CHAPTER XXII.

Fig. 95.—Parallax in Declination of 61 Cygni.Fig. 95.—Parallax in Declination of 61 Cygni.

Perhaps it will be thought that in many cases these errors appear to have attained very undesirable dimensions. Let us, therefore, hasten to say that it was precisely for the purposeof setting forth these errors that this diagram has been shown; we have to exhibit the weakness of the case no less than its strength. The errors of the observations are not, however, intrinsically so great as might at first sight be imagined. To perceive this, it is only necessary to interpret the scale on which this diagram has been drawn by comparison with familiar standards. The distance from the very top of the curve to the horizontal line denotes an angle of only four-tenths of a second. This is about the apparent diameter of a penny-piece at a distance often miles! We can now appraise the true magnitude of the errors which have been made. It will be noticed that no one of the dots is distant from the curve by much more than half of the height of the curve. It thus appears that the greatest error in the whole series of observations amounts to but two or three tenths of a second. This is equivalent to our having pointed the telescope to the upper edge of a penny-piece fifteen or twenty miles off, instead of to the lower edge. This is not a great blunder. A rifle team whose errors in pointing were more than a hundred times as great might still easily win every prize at Bisley.

We have entered into the history of 61 Cygni with some detail, because it is the star whose distance has been most studied. We do not say that 61 Cygni is the nearest of all the stars; it would, indeed, be very rash to assert that any particular star was the nearest of all the countless millions in the heavenly host. We certainly know one star which seems nearer than 61 Cygni; it lies in one of the southern constellations, and its name is α Centauri. This star is, indeed, of memorable interest in the history of the subject. Its parallax was first determined at the Cape of Good Hope by Henderson; subsequent researches have confirmed his observations, and the elaborate investigations of Dr. Gill have proved that the parallax of this star is about three-quarters of a second, so that it is only two-thirds of the distance of 61 Cygni.

61 Cygni arrested our attention, in the first instance, by the circumstance that it had the large proper motion of five seconds annually. We have also ascertained that the annualparallax is about half a second. The combination of these two statements leads to a result of considerable interest. It teaches us that 61 Cygni must each year traverse a distance of not less than ten times the radius of the earth's orbit. Translating this into ordinary figures, we learn that this star must travel nine hundred and twenty million miles per annum. It must move between two and three million miles each day, but this can only be accomplished by maintaining the prodigious velocity of thirty miles per second. There seems to be no escape from this conclusion. The facts which we have described, and which are now sufficiently well established, are inconsistent with the supposition that the velocity of 61 Cygni is less than thirty miles per second; the velocity may be greater, but less it cannot be.

For the last hundred and fifty years we know that 61 Cygni has been moving in the same direction and with the same velocity. Prior to the existence of the telescope we have no observation to guide us; we cannot, therefore, be absolutely certain as to the earlier history of this star, yet it is only reasonable to suppose that 61 Cygni has been moving from remote antiquity with a velocity comparable with that it has at present. If disturbing influences were entirely absent, there could be no trace of doubt about the matter.Somedisturbing influence, however, there must be; the only question is whether that disturbing influence is sufficient to modify seriously the assumption we have made. A powerful disturbing influence might greatly alter the velocity of the star; it might deflect the star from its rectilinear course; it might even force the star to move around a closed orbit. We do not, however, believe that any disturbing influence of this magnitude need be contemplated, and there can be no reasonable doubt that 61 Cygni moves at present in a path very nearly straight, and with a velocity very nearly uniform.

As the distance of 61 Cygni from the sun is forty billions of miles, and its velocity is thirty miles a second, it is easy to find how long the star would take to accomplish a journey equal to its distance from the sun. The time required will be about 40,000 years. In the last 400,000 years61 Cygni will have moved over a distance ten times as great as its present distance from the sun, whatever be the direction of motion. This star must therefore have been about ten times as far from the earth 400,000 years ago as it is at present. Though this epoch is incredibly more remote than any historical record, it is perhaps not incomparable with the duration of the human race; while compared with the vast lapse of geological time, such periods seem trivial and insignificant. Geologists have long ago repudiated mere thousands of years; they now claim millions, and many millions of years, for the performance of geological phenomena. If the earth has existed for the millions of years which geologists assert, it becomes reasonable for astronomers to speculate on the phenomena which have transpired in the heavens in the lapse of similar ages. By the aid of our knowledge of star distances, combined with an assumed velocity of thirty miles per second, we can make the attempt to peer back into the remote past, and show how great are the changes which our universe seems to have undergone.

