[S]ClimactichnitesandProtichnites.
[S]ClimactichnitesandProtichnites.
I had almost lost sight of the fishes of the Carboniferous period, but after saying so much of those of the Devonian, it would be unfair to leave their successors altogether unnoticed. In the Carboniferous we lose those broad-snouted plate-covered species that form so conspicuous a feature in the Devonian; and whatever its meaning, it is surely no accident that these mud-burrowing fishes should decay along with those crustacean mud-burrowers, the Trilobites. But swarms of fishes remain, confined, as in the Devonian, wholly to the two orders of the Gar-fishes (Ganoids) and the sharks (Placoids). In the former we have a multitude of small and beautiful species haunting the creeks and ponds of the coal swamps, and leaving vast quantities of their remains in the shaly and even coaly beds formed in such places. Such were the pretty, graceful fishes of the generaPalæoniscusandAmblypterus. Pursuing and feeding on these were larger ganoids, armed with strong bony scales, and formidable conical or sharp-edged teeth. Of these wereRhizodusandAcrolepis. There were besides multitudes of sharks whose remains consist almost wholly of their teeth and spines, their cartilaginous skeletons having perished. One group was allied to the few species of modern sharks whose mouths are paved with flat teeth for crushing shells. These were the most abundant sharks of the Carboniferous—slow and greedy monsters, haunting shell banks and coral reefs, and grinding remorselessly all the shell-fishes that came in their way. There were also sharks furnished with sharp and trenchant teeth, which must have been the foes of the smaller mailed fishes, pursuing them into creeks and muddy shallows; and if we may judge from the quantity of their remains in some of these places, sometimes perishing in their eager efforts. On the whole, the fishes of the Carboniferous were, in regard to their general type, a continuation of those of the Devonian, but the sharks and the scaly ganoids were relatively more numerous. They differed from our modern fishes in the absence of the ordinary horny-scaled type to which all our more common fishes belong, and in the prevalence of that style of tail which has been termed “heterocercal,†in which the continuation of the backbone forms the upper lobe of the tail, a style which, if we may judge from modern examples, gives more power of upward and downward movement, and is especiallysuitable to fishes which search for food only at the bottom, or only above the surface of the waters.
Most reluctantly I must here leave one of the most remarkable periods of the world’s history, and reserve to our next chapter the summation of the history of the older world of life in its concluding stage, the Permian.
CHAPTER VII.
THE PERMIAN AGE AND CLOSE OF THE PALÆOZOIC.
Theimmense swamps and low forest-clad plains which occupied the continental areas of the Northern Hemisphere, and which we now know extended also into the regions south of the equator, appear at the close of the Carboniferous age to have again sunk beneath the waves, or to have relapsed into the condition of sand and gravel banks; for a great thickness of such deposits rests on the coal measures and constitutes the upper coal formation, the upper “barren measures†of the coal-miners. There is something grand in the idea of this subsidence of a world of animal and vegetable life beneath the waters. The process was very slow, so slow that at first vegetable growth and deposition of silt kept pace with it; and this is the reason of the immense series of deposits, in some places nearly 15,000 feet thick, which inclose or rest upon the coal beds; but at length it became more rapid, so that forests and their inhabitants perished, and the wild surf drifted sand and pebbles over their former abodes. So the Carboniferous world, like that of Noah, being overflowed with water, perished. But it was not a wicked world drowned for its sins, but merely an old and necessarily preliminary system, which had fully served itspurpose; and, like the stubble of last year, must be turned under by the plough that it may make way for a new verdure. The plough passed over it, and the winter of the Permian came, and then the spring of a new age.
The Permian and the succeeding Triassic are somewhat chilly and desolate periods of the earth’s history. The one is the twilight of the Palæozoic day, the other is the dawn of the Mesozoic. Yet to the philosophical geologist no ages excel them in interest. They are times of transition, when old dynasties and races pass away and are replaced by new and vigorous successors, founding new empires and introducing new modes of life and action.
Three great leading points merit our attention in entering on the Permian age. The first is the earth-movements of the period. The second is the resulting mineral characteristics of the deposits formed. The third is the aspect of the animal and vegetable life of this age in their relation more especially to those which preceded.
DIAGRAM OF FOLDINGS OF THE CRUST IN THE PERMIAN PERIOD.(The vertical scale of heights and depressions exaggerated more than six times.)The lower figure shows a portion of folded strata in the Appalachians—after Rogers.
