few years with those of earlier dates. In the epidemics of earlier years the cholera swept ruthlessly through communities without check. In the last few years, although it has repeatedly knocked at the doors of many European cities, it has been commonly confined to isolated cases, except in a few instances where these facts concerning the relation to drinking water were ignored.

The study of preventive medicine is yet in its infancy, but it has already accomplished much. It has developed modern systems of sanitation, has guided us in the building of hospitals, given rules for the management of the sick-room which largely prevent contagion from patient to nurse; it has told us what diseases are contagious, and in what way; it has told us what sources of contagion should be suspected and guarded against, and has thus done very much to prevent the spread of disease. Its value is seen in the fact that there has been a constant decrease in the death rate since modern ideas of sanitation began to have any influence, and in the fact that our general epidemics are less severe than in former years, as well as in the fact that more people escape the diseases which were in former times almost universal.

The study of preventive medicine takes into view several factors, all connected with the method and means of contagion. They are the following:

The Source of Infectious Material.—t has been learned that for most diseases the infectious material comes from individuals suffering with the disease, and that except in a few cases, like malaria, we must always look to individuals suffering from disease for all sources of contagion. It is found that pathogenic bacteria are in all these cases eliminated from the patient in some way, either from the alimentary canal or from skin secretions or otherwise, and that any nurse with common sense can have no difficulty in determining in what way the infectious material is eliminated from her patients. When this fact is known and taken into consideration it is a comparatively easy matter to devise valuable precautions against distribution of such material. It is thus of no small importance to remember that the simple presence of bacteria in food or drink is of no significance unless these bacteria have come from some source of disease infection.

The Method of Distribution.—The bacteria must next get from the original source of the disease to the new susceptible individual. Bacteria have no independent powers of distribution unless they be immersed in liquids, and therefore their passage from individual to individual must be a passive one. They are readily transferred, however, by a number of different means, and the study of these means is aiding much in checking contagion Study along this line has shown that the means by which bacteria are carried are several. First we may notice food as a distributor. Food may become contaminated by infectious material in many ways; for example, by contact with sewage, or with polluted water, or even with eating utensils which have been used by patients. Water is also likely to be contaminated with infectious material, and is a fertile source for distributing typhoid and cholera. Milk may become contaminated in a variety of ways, and be a source of distributing the bacteria which produce typhoid fever, tuberculosis, diphtheria, scarlet fever, and a few other less common diseases. Again, infected clothing, bedding, or eating utensils may be taken from a patient and be used by another individual without proper cleansing. Direct contact, or contact with infected animals, furnishes another method. Insects sometimes carry the bacteria from person to person, and in some diseases (tuberculosis, and perhaps scarlet fever and smallpox) we must look to the air as a distributor of the infectious material. Knowledge of these facts is helping to account for multitudes of mysterious cases of infection, especially when we combine them with the known sources of contagious matter.

Means of Invasion.—Bacteriology has shown us that different species of parasitic bacteria have different means of entering the body, and that each must enter the proper place in order to get a foothold. After we learn that typhoid infectious material must enter the mouth in order to produce the disease; that tuberculosis may find entrance through the nose in breathing, while types of blood poisoning enter only through wounds or broken skin, we learn at once fundamental facts as to the proper methods of meeting these dangers. We learn that with some diseases care exercised to prevent the swallowing of infectious material is sufficient to prevent contagion, while with others this is entirely insufficient. When all these facts are understood it is almost always perfectly possible to avoid contagion; and as these facts become more and more widely known direct contagion is sure to become less frequent.

Above all, it is telling us what becomes of the pathogenic bacteria after being eliminated from the body of the patient; how they may exist for a long time still active; how they may lurk in filth or water dormant but alive, or how they may even multiply there. Preventive medicine is telling us how to destroy those thus lying in wait for a chance of infection, by discovering disinfectants and telling us especially where and when to use them. It has already taught us how to crush out certain forms of epidemics by the proper means of destroying bacteria, and is lessening the dangers from contagious diseases. In short, the study of bacteriology has brought us into a condition where we are no longer helpless in the presence of a raging epidemic. We no longer sit in helpless dismay, as did our ancestors, when an epidemic enters a community, but, knowing their causes and sources, set about at once to remove them. As a result, severe epidemics are becoming comparatively short-lived.