In a million years 61 Cygni will apparently have moved through a distance which is twenty-five times as great as its present distance from the sun. Whatever be the direction in which 61 Cygni is moving—whether it be towards the earth or from the earth, to the right or to the left, it must have been about twenty-five times as far off a million years ago as it is at present; but even at its present distance 61 Cygni is a small star; were it ten times as far it could only be seen with a good telescope; were it twenty-five times as far it would barely be a visible point in our greatest telescopes.

The conclusions arrived at with regard to 61 Cygni may be applied with varying degrees of emphasis to other stars. We are thus led to the conclusion that many of the stars with which the heavens are strewn are apparently in slow motion. But this motion though apparently slow may really be very rapid. When standing on the sea-shore, and looking at a steamer on the distant horizon, we can hardly notice that the steamer is moving. It is true that by looking again in a few minutes we can detect a change in its place; butthe motion of the steamer seems slow. Yet if we were near the steamer we would find that it was rushing along at the rate of many miles an hour. It is the distance which causes the illusion. So it is with the stars: they seem to move slowly because they are very distant, but were we near them, we could see that in the majority of cases their motions are a thousand times as fast as the quickest steamer that ever ploughed the ocean.

It thus appears that the permanence of the sidereal heavens, and the fixity of the constellations in their relative positions, are only ephemeral. When we rise to the contemplation of such vast periods of time as the researches of geology disclose, the durability of the constellations vanishes! In the lapse of those stupendous ages stars and constellations gradually dissolve from view, to be replaced by others of no greater permanence.

It not unfrequently happens that a parallax research proves abortive. The labour has been finished, the observations are reduced and discussed, and yet no value of the parallax can be obtained. The distance of the star is so vast that our base-line, although it is nearly two hundred millions of miles long, is too short to bear any appreciable ratio to the distance of the star. Even from such failures, however, information may often be drawn.

Let me illustrate this by an account derived from my own experience at Dunsink. We have already mentioned that on the 24th November, 1876, a well-known astronomer—Dr. Schmidt, of Athens—noticed a new bright star of the third magnitude in the constellation Cygnus. On the 20th of November Nova Cygni was invisible. Whether it first burst forth on the 21st, 22nd, or 23rd no one can tell; but on the 24th it was discovered. Its brilliancy even then seemed to be waning; so, presumably, it was brightest at some moment between the 20th and 24th of November. The outbreak must thus have been comparatively sudden, and we know of no cause which would account for such a phenomenon more simply than a gigantic collision. The decline in the brilliancy was much more tardy than its growth, andmore than a fortnight passed before the star relapsed into insignificance—two or three days (or less) for the rise, two or three weeks for the fall. Yet even two or three weeks was a short time in which to extinguish so mighty a conflagration. It is comparatively easy to suggest an explanation of the sudden outbreak; it is not equally easy to understand how it can have been subdued in a few weeks. A good-sized iron casting in one of our foundries takes nearly as much time to cool as sufficed to abate the celestial fires in Nova Cygni!

On this ground it seemed not unreasonable to suppose that perhaps Nova Cygni was not really a very extensive conflagration. But, if such were the case, the star must have been comparativelynearto the earth, since it presented so brilliant a spectacle and attracted so much attention. It therefore appeared a plausible object for a parallax research; and consequently a series of observations were made some years ago at Dunsink. I was at the time too much engaged with other work to devote very much labour to a research which might, after all, only prove illusory. I simply made a sufficient number of micrometric measurements to test whether alargeparallax existed. It has been already pointed out how each star appears to describe a minute parallactic ellipse, in consequence of the annual motion of the earth, and by measurement of this ellipse the parallax—and therefore the distance—of the star can be determined. In ordinary circumstances, when the parallax of a star is being investigated, it is necessary to measure the position of the star in its ellipse on many different occasions, distributed over a period of at least an entire year. The method we adopted was much less laborious. It was sufficiently accurate to test whether or not Nova Cygni had alargeparallax, though it might not have been delicate enough to disclose a small parallax. At a certain date, which can be readily computed, the star is at one end of the parallactic ellipse, and six months later the star is at the other end. By choosing suitable times in the year for our observations, we can measure the star in those two positions when it is most deranged by parallax.It was by observations of this kind that I sought to detect the parallax of Nova Cygni. Its distance from a neighbouring star was carefully measured by the micrometer at the two seasons when, if parallax existed, those distances should show their greatest discrepancy; but no certain difference between these distances could be detected. The observations, therefore, failed to reveal the existence of a parallactic ellipse—or, in other words, the distance of Nova Cygni was too great to be measured by observations of this kind.