DIAGRAM OF FOLDINGS OF THE CRUST IN THE PERMIAN PERIOD.(The vertical scale of heights and depressions exaggerated more than six times.)The lower figure shows a portion of folded strata in the Appalachians—after Rogers.
With respect to the first point above named, the earth’s crust was subjected in the Permian period to some of the grandest movements which have occurred in the whole course of geologic time, and we can fix the limits of these, in Europe and America at least, with some distinctness. If we examine the Permian rocks in England and Germany, we shall find that everywhere they lie on the upturned edges of the preceding Carboniferous beds. In other words, the latter have been thrown into a series of folds, and the tops of these folds have been more or less worn away before the Permian beds were placed on them. But if we pass on to the eastward, in the great plain between the Volga and the Ural mountains, where, in the “ancient kingdom of Perm,†the greatest known area of these rocks is found, an area equal in extent to twice that of France, and which Sir R. I. Murchison, who first proposed the name, took as the typical district, we find, on the contrary, that the Permian and Carboniferous are conformable to one another. If now we cross the Atlantic and inquire how the case stands in America, we shall find it precisely the same. Here the great succession of earth-waves constituting the Appalachian Mountains rises abruptly at the eastern edge of the continent, and becomes flatter and flatter, until, in the broad plains west of the Mississippi, the Permian beds appear, as in Russia, resting upon the Carboniferous so quietly that it is not always easy to draw a line of separation between them. As Dana has remarked, we find at the western side of Europe and the eastern side of America, great disturbances inaugurating the Permian period; and in the interior of both, in the plains between the Volga and the Ural in one, and between the Mississippi and Rocky Mountains in the other, an entire absence of these disturbances. The main difference is, that in eastern America the whole Carboniferous areas have apparently been so raised up that no Permian was deposited on them, while in Europe considerable patches of the disturbedareas became or remained submerged. Another American geologist has largely illustrated the fact that the movements which threw up the Appalachian folds were strongest to the eastward, and that the ridges of rock are steepest on their west sides, the force which caused them acting from the direction of the sea. It seems as if the Atlantic area had wanted elbow-room, and had crushed up the edges of the continents next to it. In other words, in the lapse of the Palæozoic ages the nucleus of the earth had shrunk away from its coating of rocky layers, which again collapsed into great wrinkles.
Such a process may seem difficult of comprehension. To understand it we must bear in mind some of its conditions. First, the amount of this wrinkling was extremely small relatively to the mass of the earth. In the diagram on page 162 it is greatly exaggerated, yet is seen to be quite insignificant, however gigantic in comparison with microscopic weaklings like ourselves. Secondly, it was probably extremely slow. Beds of solid rock cannot be suddenly bent into great folds without breaking, and the abruptness of some of the folds may be seen from our figure, copied from Rogers (page 162), of some of the foldings of the Appalachian Mountains. Thirdly, the older rocks below the Carboniferous and the Devonian must have been in a softened and plastic state, and so capable of filling up the vacancies left by the bending of the hard crust above. In evidence of this, we have in the Lower Permian immense volcanic ejections—lavas and othermolten rocks spewed out to the surface from the softened and molten masses below. Fourthly, the basin of the Atlantic must have been sufficiently strong to resist the immense lateral pressure, so that the yielding was all concentrated on the weaker parts of the crust near the old fractures at the margins of the great continents. In these places also, as we have seen in previous papers, the greatest thickness of deposits had been formed; so that there was great downward pressure, and probably, also, greater softening of the lower part of the crust. Fifthly, as suggested in a previous chapter, the folding of the earth’s crust may have resulted from the continued shrinkage of its interior in consequence of cooling, leading after long intervals to collapse of the surface. Astronomers have, however, suggested another cause. The earth bulges at the equator, and is flattened at the poles in consequence of, or in connection with, the swiftness of its rotation; but it has been shown that the rotation of the earth is being very gradually lessened by the attraction of the moon.[T]Pierce has recently brought forward the idea[U]that this diminution of rotation, by causing the crust to subside in the equatorial regions and expand in the polar, might produce the movements observed; and which, according to Lesley, have amounted in the whole course of geological time to about two per cent, of the diameter of our globe. Wethus have two causes, either of which seems sufficient to produce the effect.
[T]Sir William Thomson, who quotes Adams and Delaunay.
[T]Sir William Thomson, who quotes Adams and Delaunay.
[U]“Nature,†February, 1871.
[U]“Nature,†February, 1871.