In no line of preventive medicine has bacteriology been of so much value and so striking in its results as in surgery. Ever since surgery has been practised surgeons have had two difficulties to contend with. The first has been the shock resulting from the operation. This is dependent upon the extent of the operation, and must always be a part of a surgical operation. The second has been secondary effects following the operation. After the operation, even though it was successful, there were almost sure to arise secondary complications known as surgical fever, inflammation, blood poisoning, gangrene, etc., which frequently resulted fatally. These secondary complications were commonly much more serious than the shock of the operation, and it used to be the common occurrence for the patient to recover entirely from the shock, but yield to the fevers which followed. They appeared to be entirely unavoidable, and were indeed regarded as necessary parts of the healing of the wound. Too frequently it appeared that the greater the care taken with the patient the more likely he was to suffer from some of these troubles. The soldier who was treated on the battlefield and nursed in an improvised field hospital would frequently recover, while the soldier who had the fortune to be taken into the regular hospital, where greater care was possible, succumbed to hospital gangrene. All these facts were clearly recognised, but the surgeon, through ignorance of their cause, was helpless in the presence of these inflammatory troubles, and felt it always necessary to take them into consideration.

The demonstration that putrefaction and decay were caused by bacteria, and the early proof that the silkworm disease was produced by a micro-organism, led to the suggestion that the inflammatory diseases accompanying wounds were similarly caused. There are many striking similarities between these troubles and putrefaction, and the suggestion was an obvious one. At first, however, and for quite a number of years, it was impossible to demonstrate the theory by finding the distinct species of micro- organisms which produced the troubles. We have already seen that there are several different species of bacteria which are associated with this general class of diseases, but that no specific one has any particular relation to a definite type of inflammation. This fact made discoveries in this connection a slow matter from the microscopical standpoint. But long before this demonstration was finally reached the theory had received practical application in the form of what has developed into antiseptic or aseptic surgery.

Antiseptic surgery is based simply upon the attempt to prevent the entrance of bacteria into the surgical wound. It is assumed that if these organisms are kept from the wound the healing will take place without the secondary fevers and inflammations which occur if they do get a chance to grow in the wound. The theory met with decided opposition at first, but accumulating facts demonstrated its value, and to-day its methods have been adopted everywhere in the civilized world. As the evidence has been accumulating, surgeons have learned many important facts, foremost among which is a knowledge of the common sources from which the infection of wounds occurs. At first it was thought that the air was the great source of infection, but the air bacteria have been found to be usually harmless. It has appeared that the more common sources are the surgeon's instruments, or his hands, or the clothing or sponges which are allowed to come in contact with the wounds. It has also appeared that the bacteria which produce this class of troubles are common species, existing everywhere and universally present around the body, clinging to the clothing or skin, and always on hand to enter the wound if occasion offers. They are always present, but commonly harmless. They are not foreign invaders like the more violent pathogenic species, such as those of Asiatic cholera, but may be compared to domestic enemies at hand. It is these ever-present bacteria which the surgeon must guard against. The methods by which he does this need not detain us here. They consist essentially in bacteriological cleanliness. The operation is performed with sterilized instruments under most exacting conditions of cleanliness.

The result has been a complete revolution in surgery. As the methods have become better understood and more thoroughly adopted, the instances of secondary troubles following surgical wounds have become less and less frequent until they have practically disappeared in all simple cases. To-day the surgeon recognises that when inflammatory troubles of this sort follow simple surgical wounds it is a testimony to his carelessness. The skilful surgeon has learned that with the precautions which he is able to take to-day he has to fear only the direct effect of the shock of the wound and its subsequent direct influence; but secondary surgical fevers, blood poisoning, and surgical gangrene need not be taken into consideration at all. Indeed, the modern surgeon hardly knows what surgical gangrene is, and bacteriologists have had practically no chance to study it. Secondary infections have largely disappeared, and the surgeon is concerned simply with the effect of the wound itself, and the power of the body to withstand the shock and subsequently heal the wound.

With these secondary troubles no longer to disturb him, the surgeon has become more and more bold. Operations formerly not dreamed of are now performed without hesitation. In former years an operation which opened the abdominal cavity was not thought possible, or at least it was so nearly certain to result fatally that it was resorted to only on the last extremity; while to-day such operations are hardly regarded as serious. Even brain surgery is becoming more and more common. Possibly our surgeons are passing too far to the other extreme, and, feeling their power of performing so many operations without inconvenience or danger, they are using the knife in cases where it would be better to leave Nature to herself for her own healing. But, be this as it may, it is impossible to estimate the amount of suffering prevented and the number of lives saved by the mastery of the secondary inflammatory troubles which used to follow surgical wounds.