It is certain that if Nova Cygni had been one of the nearest stars these observations would not have been abortive. We are therefore entitled to believe that Nova Cygni must be at least 20,000,000,000,000 miles from the solar system; and the suggestion that the brilliant outburst was of small dimensions must, it seems, be abandoned. The intrinsic brightness of Nova Cygni, when at its best, cannot have been greatly if at all inferior to the brilliancy of our sun himself. If the sun were withdrawn from us to the distance of Nova Cygni, it would seemingly have dwindled down to an object not more brilliant than the variable star. How the lustre of such a stupendous object declined so rapidly remains, therefore, a mystery not easy to explain. Have we not said that the outbreak of brilliancy in this star occurred between the 20th and the 24th of November, 1876? It would be more correct to say that the tidings of that outbreak reached our system at the time referred to. The real outbreak must have taken place at least three years previously. Indeed, at the time that the star excited such commotion in the astronomical world here, it had already relapsed again into insignificance.

In connection with the subject of the present chapter we have to consider a great problem which was proposed by Sir William Herschel. He saw that the stars were animated by proper motion; he saw also that the sun is a star, one of the countless host of heaven, and he was therefore led to propound the stupendous question as to whether the sun, like the other stars which are its peers, was also in motion. Consider all that this great question involves. The sun hasaround it a retinue of planets and their attendant satellites, the comets, and a host of smaller bodies. The question is, whether all this superb system is revolving around the sunat restin the middle, or whether the whole system—sun, planets, and all—is not moving on bodily through space.

Herschel was the first to solve this noble problem; he discovered that our sun and the splendid retinue by which it is attended are moving in space. He not only discovered this, but he ascertained the direction in which the system was moving, as well as the approximate velocity with which that movement was probably performed. It has been shown that the sun and his system is now hastening towards a point of the heavens near the constellation Lyra. The velocity with which the motion is performed corresponds to the magnitude of the system; quicker than the swiftest rifle-bullet that was ever fired, the sun, bearing with it the earth and all the other planets, is now sweeping onwards. We on the earth participate in that motion. Every half hour we are something like ten thousand miles nearer to the constellation of Lyra than we should have been if the solar system were not animated by this motion. As we are proceeding at this stupendous rate towards Lyra, it might at first be supposed that we ought soon to get there; but the distances of the stars in that neighbourhood seem not less than those of the stars elsewhere, and we may be certain that the sun and his system must travel at the present rate for far more than a million years before we have crossed the abyss between our present position and the frontiers of Lyra. It must, however, be acknowledged that our estimate of the actualspeedwith which our solar system is travelling is exceedingly uncertain, but this does not in the least affect the fact that we are moving in the direction first approximately indicated by Herschel (seeChapter XXIII.).

It remains to explain the method of reasoning which Herschel adopted, by which he was able to make this great discovery. It may sound strange to hear that the detection of the motion of the sun was not made by looking at the sun; all the observations of the luminary itself with all the telescopes in the world would never tell us of that motion,for the simple reason that the earth, whence our observations must be made, participates in it. A passenger in the cabin of a ship usually becomes aware that the ship is moving by the roughness of the sea; but if the sea be perfectly calm, then, though the tables and chairs in the cabin are moving as rapidly as the ship, yet we do not see them moving, because we are also travelling with the ship. If we could not go out of the cabin, nor look through the windows, we would never know whether the ship was moving or at rest; nor could we have any idea as to the direction in which the ship was going, or as to the velocity with which that motion was performed.

The sun, with his attendant host of planets and satellites, may be likened to the ship. The planets may revolve around the sun just as the passengers may move about in the cabin, but as the passengers, by looking at objects on board, can never tell whither the ship is going, so we, by merely looking at the sun, or at the other planets or members of the solar system, can never tell if our system as a whole is in motion.

The conditions of a perfectly uniform movement along a perfectly calm sea are not often fulfilled on the waters with which we are acquainted, but the course of the sun and his system is untroubled by any disturbance, so that the majestic progress is conducted with absolute uniformity. We do not feel the motion; and as all the planets are travelling with us, we can get no information from them as to the common motion by which the whole system is animated.