Viewed in this way, the great disturbances at the close of the Palæozoic period constitute one of the most instructive examples in the whole history of the earth of that process of collapse to which the crust was subject after long intervals, and of which no equally great instance occurs except at the close of the Laurentian and the close of the Mesozoic. The mineral peculiarities of the Permian are also accounted for by the above considerations. Let us now notice some of these. In nearly all parts of the world the Permian presents thick beds of red sandstone and conglomerate as marked ingredients. These, as we have already seen, are indications of rapid deposition accompanying changes of level. In the Permian, as elsewhere, these beds are accompanied by volcanic rocks, indicating the subterranean causes of the disturbances. Again, these rocks are chiefly abundant in those regions, like Western Europe, where the physical changes were at a maximum. Another remarkable feature of the Permian rocks is the occurrence of great beds of magnesian limestone, or dolomite. In England, the thick yellow magnesian limestone, the outcrop of which crosses in nearly a straight line through Durham, Yorkshire, and Nottingham, marks the edge of a great Permian sea extending far to the eastward. In the marls and sandstones of the Permian period there is also much gypsum. Now, chemistry shows us that magnesian limestones and gypsums are likely tobe deposited where sea water, which always contains salts of magnesia, is evaporating in limited or circumscribed areas into which carbonate of lime and carbonate of soda are being carried by streams from the land or springs from below;[V]and it is also to be observed that solutions of sulphuric acid, and probably also of sulphate of magnesia, are characteristic products of igneous activity. Hence we find in various geological periods magnesian limestones occurring as a deposit in limited shallow sea basins, and also in connection with volcanic breccias. Now these were obviously the new Permian conditions of what had once been the wide flat areas of the Carboniferous period. Still further, we find in Europe, as characteristic of this period, beds impregnated with metallic salts, especially of copper. Of this kind are very markedly the copper slates of Thuringia. Such beds are not, any more than magnesian limestones, limited to this age; but they are eminently characteristic of it. To produce them it is required that water should bring forth from the earth’s crust large quantities of metallic salts, and that these should come into contact with vegetable matters in limited submerged areas, so that sulphates of the metals should be deoxidized into sulphides. A somewhat different chemical process, as already explained, was very active in the coal period, and was connected with the production of its iron ores; but, in the Permian, profound and extensive fractures opened up the way to the deep seats of copper andother metals, to enrich the copper slate and its associated beds. It is also to be observed that the alkaline springs and waters which contain carbonate of soda, very frequently hold various metallic salts; so that where, owing to the action of such waters, magnesian limestone is being deposited, we may expect also to find various metallic ores.
[V]Hunt, “Silliman’s Journal,†1859 and 1863.
[V]Hunt, “Silliman’s Journal,†1859 and 1863.
Let us sum up shortly this history. We have foldings of the earth’s crust, causing volcanic action and producing limited and shallow sea-basins, and at the same time causing the evolution of alkaline and metalliferous springs. The union of these mechanical and chemical causes explains at once the conglomerates, the red sandstones, the trap rocks, the magnesian limestones, the gypsum, and the metalliferous beds of the Permian. The same considerations explain the occurrence of similar deposits in various other ages of the earth’s history; though, perhaps, in none of these were they so general over the Northern Hemisphere as in the Permian.
From the size of the stones in some of the Permian conglomerates, and their scratched surfaces, it has been supposed that there were in this period, on the margins of the continents, mountains sufficiently high to have snow-clad summits, and to send down glaciers, bearing rocks and stones to the sea, on which may have floated, as now in the North Atlantic, huge icebergs.[W]This would be quite in accordance with thegreat elevation of land which we know actually occurred; and the existence of snow-clad mountains along with volcanoes would be a union of fire and frost of which we still have examples in some parts of the earth’s surface, and this in proximity to forms of vegetable life very similar to those which we know existed in the Permian.
[W]Ramsay has ably illustrated this in the Permian conglomerates of England.
[W]Ramsay has ably illustrated this in the Permian conglomerates of England.