Preventive medicine, then, has for its object the prevention rather than the cure of disease. By showing the causes of disease and telling us where and how they are contracted, it is telling us how they may to a large extent be avoided. Unlike practical medicine, this subject is one which has a direct relation to the general public. While it may be best that the knowledge of curative methods be confined largely to the medical profession, it is eminently desirable that a knowledge of all the facts bearing upon preventive medicine should be distributed as widely as possible. One person can not satisfactorily apply his knowledge of preventive medicine, if his neighbour is ignorant of or careless of the facts. We can not hope to achieve the possibilities lying along this line until there is a very wide distribution of knowledge. Every epidemic that sweeps through our communities is a testimony to the crying need of education in regard to such simple facts as the source of infectious material, the methods of its distribution, and the means of rendering it harmless.

It has long been recognised that in most cases recovery from one attack of a contagious disease renders an individual more or less immune against a second attack. It is unusual for an individual to have the same contagious disease twice. This belief is certainly based upon fact, although the immunity thus acquired is subject to wide variations. There are some diseases in which there is little reason for thinking that any immunity is acquired, as in the case of tuberculosis, while there are others in which the immunity is very great and very lasting, as in the case of scarlet fever. Moreover, the immunity differs with individuals. While some persons appear to acquire a lasting immunity by recovery from a single attack, others will yield to a second attack very readily. But in spite of this the fact of such acquired immunity is beyond question. Apparently all infectious diseases from which a real recovery takes place are followed by a certain amount of protection from a second attack; but with some diseases the immunity is very fleeting, while with others it is more lasting. Diseases which produce a general infection of the whole system are, as a rule, more likely to give rise to a lasting immunity than those which affect only small parts. Tuberculosis, which, as already noticed, is commonly quite localized in the body, has little power of conveying immunity, while a disease like scarlet fever, which affects the whole system, conveys a more lasting protection.

Such immunity has long been known, and in the earlier years was sometimes voluntarily acquired; even to-day we find some individuals making use of the principle. It appears that a mild attack of such diseases produces immunity equally well with a severe attack, and acting upon this fact mothers have not infrequently intentionally exposed their children to certain diseases at seasons when they are mild, in order to have the disease "over with" and their children protected in the future. Even the more severe diseases have at times been thus voluntarily acquired. In China it has sometimes been the custom thus to acquire smallpox. Such methods are decidedly heroic, and of course to be heartily condemned. But the principle that a mild type of the disease conveys protection has been made use of in a more logical and defensible way.

The first instance of this principle was in vaccination against smallpox, now practised for more than a century. Cowpox is doubtless closely related to smallpox, and an attack of the former conveys a certain amount of protection against the latter. It was easy, therefore, to inoculate man with some of the infectious material from cowpox, and thus give him some protection against the more serious smallpox. This was a purely empirical discovery, and vaccination was practised long before the principle underlying it was understood, and long before the germ nature of disease was recognised. The principle was revived again, however, by Pasteur, and this time with a logical thought as to its value. While working upon anthrax among animals, he learned that here, as in other diseases, recovery, when it occurred, conveyed immunity. This led him to ask if it were not possible to devise a method of giving to animals a mild form of the disease and thus protect them from the more severe type. The problem of giving a mild type of this extraordinarily severe disease was not an easy one. It could not be done, of course, by inoculating the animals with a small number of the bacteria, for their power of multiplication would soon make them indefinitely numerous. It was necessary in some way to diminish their violence. Pasteur succeeded in doing this by causing them to grow in culture fluids for a time at a high temperature. This treatment diminished their violence so much that they could be inoculated into cattle, where they produced only the mildest type of indisposition, from which the animals speedily recovered. But even this mild type of the disease was triumphantly demonstrated to protect the animals from the most severe form of anthrax. The discovery was naturally hailed as a most remarkable one, and one which promised great things in the future. If it was thus possible, by direct laboratory methods, to find a means of inoculating against a serious disease like anthrax, why could not the same principle be applied to human diseases? The enthusiasts began at once to look forward to a time when all diseases should be thus conquered.