The passengers are, however, at once apprised of the ship's motion when they go on deck, and when they look at the sea surrounding them. Let us suppose that their voyage is nearly accomplished, that the distant land appears in sight, and, as evening approaches, the harbour is discerned into which the ship is to enter. Let us suppose that the harbour has, as is often the case, a narrow entrance, and that its mouth is indicated by a lighthouse on each side. When the harbour is still a long way off, near the horizon, the two lights are seen close together, and now that the evening has closed in, and the night has become quite dark, these two lights are allthat remain visible. While the ship is still some miles from its destination the two lights seem close together, but as the distance decreases the two lights seem to open out; gradually the ship gets nearer, while the lights are still opening, till finally, when the ship enters the harbour, instead of the two lights being directly in front, as at the commencement, one of the lights is passed by on the right hand, while the other is similarly found on the left. If, then, we are to discover the motion of the solar system, we must, like the passenger, look at objects unconnected with our system, and learn our own motion by their apparent movements. But are there any objects in the heavens unconnected with our system? If all the stars were like the earth, merely the appendages of our sun, then we never could discover whether we were at rest or whether we were in motion: our system might be in a condition of absolute rest, or it might be hurrying on with an inconceivably great velocity, for anything we could tell to the contrary. But the stars do not belong to the system of our sun; they are, rather, suns themselves, and do not recognise the sway of our sun, as this earth is obliged to do. The stars will, therefore, act as the external objects by which we can test whether our system is voyaging through space.

With the stars as our beacons, what ought we to expect if our system be really in motion? Remember that when the ship was approaching the harbour the lights gradually opened out to the right and left. But the astronomer has also lights by which he can observe the navigation of that vast craft, our solar system, and these lights will indicate the path along which he is borne. If our solar system be in motion, we should expect to find that the stars were gradually spreading away from that point in the heavens towards which our motion tends. This is precisely what we do find. The stars in the constellations are gradually spreading away from a central point near the constellation of Lyra, and hence we infer that it is towards Lyra that the motion of the solar system is directed.

There is one great difficulty in the discussion of this question. Have we not had occasion to observe that the starsthemselves are in actual motion? It seems certain that every star, including the sun himself as a star, has each an individual motion of its own. The motions of the stars as we see them are partly apparent as well as partly real; they partly arise from the actual motion of each star and partly from the motion of the sun, in which we partake, and which produces an apparent motion of the star. How are these to be discriminated? Our telescopes and our observations can never effect this decomposition directly. To accomplish the analysis, Herschel resorted to certain geometrical methods. His materials at that time were but scanty, but in his hands they proved adequate, and he boldly announced his discovery of the movement of the solar system.

So astounding an announcement demanded the severest test which the most refined astronomical resources could suggest. There is a certain powerful and subtle method which astronomers use in the effort to interpret nature. Bishop Butler has said that probability is the guide of life. The proper motion of a star has to be decomposed into two parts, one real and the other apparent. When several stars are taken, we may conceive an infinite number of ways into which the movements of each star can be so decomposed. Each one of these conceivable divisions will have a certain element of probability in its favour. It is the business of the mathematician to determine the amount of that probability. The case, then, is as follows:—Among all the various systems one must be true. We cannot lay our finger for certain on the true one, but we can take that which has the highest degree of probability in its favour, and thus follow the precept of Butler to which we have already referred. A mathematician would describe his process by calling it the method of least squares. Since Herschel's discovery, one hundred years ago, many an astronomer using observations of hundreds of stars has attacked the same problem. Mathematicians have exhausted every refinement which the theory of probabilities can afford, but only to confirm the truth of that splendid theory which seems to have been one of the flashes of Herschel's genius.

Interesting Sidereal Objects—Stars not Scattered uniformly—Star Clusters—Their Varieties—The Cluster in Perseus—The Globular Cluster in Hercules—The Milky Way—A Cluster of Minute Stars—The Magellanic Clouds—Nebulæ distinct from Clouds—Number of known Nebulæ—The Constellation of Orion—The Position of the Great Nebula—The Wonderful Star θ Orionis—The Drawing of the Great Nebula in Lord Rosse's Telescope—Photographs of this Wonderful Object—The Great Nebula in Andromeda—The Annular Nebula in Lyra—Resemblance to Vortex Rings—Planetary Nebulæ—Drawings of Several Remarkable Nebulæ—Nature of Nebulæ—Spectra of Nebulæ—Their Distribution; the Milky Way.

Interesting Sidereal Objects—Stars not Scattered uniformly—Star Clusters—Their Varieties—The Cluster in Perseus—The Globular Cluster in Hercules—The Milky Way—A Cluster of Minute Stars—The Magellanic Clouds—Nebulæ distinct from Clouds—Number of known Nebulæ—The Constellation of Orion—The Position of the Great Nebula—The Wonderful Star θ Orionis—The Drawing of the Great Nebula in Lord Rosse's Telescope—Photographs of this Wonderful Object—The Great Nebula in Andromeda—The Annular Nebula in Lyra—Resemblance to Vortex Rings—Planetary Nebulæ—Drawings of Several Remarkable Nebulæ—Nature of Nebulæ—Spectra of Nebulæ—Their Distribution; the Milky Way.