With the exception of a few small and worthless beds in Russia, the Permian is not known to contain any coal. The great swamps of the coal period had disappeared. In part they were raised up into rugged mountains. In part they were sunken into shallow sea areas. Thus, while there was much dry land, there was little opportunity for coal production, or for the existence of those rank forests which had accumulated so much vegetable matter in the Carboniferous age. In like manner the fauna of the Permian waters is poor. According to Murchison, the Permian limestones of Europe have afforded little more than one-third as many species of fossils as the older Carboniferous. The fossils themselves also have a stunted and depauperated aspect, indicating conditions of existence unfavourable to them. This is curiously seen in contrasting Davidson’s beautiful illustrations of the British Lamp-shells of the Permian and Carboniferous periods. Another illustrative fact is the exceptionally small size of the fossils even in limestones of the Carboniferous period when these are associated with gypsum, red sandstones, and magnesian minerals; as, for instance, those of some parts ofNova Scotia. In truth, the peculiar chemical conditions conducive to the production of magnesian limestones and gypsum are not favourable to animal life, though no doubt compatible with its existence. Hence the rich fauna of the Carboniferous seas died out in the Permian, and was not renewed; and the Atlantic areas of the period are unknown to us. They were, however, probably very deep and abrupt in slope, and not rich in life. This would be especially the case if they were desolated by cold ice-laden currents.
During the Permian period there was in each of our continental areas a somewhat extensive inland sea. That of Western America was a northward extension of the Gulf of Mexico. That of Eastern Europe was a northward extension of the Euxine and Caspian. In both, the deposits formed were very similar—magnesian limestones, sandstones, conglomerates, marls, and gypsums. In both, these alternate in such a way as to show that there were frequent oscillations of level, producing alternately shallow and deep waters. In both, the animal remains are of similar species, in many instances even identical. But in the areas intervening between these sea basins and the Atlantic the conditions were somewhat different. In Europe the land was interrupted by considerable water areas, not lakes, but inland sea basins; sometimes probably connected with the open sea, sometimes isolated. In these were, deposited the magnesian limestone and its associated beds in England, and the Zechstein and Rotheliegende with their associates in Germany. InAmerica the case was different. In all that immense area which extends from the Atlantic to the plains east of the Mississippi, we know no Permian rocks, unless a portion of those reckoned as Upper Carboniferous, or Permo-carboniferous in Northern Nova Scotia, and Prince Edward Island, should be included in this group. If such existed, they may possibly be covered up in some places by more modern deposits, or may have been swept away by denudation in the intervening ages; but even in these cases we should expect to find some visible remains of them. Their entire absence would seem to indicate that a vast, and in many parts rugged and elevated, continent represented North America in the Permian period. Yet if so, that great continent is an absolute blank to us. We know nothing of the animals or plants which may have lived on it, nor do we even know with certainty that it had active volcanoes, or snow-clad mountains sending down glaciers.
Our picture of the Permian World has not been inviting, yet in many respects it was a world more like that in which we live than was any previous one. It certainly presented more of variety and grand physical features than any of the previous ages; and we might have expected that on its wide and varied continents some new and higher forms of life would have been introduced. But it seems rather to have been intended to blot out the old Palæozoic life, as an arrangement which had been fully tried and served its end, preparatory to a new beginning in the succeeding age.
Still the Permian has some life features of its own, and we must now turn to these. The first is the occurrence here, not only of the representatives of the great Batrachians of the coal period, but of true reptiles, acknowledged to be such by all naturalists. The animals of the genusProtorosaurus, found in rocks of this age both in England and Germany, were highly-organised lizards, having socketed teeth like those of crocodiles, and well-developed limbs, with long tails, perhaps adapted for swimming. They have, however, biconcave vertebras like the lizard-like animals of the coal already mentioned, which, indeed, in their general form and appearance, they must have very closely resembled. The Protorosaurs were not of great size; but they must have been creatures of more stately gait than their Carboniferous predecessors, and they serve to connect them with the new and greater reptiles of the next period.