But the principle has not borne the fruit at first expected. There is little doubt that it might be applied to quite a number of human diseases if a serious attempt should be made. But several objections arise against its wide application. In the first place, the inoculation thus necessary is really a serious matter. Even vaccination, as is well known, sometimes, through faulty methods, results fatally, and it is a very serious thing to experiment upon human beings with anything so powerful for ill as pathogenic bacteria. The seriousness of the disease smallpox, its extraordinary contagiousness, and the comparatively mild results of vaccination, have made us willing to undergo vaccination at times of epidemics to avoid the somewhat great probability of taking the disease. But mankind is unwilling to undergo such an operation, even though mild, for the purpose of avoiding other less severe diseases, or diseases which are less likely to be taken. We are unwilling to be inoculated against mild diseases, or against the more severe ones which are uncommon. For instance, a method has been devised for rendering animals immune against lockjaw, which would probably apply equally well to man. But mankind in general will never adopt it, since the danger from lockjaw is so small. Inoculation must then be reserved for diseases which are so severe and so common, or which occur in periodical epidemics of so great severity, as to make people in general willing to submit to inoculation as a protection. A further objection arises from the fact that the immunity acquired is not necessarily lasting. The cattle inoculated against anthrax retain their protective powers for only a few months. How long similar immunity might be retained in other cases we can not say, but plainly this fact would effectually prevent this method of protecting mankind from being used except in special cases. It is out of the question to think of constant and repeated inoculations against various diseases.

As a result, the principle of inoculation as an aid in preventive medicine has not proved of very much value. The only other human disease in which it has been attempted seriously is Asiatic cholera. This disease in times of epidemics is so severe and the chance of infection is so great as to justify such inoculation. Several bacteriologists have in the last few years been trying to discover a harmless method of inoculating against this disease. Apparently they have succeeded, for experiments in India, the home of the cholera, have been as successful as could be anticipated. Bacteriological science has now in its possession a means of inoculation against cholera which is perhaps as efficacious as vaccination is against smallpox. Whether it will ever be used to any extent is doubtful, since, as already pointed out, we are in a position to avoid cholera epidemics by other means. If we can protect our communities by guarding the water supply, it is not likely that the method of inoculation will ever be widely used.

Another instance of the application of preventive inoculation has been made, but one based upon a different principle. Hydrophobia is certainly one of the most horrible of diseases, although comparatively rare. Its rarity would effectually prevent mankind from submitting to a general inoculation against it, but its severity would make one who had been exposed to it by the bite of a rabid animal ready to submit to almost any treatment that promised to ward off the disease. In the attempt to discover a means of inoculating against this disease it was necessary, therefore, to find a method that could be applied after the time of exposure—i.e., after the individual had been bitten by the rabid animal. Fortunately, the disease has a long period of incubation, and one that has proved long enough for the purpose. A method of inoculation against this disease has been devised by Pasteur, which can be applied after the individual has been bitten by the rabid animal. Apparently, however, this preventive inoculation is dependent upon a different principle from vaccination or inoculation against anthrax. It does not appear to give rise to a mild form of the disease, thus protecting the individual, but rather to an acquired tolerance of the chemical poisons produced by the disease. It is a well-known physiological fact that the body can become accustomed to tolerate poisons if inured to them by successively larger and larger doses. It is by this power, apparently, that the inoculation against hydrophobia produces its effect. Material containing the hydrophobia poison (taken from the spinal cord of a rabbit dead with the disease) is injected into the individual after he has been bitten by a rabid animal. The poisonous material in the first injection is very weak, but is followed later by a more powerful inoculation. The result is that after a short time the individual has acquired the power of resisting the hydrophobia poisons. Before the incubation period of the original infectious matter from the bite of the rabid animal has passed, the inoculated individual has so thoroughly acquired a tolerance of the poison that he successfully resists the attack of the infection. This method of inoculation thus neutralizes the effects of the disease by anticipating them.

The method of treatment of hydrophobia met with extraordinarily violent opposition. For several years it was regarded as a mistake. But the constantly accumulating statistics from the Pasteur Institute have been so overwhelmingly on one side as to quiet opposition and bring about a general conviction that the method is a success.

The method of preventive inoculation has not been extensively applied to human diseases in addition to those mentioned. In a few cases a similar method has been used to guard against diphtheria. Among animals, experiment has shown that such methods can quite easily be obtained, and doubtless the same would be true of mankind if it was thought practical or feasible to apply them. But, for reasons mentioned, this feature of preventive medicine will always remain rather unimportant, and will be confined to a few of the more violent diseases.