Wehave already mentioned Saturn as one of the most glorious telescopic spectacles in the heavens. Setting aside the obvious claims of the sun and of the moon, there are, perhaps, two other objects visible from these latitudes which rival Saturn in the splendour and the interest of their telescopic picture. One of these objects is the star cluster in Hercules; the other is the great nebula in Orion. We take these objects as typical of the two great classes of bodies to be discussed in this chapter, under the head of Star Clusters and Nebulæ.

The stars, which to the number of several millions bespangle the sky, are not scattered uniformly. We can see that while some regions are comparatively barren, others contain stars in profusion. Sometimes we have a small group, like the Pleiades; sometimes we have a stupendous region of the heavens strewn over with stars, as in the Milky Way. Such objects are called star clusters. We find every variety in the clusters; sometimes the stars are remarkable for their brilliancy, sometimes for their enormous numbers, and sometimes for the remarkable form in which they are grouped. Sometimes a star cluster is adorned with brilliantly-coloured stars; sometimes the luminouspoints are so close together that their separate rays cannot he disentangled; sometimes the stars are so minute or so distant that the cluster is barely distinguishable from a nebula.

Of the clusters remarkable at once both for richness and brilliancy of the individual stars, we may mention the cluster in the Sword-handle of Perseus. The position of this object is marked onFig. 83, page 415. To the unaided eye a hazy spot is visible, which in the telescope expands into two clusters separated by a short distance. In each of them we have innumerable stars, crowded together so as to fill the field of view of the telescope. The splendour of this object may be appreciated when we reflect that each one of these stars is itself a brilliant sun, perhaps rivalling our own sun in lustre. There are, however, regions in the heavens near the Southern Cross, of course invisible from northern latitudes, in which parts of the Milky Way present a richer appearance even than the cluster in Perseus.

The most striking type of star cluster is well exhibited in the constellation of Hercules. In this case we have a group of minute stars apparently in a roughly globular form. Fig. 96 represents this object as seen in Lord Rosse's great telescope, and it shows three radiating streaks, in which the stars seem less numerous than elsewhere. It is estimated that this cluster must contain from 1,000 to 2,000 stars, all concentrated into an extremely small part of the heavens. Viewed in a very small telescope, this object resembles a nebula. The position of the cluster in Hercules is shown in a diagram previously given (Fig. 88, page 420). We have already referred to this glorious aggregation of stars as one of the three especially interesting objects in the heavens.

PLATE D. MILKY WAY NEAR MESSIER II.PLATE D.MILKY WAY NEAR MESSIER II.Photographed by E.E. Barnard, 29th June, 1892.

The Milky Way forms a girdle which, with more or less regularity, sweeps completely around the heavens; and when viewed with the telescope, is seen to consist of myriads of minute stars. In some places the stars are much more numerous than elsewhere. All these stars are incomparably more distant than the sun, which they surround, so it is evident that our sun and, of course, the system which attends him lie actually inside the Milky Way. It seems tempting to pursue the thought here suggested, and to reflect that the whole Milky Way may, after all, be merely a star cluster, comparable in size with some of the other star clusters which we see, and that, viewed from a remote point in space, the Milky Way would seem to be but one of the many clusters of stars containing our sun as an indistinguishable unit.

Fig. 96.—The Globular Cluster in Hercules.Fig. 96.—The Globular Cluster in Hercules.

In the southern hemisphere there are two immense masses which are conspicuously visible to the naked eye, and resemble detached portions of the Milky Way. They cannot be seen by observers in our latitude, and are known as the Magellanic clouds or the two nubeculæ. Their structure, as revealed to an observer using a powerful telescope, is of great complexity. Sir John Herschel, who made a special study of these remarkable objects, gives the following description of them: "Thegeneral ground of both consists of large tracts and patches of nebulosity in every stage of resolution, from light irresolvable, in a reflector of eighteen inches aperture, up to perfectly separated stars like the Milky Way, and clustering groups sufficiently insulated and condensed to come under the designation of irregular and in some cases pretty rich clusters. But besides these there are also nebulæ in abundance and globular clusters in every state of condensation." It can hardly be doubted that the two nubeculæ, which are, roughly speaking, round, or, rather, oval, are not formed accidentally by a vast number of very different objects being ranged at various distances along the same line of sight, but that they really represent two great systems of objects, widely different in constitution, which here are congregated in each other's neighbourhood, whereas they generally do not co-exist close to each other in the Milky Way, with which the mere naked-eye view would otherwise lead us to associate the Magellanic clouds.