Another interesting feature of the Permian is its flora, which, in so far as known, is closely related to that of the coal period, though the species are regarded as different; some of the forms, however, being so similar as to be possibly identical. In a picture of the Permian flora we should perhaps place in the foreground the tree-ferns, which seem to have been very abundant, and furnished with dense clusters of aërial roots to enable them to withstand the storms of this boisterous age. The tree-ferns, now so plentiful in the southern hemisphere, should be regarded as one of the permanent vegetable institutions of our world—thoseof the far-back Lower Devonian, and of all intervening ages up to the present day, having been very much alike. The great reed-like Calamites have had a different fate. In their grander forms they make their last appearance in the Permian, where they culminate in great ribbed stems, sometimes nearly a foot in diameter, and probably of immense height. The brakes of these huge mares'-tails which overspread the lower levels of the Permian in Europe, would have been to us what the hayfields of Brobdingnag were to Gulliver. The Lepidodendra also swarmed, though in diminished force; but the great Sigillarise of the coal are absent, or only doubtfully present. Another feature of the Permian woods was the presence of many pine-trees different in aspect from those of the coal period. Some of these are remarkable for their slender and delicate branches and foliage.[X]Others have more dense and scaly leaves, and thick short cones.[Y]Both of these styles of pines are regarded as distinct, on the one hand, from those of the coal formation, and on the other from those of the succeeding Trias. I have shown, however, many years ago, that in the upper coal formation of America there are branches of pine-trees very similar to Walchia, and, on the other hand, the Permian pines are not very remote in form and structure from some of their modern relations. The pines of the first of the above-mentioned types (Walchia) may indeed be regarded as allies of the modern Araucarian pines of the southern hemisphere,and of the old conifers of the Carboniferous. Those of the second type (Ulmannia) may be referred to the same group with the magnificent Sequoias or Redwoods of California.
[X]Walchia.
[X]Walchia.
[Y]Ulmannia.
[Y]Ulmannia.
It is a curious indication of the doubts which sometimes rest on fossil botany, that some of the branches of these Permian pines, when imperfectly preserved, have been described as sea-weeds, while others have been regarded as club-mosses. It is true, however, that the resemblance of some of them to the latter class of plants is very great; and were there no older pines, we might be pardoned for imagining in the Permian a transition from club-mosses to pines. Unfortunately, however, we have pines nearly as far back in geological time as we have club-mosses; and, in so far as we know, no more like the latter than are the pines of the Permian, so that this connection fails us. In all probability the Permian forests are much less perfectly known to us than those of the coal period, so that we can scarcely make comparisons. It appears certain, however, that the Permian plants are much more closely related to the coal plants than to those of the next succeeding epoch, and that they are not so much a transition from the one to the other as the finishing of the older period to make way for the newer.
But we must reserve some space for a few remarks on the progress and termination of the Palæozoic as a whole, and on the place which it occupies in the world’s history. These remarks we may group around the central question, What is the meaning or value ofan age or period in the history of the earth, as these terms are understood by geologists? In most geological books terms referring to time are employed very loosely. Period, epoch, age, system, series, formation, and similar terms, are used or abused in a manner which only the indefiniteness of our conceptions can excuse.
A great American geologist[Z]has made an attempt to remedy this by attaching definite values to such words as those above mentioned. In his system the greater divisions of the history were “Times:†thus the Eozoic was a time and the Palæozoic was a time. The larger divisions of the times are “Ages:†thus the Lower and Upper Silurian, the Devonian, and the Carboniferous are ages, which are equivalent in the main to what English geologists call Systems of Formations. Ages, again, may be divided into “Periods:†thus, in the Upper Silurian, the Ludlow of England, or Lower Helderberg of America, would constitute a period. These periods may again be divided into “Epochs,†which are equivalent to what English geologists call Formations, a term referring not directly to the time elapsed, but to the work done in it. Now this mode of regarding geological time introduces many thoughts as to the nature of our chronology and matters relating to it. A “time†in geology is an extremely long time, and the Palæozoic was perhaps the longest of the whole. By the close of the Palæozoic nine-tenths of all the rocks we knowin the earth’s crust were formed. At least this is the case if we reckon mere thickness. For aught that we know, the Eozoic time may have accumulated as much rock as the Palæozoic; but leaving this out of the question, the rocks of the Palæozoic are vastly thicker than those of the Mesozoic and Cainozoic united. Thus the earth’s history seems to have dragged slowly in its earlier stages, or to have become accelerated in its latter times. To place it in another point of view, life changes were greater relatively to merely physical changes in the later than in the earlier times.
[Z]Dana.
[Z]Dana.
The same law seems to have obtained within the Palæozoic time itself. Its older periods, as the Cambrian and Lower Silurian, present immense thicknesses of rock with little changes in life. Its later periods, the Carboniferous and Permian, have greater life-revolution relatively to less thickness of deposits. This again was evidently related to the growing complexity and variety of geographical conditions, which went on increasing all the way up to the Permian, when they attained their maximum for the Palæozoic time.