It may be well to raise the question as to why a single attack with recovery conveys immunity. This question is really a part of the one already discussed as to the method by which the body cures disease. We have seen that this is in part due to the development of chemical substances which either neutralize the poisons or act as germicide upon the bacteria, or both, and perhaps due in part to an active destruction of bacteria by cellular activity (phagocytosis). There is little reason to doubt that it is the same set of activities which renders the animal immune. The forces which drive off the invading bacteria in one case are still present to prevent a second attack of the same species of bacterium. The length of time during which these forces are active and sufficient to cope with any new invaders determines the length of time during which the immunity lasts. Until, therefore, we can answer with more exactness just how cure is brought about in case of disease, we shall be unable to explain the method of immunity.

With all the advance in preventive medicine we can not hope to avoid disease entirely. We are discovering that the sources of disease are on all sides of us, and so omnipresent that to avoid them completely is impossible. If we were to apply to our lives all the safeguards which bacteriology has taught us should be applied in order to avoid the different diseases, we would surround ourselves with conditions which would make life intolerable. It would be oppressive enough for us to eat no food except when it is hot, to drink no water except when boiled, and to drink no milk except after sterilization; but these would not satisfy the necessary conditions for avoiding disease. To meet all dangers, we should handle nothing which has not been sterilized, or should follow the handling by immediately sterilizing the hands; we should wear only disinfected clothes, we should never put our fingers in our mouths or touch our food with them; we should cease to ride in public conveyances, and, indeed, should cease to breathe common air. Absolute prevention of the chance of infection is impossible. The most that preventive medicine can hope for is to point out the most common and prolific sources of infection, and thus enable civilized man to avoid some of his most common troubles. It becomes a question, therefore, where we will best draw the line in the employment of safeguards. Shall we drink none except sterilized milk, and no water unless boiled? or shall we put these occasional sources of danger in the same category with bicycle and railroad accidents, dangers which can be avoided by not using the bicycle or riding on the rail, but in regard to which the remedy is too oppressive for application?

Indeed, when viewed in a broad philosophical light it may not be the best course for mankind to shun all dangers. Strength in the organism comes from the use rather than the disuse of our powers. It is certain that the general health and vigour of mankind is to be developed by meeting rather than by shunning dangers. Resistance to disease means bodily vigour, and this is to be developed in mankind by the application of the principle of natural selection. In accordance with this principle, disease will gradually remove the individuals of weak resisting powers, leaving those of greater vigour. Parasitic bacteria are thus a means of preventing the continued life of the weaker members of the community, and so tend to strengthen mankind. By preventive medicine many a weak individual who would otherwise succumb earlier in the struggle is enabled to live a few years longer. Whatever be our humanitarian feeling for the individual, we can not fail to admit that this survival of the weak is of no benefit to the race so far as the development of physical nature is concerned. Indeed, if we were to take into consideration simply the physical nature of man we should be obliged to recommend a system such as the ancient Spartans developed, of exposing to death all weakly individuals, that only the strong might live to become the fathers of future generations. In this light, of course, parasitic diseases would be an assistance rather than a detriment to the human race. Of course such principles will never again be dominant among men, and our conscience tells us to do all we can to help the weak. We shall doubtless do all possible to develop preventive medicine in order to guard the weak against parasitic organisms. But it is at all events well for us to remember that we can never hope to develop the strength of the human race by shunning evil, but rather by combating it, and the power of the human race to resist the invasions of these organisms will never be developed by the line of action which guards us from attack. Here, as in other directions, the principles of modern humanity have, together with their undoubted favourable influence upon mankind, certain tendencies toward weakness. While we shall still do our utmost to develop preventive medicine in a proper way, it may be well for us to remember these facts when we come to the practical question of determining where to draw the limits of the application of methods for preventing infectious diseases.

Bacteriology has hitherto contributed less to curative than to preventive medicine. Nevertheless, its contributions to curative medicine have not been unimportant, and there is promise of much more in the future. It is, of course, unsafe to make predictions for the future, but the accomplishments of the last few years give much hope as to further results.