When we direct a good telescope to the heavens, we shall occasionally meet with one of the remarkable celestial objects which are known as nebulæ. They are faint cloudy spots, or stains of light on the black background of the sky. They are nearly all invisible to the naked eye. These celestial objects must not for a moment be confounded with clouds, in the ordinary meaning of the word. The latter exist only suspended in the atmosphere, while nebulæ are immersed in the depths of space. Clouds shine by the light of the sun, which they reflect to us; nebulæ shine with no borrowed light; they are self-luminous. Clouds change from hour to hour; nebulæ do not change even from year to year. Clouds are far smaller than the earth; while the smallest nebula known to us is incomparably greater than the sun. Clouds are within a few miles of the earth; the nebulæ are almost inconceivably remote.

Immediately after Herschel and his sister had settled at Slough he commenced his review of the northern heavens in a systematic manner. For observations of this kind it is essential that the sky be free from cloud, while even the light of the moon is sufficient to obliterate the fainter andmore interesting objects. It was in the long and fine winter nights, when the stars were shining brilliantly and the pale path of the Milky Way extended across the heavens, that the labour was to be done. The telescope being directed to the heavens, the ordinary diurnal motion by which the sun and stars appear to rise and set carries the stars across the field of view in a majestic panorama. The stars enter slowly into the field of view, slowly move across it, and slowly leave it, to be again replaced by others. Thus the observer, by merely remaining passive at the eye-piece, sees one field after another pass before him, and is enabled to examine their contents. It follows, that even without moving the telescope a long narrow strip of the heavens is brought under review, and by moving the telescope slightly up and down the width of this strip can be suitably increased. On another night the telescope is brought into a different position, and another strip of the sky is examined; so that in the course of time the whole heavens can be carefully scrutinised.

Herschel stands at the eye-piece to watch the glorious procession of celestial objects. Close by, his sister Caroline sits at her desk, pen in hand, to take down the observations as they fall from her brother's lips. In front of her is a chronometer from which she can note the time, and a contrivance which indicates the altitude of the telescope, so that she can record the exact position of the object in connection with the description which her brother dictated. Such was the splendid scheme which this brother and sister had arranged to carry out as the object of their life-long devotion. The discoveries which Herschel was destined to make were to be reckoned not by tens or by hundreds, but by thousands. The records of these discoveries are to be found in the "Philosophical Transactions of the Royal Society," and they are among the richest treasures of those volumes. It was left to Sir John Herschel, the only son of Sir William, to complete his father's labour by repeating the survey of the northern heavens and extending it to the southern hemisphere. He undertook with this object a journey to theCape of Good Hope, and sojourned there for the years necessary to complete the great work.

Fig. 97.—The Constellation of Orion, showing the Position of the Great Nebula.Fig. 97.—The Constellation of Orion, showing the Position of the Great Nebula.

As the result of the gigantic labours thus inaugurated and continued by other observers, there are now about eight thousand nebulæ known to us, and with every improvement of the telescope fresh additions are being made to the list. They differ from one another as eight thousand pebbles selected at random on a sea-beach might differ—namely, in form, size, colour, and material—but yet, like the pebbles, bear a certain generic resemblance to each other. To describe this class of bodies in any detail would altogether exceed the limits of this chapter; we shall merely select a few of the nebulæ, choosing naturally those of the most remarkable character, and also those which are representatives of the different groups into which nebulæ may be divided.

PLATE XIV. THE GREAT NEBULA IN ORION.PLATE XIV.THE GREAT NEBULA IN ORION.

We have already stated that the great nebula in the constellation of Orion is one of the most interesting objects in the heavens. It is alike remarkable whether we consider its size or its brilliancy, the care with which it has been studied, or the success which has attended the efforts to learn something of its character. To find this object, we refer to Fig. 97 for the sketch of the chief stars in this constellation, where the letter A indicates the middle one of the three stars which form the sword-handle of Orion. Above the handle will be seen the three stars which form the well-known belt so conspicuous in the wintry sky. The starA, when viewed attentively with the unaided eye, presents a somewhat misty appearance. In the year 1618 Cysat directed a telescope to this star, and saw surrounding it a curious luminous haze, which proved to be the great nebula. Ever since his time this object has been diligently studied by many astronomers, so that very many observations have been made of the great nebula, and even whole volumes have been written which treat of nothing else. Any ordinary telescope will show the object to some extent, but the more powerful the telescope the more are the curious details revealed.

Fig. 98.—The Multiple star (θ Orionis) in the Great Nebula of Orion.Fig. 98.—The Multiple star (θ Orionis) in the Great Nebula of Orion.

In the first place, the object which we have denoted byA(θ Orionis, also called the trapezium of Orion) is in itself the most striking multiple star in the whole heavens. It consists really of six stars, represented in the next diagram (Fig. 98). These points are so close together that their commingled rays cannot be distinguished without a telescope. Four of them are, however, easily seen in quite small instruments, but the two smaller stars require telescopes of considerable power. And yet these stars are suns, comparable, it may be, with our sun in magnitude.

It is not a little remarkable that this unrivalled group of six suns should be surrounded by the renowned nebula; the nebula or the multiple star would, either of them alone, be of exceptional interest, and here we have a combination ofthe two. It seems impossible to resist drawing the conclusion that the multiple star really lies in the nebula, and not merely along the same line of vision. It would, indeed, seem to be at variance with all probability to suppose that the presentation of these two exceptional objects in the same field of view was merely accidental. If the multiple star be really in the nebula, then this object affords evidence that in one case at all events the distance of a nebula is a quantity of the same magnitude as the distance of a star. This is unhappily almost the entire extent of our knowledge of the distances of the nebulæ from the earth.

The great nebula of Orion surrounds the multiple star, and extends out to a vast distance into the neighbouring space. The dotted circle drawn around the star markedAin Fig. 97 represents approximately the extent of the nebula, as seen in a moderately good telescope. The nebula is of a faint bluish colour, impossible to represent in a drawing. Its brightness is much greater in some places than in others; the central parts are, generally speaking, the most brilliant, and the luminosity gradually fades away as the edge of the nebula is approached. In fact, we can hardly say that the nebula has any definite boundary, for with each increase of telescopic power faint new branches can be seen. There seems to be an empty space in the nebula immediately surrounding the multiple star, but this is merely an illusion, produced by the contrast of the brilliant light of the stars, as the spectroscopic examination of the nebula shows that the nebulous matter is continuous between the stars.

The plate of the great nebula in Orion which is here shown (Plate XIV.) represents, in a reduced form, the elaborate drawing of this object, which has been made with the Earl of Rosse's great reflecting telescope at Parsonstown.[40]A telescopic view of the nebula shows two hundred stars or more, scattered over its surface. It is not necessary to suppose that these stars are immersed in the substance of the nebula as the multiple star appears to be; they may be either in front of it, or, less probably, behind it, so as to be projected on the same part of the sky.

PLATE XV PHOTOGRAPH OF THE NEBULA 31 M ANDROMEDÆ EXPOSURE 4 HOURS, ENLARGED 3 TIMES..PLATE XV.PHOTOGRAPH OF THE NEBULA 31 M ANDROMEDÆEXPOSURE 4 HOURS, ENLARGED 3 TIMES.TAKEN BY MR. ISAAC ROBERTS, 29 DECEMBER, 1882.

A considerable number of drawings of this unique object have been made by other astronomers. Among these we must mention that executed by Professor Bond, in Cambridge, Mass., which possesses a faithfulness in detail that every student of this object is bound to acknowledge. Of late years also successful attempts have been made to photograph the great nebula. The late Professor Draper was fortunate enough to obtain some admirable photographs. In England Mr. Common was the first to take most excellent photographs of the nebula, and superb photographs of the same object have also been obtained by Dr. Roberts and Mr. W.E. Wilson, which show a vast extension of the nebula into regions which it was not previously known to occupy.

The great nebula in Andromeda, which is faintly visible to the unaided eye, is shown in Plate XV., which has been copied with permission from one of the astonishing photographs that Dr. Isaac Roberts has obtained. Two dark channels in the nebula cannot fail to be noticed, and the number of faint stars scattered over its surface is also a point to which attention may be drawn. To find this object we must look out for Cassiopeia and the Great Square of Pegasus, and then the nebula will be easily perceived in the position shown on p. 413. In the year 1885 a new star of the seventh magnitude suddenly appeared close to the brightest part of the nebula, and declined again to invisibility after the lapse of a few months.

The nebula in Lyra is the most conspicuous ring nebula in the heavens, but it is not to be supposed that it is the only member of this class. Altogether, there are about a dozen of these objects. It seems difficult to form any adequate conception of the nature of such a body. It is, however, impossible to view the annular nebulæ without being, at all events, reminded of those elegant objects known as vortex rings. Who has not noticed a graceful ring of steam which occasionally escapes from the funnel of a locomotive, and ascends high into the air, only dissolving some time after the steam not so specialised has disappeared? Such vortex rings can be produced artificially by a cubical box, one open side of which is covered withcanvas, while on the opposite side of the box is a circular hole. A tap on the canvas will cause a vortex ring to start from the hole; and if the box be filled with smoke, this ring will be visible for many feet of its path. It would certainly be far too much to assert that the annular nebulæ have any real analogy to vortex rings; but there is, at all events, no other object known to us with which they can be compared.

The heavens contain a number of minute but brilliant objects known as the planetary nebulæ. They can only be described as globes of glowing bluish-coloured gas, often small enough to be mistaken for a star when viewed through a telescope. One of the most remarkable of these objects lies in the constellation Draco, and can be found half-way between the Pole Star and the star γ Draconis. Some of the more recently discovered planetary nebulæ are extremely small, and they have indeed only been distinguished from small stars by the spectroscope. It is also to be noticed that such objects are a little out of the stellar focus in the refracting telescope in consequence of their blue colour. This remark does not apply to a reflecting telescope, as this instrument conducts all the rays to a common focus.

There are many other forms of nebulæ: there are long nebulous rays; there are the wondrous spirals which have been disclosed in Lord Rosse's great reflector; there are the double nebulæ. But all these various objects we must merely dismiss with this passing reference. There is a great difficulty in making pictorial representations of such nebulæ. Most of them are very faint—so faint, indeed, that they can only be seen with close attention even in powerful instruments. In making drawings of these objects, therefore, it is impossible to avoid intensifying the fainter features if an intelligible picture is to be made. With this caution, however, we presentPlate XVI., which exhibits several of the more remarkable nebulæ as seen through Lord Rosse's great telescope.

Fig. 99.—The Nebula N.G.C., 1,499.Fig. 99.—The Nebula N.G.C., 1,499.(By E.E. Barnard, Lick Observatory, September 21, 1895.)

The actual nature of the nebulæ offers a problem of the greatest interest, which naturally occupied the mind of the first assiduous observer of nebulæ, William Herschel, for many years. At first he assumed all nebulæ to be nothing but dense aggregations of stars—a very natural conclusion for one who had so greatly advanced the optical power of telescopes,and was accustomed to see many objects which in a small telescope looked nebulous become "resolved" into stars when scrutinised with a telescope of large aperture. But in 1864, when Sir William Huggins first directed a telescope armed with a spectroscope to one of the planetary nebulæ, it became evident that at least some nebulæ were really clouds of fiery mist and not star clusters.

We shall in our next chapter deal with the spectra of the fixed stars, but we may here in anticipation remark that these spectra are continuous, generally showing the whole length of spectrum, from red to violet, as in the sun's spectrum, though with many and important differences as to the presence of dark and bright lines. A star cluster must, of course, give a similar spectrum, resulting from the superposition of the spectra of the single stars in the cluster. Many nebulæ give a spectrum of this kind; for instance, the great nebula in Andromeda. But it does not by any means follow from this that these objects are only clusters of ordinary stars, as a continuous spectrum may be produced not only by matter in the liquid or solid state, or by gases at high pressure, but also by gases at lower pressure but high temperature under certain conditions. A continuous spectrum in the case of a nebula, therefore, need not indicate that the nebula is a cluster of bodies comparable in size and general constitution with our sun. But if a spectrum of bright lines is given by a nebula, we can be certain that gases at low pressure are present in the object under examination. And this was precisely what Sir William Huggins discovered to be the case in many nebulæ. When he first decided to study the spectra of nebulæ, he selected for observation those objects known as planetary nebulæ—small, round, or slightly oval discs, generally without central condensation, and looking like ill-defined planets. The colour of their light, which often is blue tinted with green, is remarkable, since this is a colour very rare among single stars. The spectrum was found to be totally different to that of any star, consisting merely of three or four bright lines. The brightest one is situated in the bluish-green part of the spectrum, and was at first thought to be identical with a line of the spectrum of nitrogen, but subsequent more accurate measures have shown that neither this nor the second nebular line correspond to any dark line in the solar spectrum, nor can they be produced experimentally in the laboratory, and we are therefore unable to ascribe them to any known element. The third and fourth lines were at once seen to be identical with the two hydrogen lines which in the solar spectrum are named F and g.


Back to IndexNext