Again, each age was signalized, over the two great continental plateaus, by a like series of elevations and depressions. We may regard the Siluro-Cambrian, the Silurian, the Devonian, the Carboniferous, and Permian, as each of them a distinct age. Each of these began with physical disturbances and coarse shallow-water deposits. In each this was succeeded by subsidenceand by a sea area tenanted by corals and shell-fishes. In each case this was followed by a re-elevation, leading to a second but slow and partial subsidence, to be followed by the great re-elevation preparatory to the next period. Thus we have throughout the Palæozoic a series of cycles of physical change which we may liken to gigantic pulsations of the thick hide of mother earth. The final catastrophe of the Permian collapse was quite different in kind from these pulsations as well as much greater in degree. The Cambrian or Primordial does not apparently present a perfect cycle of this kind, perhaps because in that early period the continental plateaus were not yet definitely formed, and thus its beds are rather portions of the general oceanic deposit. In this respect it is analogous in geological relations to the chalk formation of a later age, though very different in material. The Cambrian may, however, yet vindicate its claim to be regarded as a definite cycle: and the recent discoveries of Hicks in North Wales, have proved the existence of a rich marine fauna far down in the lower part of this system. It is also to be observed that the peculiar character of the Cambrian, as an oceanic bottom rather than a continental plateau, has formed an important element in the difficulties in establishing it as a distinct group; just as a similar difficulty in the case of the chalk has led to a recent controversy about the continuance of the conditions of that period into modern times.
But in each of the great successive heaves or pulsations of the Palæozoic earth, there was a growing balance in favour of the land as compared with the water. In each successive movement more and more elevated land was thrown up, until the Permian flexures finally fixed the forms of our continents. This may be made evident to the eye in a series of curves, as in the following diagram, in which I have endeavoured to show the recurrence of similar conditions in each of the great periods of the Palæozoic, and thus their equivalency to each other as cycles of the earth’s history.
There is thus in these great continental changes a law of recurrence and a law of progress; but as to the efficient causes of the phenomena we have as yet little information. It seems that original fractures and shrinkages of the crust were concerned in forming the continental areas at first. Once formed, unequal burdening of the earth’s still plastic mass by deposits of sediment in the waters, and unequal expansion by the heating and crystallization of immense thicknesses of the sediment, may have done the rest; but the results are surprisingly regular to be produced by such causes. We shall also find that similar cycles can be observed in the geological ages which succeeded the Palæozoic. Geologists have hitherto for the most part been content to assign these movements to causes purely terrestrial; but it is difficult to avoid the suspicion that the succession of geological cycles must have depended on some recurring astronomical force tending to cause the weaker parts of the earth’s crust alternately to rise and subside at regular intervals of time. Herschel, Adhémar, and more recently Croll, have directed attention to astronomical cycles supposed to have important influences on the temperature of the earth. Whether these or other changes may have acted on the equilibrium of its crust is a question well worthy of attention, as its solution might give us an astronomical measure of geological time. This question, however, the geologist must refer to the astronomer.
CURVES SHOWING THE SUCCESSIVE ELEVATIONS AND DEPRESSIONSOF THE AMERICAN CONTINENT, IN SEVERAL CYCLES OF THE PALÆOZOIC TIME.
CURVES SHOWING THE SUCCESSIVE ELEVATIONS AND DEPRESSIONSOF THE AMERICAN CONTINENT, IN SEVERAL CYCLES OF THE PALÆOZOIC TIME.
There are two notes of caution which must here be given to the reader. First, it is not intended to apply the doctrine of continental oscillations to the great oceanic areas. Whether they became shallower or deeper, their conditions would be different from those which occurred in the great shallow plateaus, and these conditions are little known to us. Further, throughout the Palæozoic period, the oscillations do not seem to have been sufficient to reverse the positions of the oceans and continents. Secondly, it is not meant to affirm that the great Permian plications were so widespread in their effects as to produce a universal destruction of life. On the contrary, after they had occurred, remnants of the Carboniferous fauna still flourished even on the surfaces of the continents, and possibly the inhabitants of the deep ocean were little affected by these great movements. True it is that the life of the Palæozoic terminates with the Permian, but not by a great and cataclysmic overthrow.
We know something at least of the general laws ofcontinental oscillations during the Palæozoic. Do we know anything of law in the case of life? The question raises so many and diverse considerations that it seems vain to treat it in the end of a chapter; still we must try to outline it with at least a few touches.