It was at first thought that a knowledge of the specific bacteria which cause a disease would give a ready means of finding specific drugs for the cure of such disease. If a definite species of bacterium causes a disease and we can cultivate the organism in the laboratory, it is easy to find some drugs which will be fatal to its growth, and these same drugs, it would seem, should be valuable as medicines in these diseases. This hope has, however, proved largely illusive. It is very easy to find some drug which proves fatal to the specific germs while growing in the culture media of the laboratory, but commonly these are of little or no use when applied as medicines. In the first place, such substances are usually very deadly poisons. Corrosive sublimate is a substance which destroys all pathogenic germs with great rapidity, but it is a deadly poison, and can not be used as a drug in sufficient quantity to destroy the parasitic bacteria in the body without at the same time producing poisonous effects on the body itself. It is evident that for any drug to be of value in thus destroying bacteria it must have some specially strong action upon the bacteria. Its germicide action on the bacteria should be so strong that a dose which would be fatal or very injurious to them would be too small to have a deleterious influence on the body of the individual. It has not proved an easy task to discover drugs which will have any value as germicides when used in quantities so small as to produce no injurious effect on the body.

A second difficulty is in getting the drug to produce its effect at the right point. A few diseases, as we have noticed, are produced by bacteria which distribute themselves almost indiscriminately over the body; but the majority are somewhat definitely localized in special points. Tuberculosis may attack a single gland or a single lobe of the lung. Typhoid germ is localized in the intestines, liver, spleen, etc. Even if it were possible to find some drug which would have a very specific effect upon the tuberculosis bacillus, it is plain that it would be a very questionable method of procedure to introduce this into the whole system simply that it might have an effect upon a very small isolated gland. Sometimes such a bacterial affection may be localized in places where it can be specially treated, as in the case of an attack on a dermal gland, and in these cases some of the germicides have proved to be of much value. Indeed, the use of various disinfectants connected with abscesses and superficial infections has proved of much value. To this extent, in disinfecting wounds and as a local application, the development of our knowledge of disinfectants has given no little aid to curative medicine.

Very little success, however, has resulted in the attempt to find specific drugs for specific diseases, and it is at least doubtful whether many such will ever be found. The nearest approach to it is quinine as a specific poison for malarial troubles. Malarious diseases are not, however, produced by bacteria but by a microscopic organism of a very different nature, thought to be an animal rather than a plant. Besides this there has been little or no success in discovering specifics in the form of drugs which can be given as medicines or inoculated with the hope of destroying special kinds of pathogenic bacteria without injury to the body. While it is unwise to make predictions as to future discoveries, there seems at present little hope for a development of curative medicine along these lines.

The study of bacterial diseases as they progress in the body has emphasized above all things the fact that diseases are eventually cured by a natural rather than by an artificial process. If a pathogenic bacterium succeeds in passing the outer safeguards and entering the body, and if it then succeeds in overcoming the forces of resistance which we have already noticed, it will begin to multiply and produce mischief. This multiplication now goes on for a time unchecked, and there is little reason to expect that we can ever do much toward checking it by means of drugs. But after a little, conditions arise which are hostile to the further growth of the parasite. These hostile conditions are produced perhaps in part by the secretions from the bacteria, for bacteria are unable to flourish in a medium containing much of their own secretions. The secretions which they produce are poisons to them as well as to the individual in which they grow, and after these have become quite abundant the further growth of the bacterium is checked and finally stopped. Partly, also, must we conclude that these hostile conditions are produced by active vital powers in the body of the individual attacked. The individual, as we have seen, in some cases develops a quantity of some substance which neutralizes the bacterial poisons and thus prevents their having their maximum effect. Thus relieved from the direct effects of the poisons, the resisting powers are recuperated and once more begin to produce a direct destruction of the bacteria. Possibly the bacteria, being now weakened by the presence of their own products of growth, more readily yield to the resisting forces of the cell life of the body. Possibly the resisting forces are decidedly increased by the reactive effect of the bacteria and their poisons. But, at all events, in cases where recovery from parasitic diseases occurs, the revived powers of resistance finally overcome the bacteria, destroy them or drive them off, and the body recovers.

All this is, of course, a natural process. The recovery from a disease produced by the invasion of parasitic bacteria depends upon whether the body can resist the bacterial poisons long enough for the recuperation of its resisting powers. If these poisons are very violent and produced rapidly, death will probably occur before the resisting powers are strong enough to drive off the bacteria. In the case of some diseases the poisons are so violent that this practically always occurs, recovery being very exceptional. The poison produced by the tetanus bacillus is of this nature, and recovery from lockjaw is of the rarest occurrence. But in many other diseases the body is able to withstand the poison, and later to recover its resisting powers sufficiently to drive off the invaders. In all cases, however, the process is a natural one and dependent upon the vital activity of the body. It is based at the foundation, doubtless, upon the powers of the body cells, either the phagocytes or other active cells. The body has, in short, its own forces for repelling invasions, and upon these forces must we depend for the power to produce recovery.

It is evident that all these facts give us very little encouragement that we shall ever be able to cure diseases directly by means of drugs to destroy bacteria, but, on the contrary, that we must ever depend upon the resisting powers of the body. They teach us, moreover, along what line we must look for the future development of curative medicine. It is evident that scientific medicine must turn its attention toward the strengthening and stimulating of the resisting and curative forces of the body. It must be the physician's aim to enable the body to resist the poisons as well as possible and to stimulate it to re-enforce its resistant forces. Drugs have a place in medicine, of course, but this place is chiefly to stimulate the body to react against its invading hosts. They are, as a rule, not specific against definite diseases. We can not hope for much in the way of discovering special medicines adapted to special diseases. We must simply look upon them as means which the physician has in hand for stimulating the natural forces of the body, and these may doubtless vary with different individual natures. Recognising this, we can see also the logic of the small dose as compared to the large dose. A small dose of a drug may serve as a stimulant for the lagging forces, while a larger dose would directly repress them or produce injurious secondary effects. As soon as we recognise that the aim of medicine is not to destroy the disease but rather to stimulate the resisting forces of the body, the whole logic of therapeutics assumes a new aspect.

Physicians have understood this, and, especially in recent years, have guided their practice by it. If a moderate dose of quinine will check malaria in a few days, it does not follow that twice the dose will do it in half the time or with twice the certainty. The larger doses of the past, intended to drive out the disease, have been everywhere replaced by smaller doses designed to stimulate the lagging body powers. The modern physician makes no attempt to cure typhoid fever, having long since learned his inability to do this, at least if the fever once gets a foothold; but he turns his attention to every conceivable means of increasing the body's strength to resist the typhoid poison, confident that if he can thus enable the patient to resist the poisoning effects of the typhotoxine his patient will in the end react against the disease and drive off the invading bacteria. The physician's duty is to watch and guard, but he must depend upon the vital powers of his patient to carry on alone the actual battle with the bacterial invaders.

In very recent times, however, our bacteriologists have been pointing out to the world certain entirely new means of assisting the body to fight its battles with bacterial diseases. As already noticed, one of the primal forces in the recovery, from some diseases, at least, is the development in the body of a substance which acts as an antidote to the bacterial poison. So long as this antitoxine is not present the poisons produced by the disease will have their full effect to weaken the body and prevent the revival of its resisting powers to drive off the bacteria. Plainly, if it is possible to obtain this antitoxine in quantity and then inoculate it into the body when the toxic poisons are present, we have a means for decidedly assisting the body in its efforts to drive off the parasites. Such an antidote to the bacterial poison would not, indeed, produce a cure, but it would perhaps have the effect of annulling the action of the poisons, and would thus give the body a much greater chance to master the bacteria. It is upon this principle that is based the use of antitoxines in diphtheria and tetanus

It will be clear that to obtain the antitoxine we must depend upon some natural method for its production. We do not know enough of the chemical nature of the antitoxines to manufacture them artificially. Of course we can not deny the possibility of their artificial production, and certain very recent experiments indicate that perhaps they may be made by the agency of electricity. At present, however, we must use natural methods, and the one commonly adopted is simple. Some animal is selected whose blood is harmless to man and that is subject to the disease to be treated. For diphtheria a horse is chosen. This animal is inoculated with small quantities of the diphtheria poison without the diphtheria bacillus. This poison is easily obtained by causing the diphtheria bacillus to grow in common media in the laboratory for a while, and the toxines develop in quantity; then, by proper filtration, the bacteria themselves can be removed, leaving a pure solution of the toxic poison. Small quantities of this poison are inoculated into the horse at successive intervals. The effect on the horse is the same as if the animal had the disease. Its cells react and produce a considerable quantity of the antitoxine which remains in solution in the blood of the animal. This is not theory, but demonstrated fact. The blood of a horse so treated is found to have the effect of neutralizing the diphtheria poison, although the blood of the horse before such treatment has no such effect. Thus there is developed in the horse's blood a quantity of the antitoxine, and now it may be used by physicians where needed. If some of this horse's blood, properly treated, be inoculated into the body of a person who is suffering from diphtheria, its effect, provided the theory of antitoxines is true, will be to counteract in part, at least, the poisons which are being produced in the patient by the diphtheria bacillus. This does not cure the disease nor in itself drive off the bacilli, but it does protect the body from the poisons to such an extent as to enable it more readily to assert its own resisting powers.

This method of using antitoxines as a help in curing disease is very recent, and we can not even guess what may come of it. It has apparently been successfully applied in diphtheria. It has also been used in tetanus with slight success. The same principle has been used in obtaining an antidote for the poison of snake bites, since it has appeared that in this kind of poisoning the body will develop an antidote to the poison if it gets a chance. Horses have been treated in the same way as with the diphtheria poison, and in the same way they develop a substance which neutralizes the snake poison. Other diseases are being studied to-day with the hope of similar results. How much further the principle will go we can not say, nor can we be very confident that the same principle will apply very widely. The parasitic diseases are so different in nature that we can hardly expect that a method which is satisfactory in meeting one of the diseases will be very likely to be adapted to another. Vaccination has proved of value in smallpox, but is not of use in other human diseases. Inoculation with weakened germs has proved of value in anthrax and fowl cholera, but will not apply to all diseases. Each of these parasites must be fought by special methods, and we must not expect that a method that is of value in one case must necessarily be of use elsewhere. Above all, we must remember that the antitoxines do not cure in themselves; they only guard the body from the weakening effects of the poisons until it can cure itself, and, unless the body has resisting powers, the antitoxine will fail to produce the desired results.

One further point in the action of the antitoxines must be noticed. As we have seen, a recovery from an attack of most germ diseases renders the individual for a time immune against a second attack. This applies less, however, to a recovery after the artificial inoculation with antitoxine than when the individual recovers without such aid. If the individual recovers quite independently of the artificial antitoxine, he does so in part because he has developed the antitoxines for counteracting the poison by his own powers. His cellular activities have, in other words, been for a moment at least turned in the direction of production of antitoxines. It is to be expected, therefore, that after the recovery they will still have this power, and so long as they possess it the individual will have protection from a second attack. When, however, the recovery results from the artificial inoculation of antitoxine the body cells have not actively produced antitoxine. The neutralization of the poisons has been a passive one, and after recovery the body cells are no more engaged in producing antitoxine than before. The antitoxine which was inoculated is soon eliminated by secretion, and the body is left with practically the same liability to attack as before. Its immunity is decidedly fleeting, since it was dependent not upon any activity on the part of the body, but upon an artificial inoculation of a material which is rapidly eliminated by secretion.

It is hoped that the outline which has been given of the bacterial life of Nature may serve to give some adequate idea of these organisms and correct the erroneous impressions in regard to them which are widely prevalent. It will be seen that, as our friends, bacteria play a vastly more important part in Nature than they do as our enemies. These plants are minute and extraordinarily simple, but, nevertheless, there exists a large number of different species. The number of described forms already runs far into the hundreds, and we do not yet appear to be approaching the end of them. They are everywhere in Nature, and their numbers are vast beyond conception. Their powers of multiplication are inconceivable, and their ability to produce profound chemical changes is therefore unlimited. This vast host of living beings thus constitutes a force or series of forces of tremendous significance. Most of the vast multitude we must regard as our friends. Upon them the farmer is dependent for the fertility of his soil and the possibility of continued life in his crops. Upon them the dairyman is dependent for his flavours. Upon them important fermentative industries are dependent, and their universal powers come into action upon a commercial scale in many a place where we have little thought of them in past years. We must look upon them as agents ever at work, by means of which the surface of Nature is enabled to remain fresh and green. Their power is fundamental, and their activities are necessary for the continuance of life. A small number of the vast host, a score or two of species, unfortunately for us, find their most favourable living place in the human body, and thus become human parasites. By their growth they develop poisons and produce disease. This small class of parasites are then decidedly our enemies. But, taken all together, we must regard the bacteria as friends and allies. Without them we should not have our epidemics, but without them we should not exist. Without them it might be that some individuals would live a little longer, if indeed we could live at all. It is true that bacteria, by producing disease, once in a while cause the premature death of an individual; once in a while, indeed, they may sweep off a hundred or a thousand individuals; but it is equally true that without them plant and animal life would be impossible on the face of the earth.


Back to IndexNext