First, then, the life of the Palæozoic was remarkable, as compared with that of the present world, in presenting a great prevalence of animals and plants of synthetic types, as they are called by Agassiz that is, of creatures comprehending in one the properties of several groups which were to exist as distinct in the future. Such types are also sometimes called embryonic, because the young of animals and plants often show these comprehensive features. Such types were the old corals, presenting points of alliance with two distinct groups now widely separated; the old Trilobites, half king-crabs and half Isopods; the Amphibians of the coal, part fish, part newt, and part crocodile; the Sigillariæ, part club-mosses and part pines; the Orthoceratites, half nautili and half cuttle-fishes. I proposed, in the illustration in a former article, to give a restoration of one of the curious creatures last mentioned, the Orthoceratites; but on attempting this, with the idea that, as usually supposed, they were straight Nautili, it appeared that the narrow aperture, the small outer chamber, the thin outer wall, often apparently only membranous, and the large siphuncle, would scarcely admit of this; and I finished by representing it as something like a modern squid; perhaps wrongly, but it was evidently somewhere between them and the Nautili.
Secondly, these synthetic types often belonged to the upper part of a lower group, or to the lower part of an upper group. Hence in one point of view they may be regarded as of high grade, in another as of low grade, and they are often large in size or in vegetative development.[AA]From this law have arisen many controversies about the grade and classification of the Palæozoic animals and plants.
[AA]It seems, indeed, as if the new synthetic forms intermediate between great groups were often large in size, while the new special types came in as small species. There are some remarkable cases of this in the plant world; though here we have such examples as the pines and tree-ferns continuing almost unchanged from an early Palæozoic period until now.
[AA]It seems, indeed, as if the new synthetic forms intermediate between great groups were often large in size, while the new special types came in as small species. There are some remarkable cases of this in the plant world; though here we have such examples as the pines and tree-ferns continuing almost unchanged from an early Palæozoic period until now.
Thirdly, extinctions of species occur in every great oscillation of the continental areas, but some species reappear after such oscillations, and the same genus often recurs under new specific forms. Families and orders, such as those of the Trilobites and Orthoceratites, appear to have a grand and gradual culmination and decadence extending over several successive periods, or even over the whole stretch of the Palæozoic time. Toward the close of the Palæozoic, while all the species disappear, some whole families and orders are altogether dropped, and, being chiefly synthetic groups, are replaced by more specialised types, some of which, however, make small beginnings alongside of the more general types which are passing away. Our diagram (page 183) illustrates these points.
DIAGRAM SHOWING THE ADVANCE, CULMINATION,AND DECADENCE OF SOME OF THE LEADING TYPES OF PALÆOZOIC LIFE.
DIAGRAM SHOWING THE ADVANCE, CULMINATION,AND DECADENCE OF SOME OF THE LEADING TYPES OF PALÆOZOIC LIFE.
Fourthly, the progress in animal life in the Palæozoic related chiefly to the lower or invertebrate tribes, and to the two lower classes of the vertebrates. The oldest animal known to us is not only a creature of the simplest structure, but also a representative of the great and on the whole low type of animal life, in which the parts are arranged around a central axis, and not on that plan of bilateral symmetry which constitutes one great leading distinction of the higher animals. With the Cambrian, bilateral animals abound and belong to two very distinct lines of progress—the one, the Mollusks, showing the nutritive organs more fully developed—the other, the Articulates, having the organs of sense and of locomotion more fully organized. These three great types shared the world among them throughout the earlier Palæozoic time, and only in its later ages began to be dominated by the higher types of fishes and reptiles. In so far as we know, it remained for the Mesozoic to introduce the birds and mammals. In plant life the changes were less marked, though here also there is progress—land plants appear to begin, not with the lowest forms, but with the highest types of the lower of the two great series into which the vegetable kingdom is divided. From this they rapidly rise to a full development of the lowest type of the flowering plants, the pines and their allies, and there the progress ceases; for the known representatives of the higher plants are extremely few and apparently of little importance.
Fifthly, in general the history tells of a continued series of alternate victories and defeats of the species that had their birth on the land and in the shallowwaters, and those which were born in the ocean depths, The former spread themselves widely after every upheaval, and then by every subsidence were driven back to their mountain fastnesses. The latter perished from the continental plateaus at every upheaval, but climbed again in new hordes and reoccupied the ground after every subsidence. But just as in human history every victory or defeat urges on the progress of events, and develops the great plan of God’s providence in the elevation of man; so here every succeeding change brings in new and higher actors on the stage, and the scheme of creation moves on in a grand and steady progress towards the more varied and elevated life of the Modern World.
But, after all, how little do we know of these laws, which are only beginning to dawn on the minds of naturalists; and which the imperfections of our classification and nomenclature, and the defects in our knowledge of fossil species, render very dim and uncertain. All that appears settled is the existence of a definite plan, working over long ages, and connected with the most remarkable correlation of physical and organic change: going on with regular march throughout the Palæozoic, and then brought to a close to make room for another great succession. This following Mesozoic time must next engage our attention.
We may close for the present with presenting to the eye in tabular form the periods over which we have passed. The table on page 187, and the diagram (page 179), mutually illustrate each other;and it will be seen that each age constitutes cycle, similar in its leading features to the other cycles, while each is distinguished by some important fact in relation to the introduction of living beings. In this table I have, with Mr. Hull,[AB]for simplicity, arranged the formations of each age under three periods—an older, middle, and newer. Of these, however, the last or newest is in each case so important and varied as to merit division into two, in the manner which I have suggested in previous publications for the Palæozoic rocks of North America.[AC]Under each period I have endeavoured to give some characteristic example from Europe and America, except where, as in the case of the coal formation, the same names are used on both continents. Such a table as this, it must be observed, is only tentative, and may admit of important modifications. The Laurentian more especially may admit of division into several ages; and a separate age may be found to intervene between it and the Cambrian. The reader will please observe that this table refers to the changes on the continental plateaus; and that on both of these each age was introduced with shallow water and usually coarse deposits, succeeded by deeper water and finer beds, usually limestones, and these by a mixed formation returning to the shallow water and coarse deposits of the older period of the age. This last kind of deposition culminates in the great swamps of the coal formation.
[AB]“Quarterly Journal of Science,†July, 1869.
[AB]“Quarterly Journal of Science,†July, 1869.
[AC]“Acadian Geology,†p. 137.
[AC]“Acadian Geology,†p. 137.
Condensed Tabular View Palaeozoic and EozoicClick on table to view larger version.
CHAPTER VIII.
THE MESOZOIC AGES.
Physically, the transition from the Permian to the Trias is easy. In the domain of life a great gulf lies between; and the geologist whose mind is filled with the forms of the Palæozoic period, on rising into the next succeeding beds, feels himself a sort of Rip Van Winkle, who has slept a hundred years and awakes in a new world. The geography of our continents seems indeed to have changed little from the time of the Permian to that next succeeding group which all geologists recognise as the beginning of the Mesozoic or Middle Age of the world’s history, the Triassic period. Where best developed, as in Germany, it gives us the usual threefold series, conglomerates and sandstones below, a shelly limestone in the middle, and sandstones and marls above. Curiously enough, the Germans, recognising this tripartite character here more distinctly than in their other formations, named this theTriasor triple group, a name which it still retains, though as we have seen it is by no means the earliest of the triple groups of strata. In England, where the middle limestone is absent, it is a “New Red Sandstone,†and the same name may be appropriately extended to Eastern America, where bright red sandstones are a characteristicfeature. In the Trias, as in the Permian, the continents of the northern hemisphere presented large land areas, and there were lagoons and landlocked seas in which gypsum, magnesian limestones, and rock salt were thrown down, a very eminent example of which is afforded by the great salt deposits of Cheshire. There were also tremendous outbursts of igneous activity along the margins of the continents, more especially in Eastern America. But with all this there was a rich land flora and a wonderful exuberance of new animal life on the land; and in places there were even swamps in which pure and valuable beds of coal, comparable with those of the old coal formation, were deposited.
The triple division of the Trias as a cycle of the earth’s history, and its local imperfection, are well seen in the European development of the group, thus:—
The Trias is succeeded by a great and complex system of formations, usually known as the Jurassic, from its admirable development and exposure in therange of the Jura; but which the English geologists often name the “Oolitic,†from the occurrence in it of beds of Oolite or roe-stone. This rock, of which the beautiful cream-coloured limestone of Bath is an illustration, consists of an infinity of little spheres, like seeds or the roe of a fish. Under the microscope these are seen to present concentric layers, each with a radiating fibrous: structure, and often to have a minute grain of sand or fragment of shell in the centre. They are, in short, miniature concretions, produced by the aggregation of the calcareous matter around centres, by a process of molecular attraction to which fine sediments, and especially those containing much lime, are very prone. This style of limestone is very abundant in the Jurassic system, but it is not confined to it. I have seen very perfect Oolites in the Silurian and the Carboniferous. The Jurassic series, as developed in England, may be divided into three triplets or cycles of beds, in the following way: