CHAPTER III.MERCURY.

Fig. 7.—Sun-spot seen as a Notch.Fig. 7.—Sun-spot seen as a Notch.

Fig. 7.—Sun-spot seen as a Notch.

When we examine the Sun with instruments of large aperture and high magnifying power, we notice that its surface is far from being as smooth and uniform as it appears in a small telescope. On the contrary, it presents an irregular undulating appearance like a pond or other sheet of water agitated by the wind. Careful scrutiny with a powerful eye-piece reveals the fact that the Sun’s surface is marked by a multitude of wrinkles and irregularities which it is well-nigh impossible to describe in words. More or less everywhere there is a general mottling visible; it is more distinct in some places than others, and especially so towards the centre of the disc. This peculiar appearance varies very much from time to time, and its distinctness seems to depend a great deal on the state of the Earth’s atmosphere, for it becomes invisible when the air is disturbed; but these variations depend also on real variations of the photosphere—a fact which observations made in very calm weather are thought clearly to indicate.

It is often said that the Sun exhibits a granulated structure. If we wish to realise in the most precise manner what is meant by the word “granulation” as applied to the structure of the Sun, we must abandon the method of projection and examine the Sun directly with a powerful eyepiece, taking advantage of a moment when the atmosphere is perfectly calm, and before the eyepiece has had time to get hot. It may then be seen that the Sun’s surface is covered with a multitude of little grains, nearly all of about the same size, but of different shape, though for the most part more or less oval. The small interstices which separate these grains form a networkwhich is dark without being positively black. Secchi considered it difficult to name any known object which exactly answers in appearance to this structure, but he thought that we can find something resembling it in examining with a microscope milk which has been a little dried up, and the globules of which have lost their regular form. Exceptionally good atmospheric conditions are under all circumstances indispensable for the study of these details.

In point of fact, there is a mysterious uncertainty about the normal condition of the Sun’s surface, in a visual sense, which a few years ago engendered a very vehement controversy, and led to the use of such expressions as “willow leaves,” “rice grains,” “sea beach,” and “straw thatching,” to indicate what was seen. All these words are too precise to be quite suitable to be taken literally, but perhaps, on the whole, “rice grains” is not altogether a bad expression to recall what certainly seems to be the granular surface of the Sun as we see it.

By making use of moderate magnifying powers, what we see will often convey the impression of a multitude of white points on a black network. This is very apparent during the first few moments that the telescope is brought to bear on the Sun, but its clearness quickly passes away because the eye gets fatigued, and the lenses becoming warm the air in the telescope tube gets disturbed because also warmed. Sometimes the appearance is a little different from that just described, and along with the white and brilliant points little black holes are intermixed. Oftentimes the grains appear as if suspended in a black network and heaped together in knots more orless shaded and more or less broad. Sometimes the grains exhibit a very elongated form, especially in the neighbourhood of the spots. It is these elongated forms to which Nasmyth applied the term “willow leaf,” whilst Huggins thought “rice grains” a very suitable expression.

This granular or leaf-like structure—call it what we will—cannot be made out except with considerable optical assistance, for the grains being intrinsically very small, diffraction in enlarging them and causing them to encroach on one another necessarily produces a general confusion of image. The real dimensions of these grains cannot therefore readily be determined by direct measurement, but by comparing them with the wires used in micrometer eye-pieces it has been thought that their diameters may usually be regarded as equal to ¼ or ⅓ of a second—say from 120 to 150 miles. The granules seem to be possessed of sensible movement, but presumably it is not always or even generally a movement of translation from place to place; only an undulatory movement like that of still water when a stone is cast into it. Nevertheless, probably in certain cases the granules actually are affected by a motion of translation, for in the vicinity of spots they may sometimes be seen flowing over the edges of the penumbræ. In order to explain the existence of the granules the strangest theories have been broached. Sir William Herschel having observed the granulations, applied to them the term “corrugations” or “furrows”—words somewhat inexact, perhaps, but by which, as his descriptions clearly show, he meant to designate the features which I am now treating of. He even noticed the dark network which separatesthe grains, and he applied to it the word “indentations.”

These granulations are without doubt prominences, probably of hydrogen gas, which rise above the general surface, for this structure is much more sharp and distinct at the centre of the sun’s disc than at the limbs; that is to say, near the limbs of the Sun they partially overlap one another, as indeed Herschel remarked. The idea of flames would satisfy these appearances: and as the spectroscope suggests to us that the Sun is habitually covered over with a multitude of little jets of flame, the observations which have been made compel the opinion that the grains are the summits of those prominences which exist all over the Sun’s surface.

The surface is sometimes so thickly covered over with these granulations—the network is so conspicuous—that we can readily imagine that we see everywhere pores and the beginnings of spots, but this aspect is not permanent, and seems to depend to some extent on atmospheric causes combined also with actual changes in the Sun’s surface itself. There seems however no doubt that the joints, so to speak, of the dark network already referred to do sometimes burst asunder and develope into spots.

The circumstances which accompany the formation of a spot cannot readily be specified with certainty. It is impossible to say that there exists any law as to this matter. Whilst some spots develope very slowly by the expansion of certain pores, others spring into existence quite suddenly. Yet it cannot be said that the formation of a spot is ever completely instantaneous however rapid it may be. The phenomenon isoften announced some days in advance: we may perceive in the photosphere a great agitation which often manifests itself by some very brilliantfaculæ(to be described presently) giving birth to one or more pores. Very often we next notice some groups of little black spots, as if the luminous stratum was becoming thinner in such a way as to disappear little by little and leave a large black nucleus uncovered. At the commencement of the business there is usually no clearly defined penumbra. This developes itself gradually and acquires a regular outline, just as the spot itself often takes a somewhat circular form. This tranquil and peaceable formation of a spot only happens at a time when calm seems to reign in the solar atmosphere: in general the development is more tumultuous and the stages more complicated.

As a rule a spot passes through three stages of existence:—(1) the Period of birth; (2) a Period of calm; and (3) the Period of dissolution. When a spot is on the point of closing up, the flow of the luminous matter which it, as it were, attracts, is not directed uniformly towards the centre; it seems that the photospheric masses, no longer meeting with resistance, are precipitated promiscuously anywhere so as to fill up the hole. It is impossible to describe in detail the phases which irregular spots go through, but two things may always be remarked: that their structure is characterized by the existence of luminous filaments, and that these filaments converge towards one or several centres.

Secchi thus sums up certain conclusions which he arrived at relating to spots generally:—(1) It is not on the surface of any solid body that thesolar spots are manifested; they are produced in a fluid mass, the fluidity of which is represented by a gas, so that the constitution of this medium may be likened to that of flames or clouds; (2) the known details respecting the constitution of the penumbra and the phenomena exhibited prove that the penumbra is not a mass of obscure matter which floats across luminous matter, but that it is on the contrary a case of luminous matter invading and floating about over darker materials and so producing a half tint.

All the available evidence which we possess may be said to show that the spots are not merely superficial appearances, but that they have their origin deep in the interior of the Sun, and are produced by the operation of causes still unknown to us which affect and disturb the Sun’s mass to an extent which is sometimes very considerable. The spots then are only the results of a great agitation in the materials of which the Sun is composed, and this agitation extends far down below the limits of the visible dark nucleus whatever that may consist of.

Besides the spots, streaks of light may frequently be remarked upon the surface of the Sun towards the margin of the disc. These are termedfaculæ(torches), and they are often found near the spots, or where spots have previously existed or have afterwards appeared. When quite near the Sun’s limb these faculæ are usually more or less parallel to the limb. They are of irregular form and may be likened to certain kinds of coral. They generally appear to be more luminous than the solar surface immediately adjacent to them, but it is not improbable that this is an optical illusion depending upon the fact that the edges ofthe Sun always appear much more luminous than the centre. This last-named fact may be readily recognised by the employment of a high magnifying power, and moving the telescope rapidly from the limb to the centre of the disc. If the Sun be projected on a screen, as already mentioned, this degradation of the Sun’s light from centre to circumference becomes particularly manifest.

After having studied the structure and the movement of the spots, one is naturally led to ask if their apparitions at different periods are subject to any general law. This question is one which has much engaged the attention of modern astronomers. The older observers noticed that the number of the spots visible differed in different years. There were said to have been periods when months and even years passed away without any spots being observed. Even allowing that this statement, so far as “years” are concerned, might be exaggerated, and that the absence of spots was due to the want of sufficient care in making the observations, and especially to the want of efficient instruments, it is none the less true that the number of the spots is extremely variable, and that there have been epochs when they were very scarce.

Sir W. Herschel was the first who devoted himself to the question of seeking to establish a relation between the variation of the spots and terrestrial meteorology. For the want of any better object, he compared the annual number of the spots with the price of wheat; but it is easy to see that nothing could result from such a comparison. Without doubt the meteorological phenomena of the globe must depend to some extent on solar changes: but the term of comparisonselected by Herschel had no direct bearing on the state of the Sun.

In our time this question has been investigated to its very foundation by Wolf, Director for many years at the Observatory of Zurich. It is to his zeal that we owe a very interesting assemblage of old observations which were buried in archives and chronicles. It was he who endeavoured to reduce them into a systematic form, so as to supply as far as possible the numerous gaps which exist in the different series.

The two most attentive observers at the period when the spots were discovered were Marriott at Oxford and Scheiner at Ingoldstadt, but Scheiner himself has informed us that he did not note down all the spots which he saw; he only recorded those which were likely to assist him in his special task of determining the period of the Sun’s rotation. Several observers after him made isolated series of observations; but some of these have been lost and the others show important gaps. J. G. Staudacher, at Nuremburg, observed the Sun with great perseverance during fifty years from 1749 to 1799. Before him the Cassinis, Maraldi, and others were engaged in the same sort of work, but only in an indirect way: that is to say, they contented themselves, whilst making meridional observations of the Sun, with noting anything in the way of spots which they deemed important. Zucconi and Flaugergues also left behind them a good collection of observations which Wolf utilised, rendering them comparable one with another by applying suitable corrections. The great difficulty herein arises from the fact that the observers were not provided with instruments of equal power; one man, armed with abetter telescope than his contemporaries, naturally observed and recorded spots which would escape the others. The numbers entered in their registers are therefore not comparableinter se. Wolf endeavoured to replace these numbers by others which would represent the spots which might have been seen if the observers had all employed telescopes of a given kind and power. The result of his efforts in this direction is an almost continuous series of Sun-spot records from an epoch sufficiently remote, up to the time when this branch of science was taken up with the vigour of modern scientific methods.

The observer who most assiduously devoted himself to this subject in modern times was Schwabe of Dessau. From 1826 to 1868 he never failed to make daily observations when the weather permitted him. His series of records is specially valuable, for Carrington’s fits in with it, and with that in turn Spörer’s is comparable, and the chain is complete by the later photographic and other observations. All these Sun-spot records, though differing in their details, may easily be used together when it is a question of working out relative annual fluctuations.

At the present time there are many Astronomers who are engaged in observing the spots with care; but just as formerly there are few who possess sufficient perseverance. The photographic method is excellent, but it takes much time and is costly. Some have decried, in a very unreasonable manner, a drawing made by hand: such a drawing, of sufficient size, and executed by projection by a skilful draughtsman with a telescope driven by clockwork, may stand comparison with a photograph, and this method hasa better chance of being persevered in. The Rev. F. Howlett’s name must be mentioned in this connection as a draughtsman who has accomplished much by hand drawing. Though the once famous Kew observations have been discontinued, they have been replaced by a new series at Greenwich with similar appliances; whilst Janssen at Meudon has also been carrying on for a number of years a splendid course of photographic records.

Schwabe, when he had collected a considerable number of observations, recognised clear indications of periodicity. Very definite epochs of maxima and minima succeeded one another at intervals of 10 or 11 years. It is true that in following out such a study the observations are certain to be in a sense a little defective. At first it was not possible to observe the Sun every day, and the gaps which resulted from bad weather necessarily added to the number of days which had to be set down as being without spots. Moreover, every method of numbering the spots must be a little arbitrary: there are often groups which, in consequence of their sub-divisions, may be counted in different ways: but in a mass of observations so considerable as those of Schwabe’s, such uncertainties will compensate for one another and will disappear in the final result. In fact the law is so striking that it suffices to cast one’s eye over his table[2]to see that.

That table is both interesting and instructive at the same time. The numbers exhibited in it speak for themselves, and it is sufficient to examinethem with even a small amount of attention to realise the certainty of the conclusions which have been drawn.

It is therefore now to be deemed an ascertained fact that there are periodical maxima and minima in the display of spots, and that the extent of the period is between 10 and 12 years. In order to determine this value with the utmost exactness, some astronomers have had recourse to early observations. Wolf of Zurich made this the subject of some very interesting inquiries. He was able to establish the chronology of the phases which the Sun has passed through from the time of the first discovery of the spots to the present day—more than 2½ centuries. His calculations led him to a period of 111/9years. Lamont fixed upon 10.43 years, but this number does not represent the more recent observations with sufficient precision.

In order to exhibit this law in the plainest possible manner the dates of maxima and minima should be laid down on ruled paper in proper mathematical form, theabscissæof the curve representing the years, and theordinatesthe number of spots observed.

An examination of a curve thus plotted shows two things:—(1) That the period is clearly an eleven-year one, as has been already stated; (2) that it is not however quite as simple in its form as it was at first thought to be; for in reality there are two periods superposed, the one rather more than half a century long, and the other extending over the 11 years already spoken of. We do not possess early observations sufficiently numerous and sufficiently good to enable us to draw any unimpeachable conclusions as to thenature of the long period; we can only be certain that it exists. The later labours of Wolf, however, fixed that period at 55½ years. It is a result of this that, according to Loomis, a period of comparative calm on the Sun existed between 1810 and 1825.

Each maximum lies nearer to the minimum which precedes it than to the minimum which follows it, for the spots increase during 3.7 years, and then diminish during 7.4 years. According to De La Rue the increase occupies 3.52 years, and diminution 7.55 years. This concurrence between De La Rue and Wolf is surprising considering the diversity of the methods which led to results almost identical, the one set being based on the number of the spots, and the other on the superficial extent of the spots. The different periods in succession are not absolutely identical: but it has been remarked that if during any one period the decrease is retarded or accelerated, then the increase next following will be lengthened or contracted to a corresponding extent. In consequence of this we are sometimes able to predict with fair accuracy when the next ensuing maximum or minimum will take place.

The most striking feature of such a curve as that just alluded to is the very sensible secondary augmentation which happens very soon after the principal maximum.

A very curious circumstance has come to light in connection with the epochs of maxima and minima. In arranging the spots according to their latitude and longitude on a diagram sufficiently contracted, Carrington found that their latitude decreases gradually as the period of minimum draws near; then when their numberbegins to increase they begin to appear again at a higher latitude. This seems to be a definite law. At any rate Carrington’s conclusion has been found to hold good by the observations of Spörer and Secchi.

The variations of the spots which we now recognise naturally recall those obscurations of the Sun which are recorded in history; but it is necessary to accept many of these with caution. A great number of these phenomena which attracted the attention of people in early times are only eclipses badly observed and still more badly described. In other instances the obscuration has been produced by very protracted dry fogs. It is probably to this last-named cause that we must ascribe the obscuration which, according to Kepler and Gemma Frisius, took place in 1547.

It was in some such way as this that, according to Virgil (Georg. i, 630), who has echoed a tradition which he found in history, the Sun was obscured at the death of Cæsar:—

Ille etiam extincto miseratus Cæsare RomamQuum caput obscura nitidum ferrugine texit,Impiaque æternam timuerunt sæcula noctem.

Ille etiam extincto miseratus Cæsare Romam

Quum caput obscura nitidum ferrugine texit,

Impiaque æternam timuerunt sæcula noctem.

In the year 553A.D., and again in the year 626A.D.the Sun remained obscured for several months; but these facts (if facts they are) besides being ill-observed, and clothed, no doubt, in extremely exaggerated language, are brought to our notice as having occurred at epochs which are quite independent of one another, whilst the variations in the markings on the Sun, which we have just been talking about, present an almost mathematical regularity of sequence.

We must now institute some inquiries as tothe causes of the periodicity of the spots. A periodicity so well established would naturally invite astronomers to seek the causes which produced it. The presence of spots only in the Zodiacal regions led Galileo to suspect the existence of some relation between the spots and the position of the planets; but there is in this a mere surmise, which, when it was made, had nothing to justify it, and it is still impossible for us to say anything for certain on the point. The determining cause of the periodicity may exist in the interior of the Sun, and may depend on circumstances which will for ever remain unknown to us. Or it may be something external: it may be due after all to the influence of the planets. It remains for us, therefore, to search and see if any such influence can be traced.

According to Wolf, the attraction of the planets, or of some of them, is the real cause of the periodicity which we are dealing with; that attraction producing on the surface of the solar globe true tides, which give birth to the spots, these tides themselves experiencing periodic variations owing to the periodic changes of position of the celestial bodies which cause them. It has even been thought safe to assert that the fact of the principal period coinciding with the revolution of Jupiter is of momentous significance; but this coincidence seems purely accidental, and no certain conclusion can be drawn as to this matter. The influence of Mercury and Venus would perhaps be much more potent, for their distance from the Sun is not very great, and this should render their influence more sensible. On the other hand, their masses appear to be too small to be capable of producing any sufficient effect.

De La Rue, Balfour Stewart, and Löwy most perseveringly studied this point of solar physics. They seem to have arrived at the conclusion that the conjunctions of Venus and Jupiter do exercise a certain amount of influence on the number of the spots and on their latitude; and that this influence is less considerable when Venus is situated in the plane of the solar equator. At any rate it is a fact, that a great number of the visible inequalities in a duly plotted curve of the spots do really correspond to special positions of these two planets.

In order to determine with more precision these coincidences and the importance which attaches to them, De La Rue extended his inquiries. He separately analysed many different groups of spots, selecting for his purpose more particularly those of which the observations happened to have been specially continuous and complete, giving a preference moreover to those which had been observed in the central portions of the Sun’s disc. From an investigation of 794 groups De La Rue arrived at the following conclusions:—(1) If we take a meridian passing through the middle of the disc and represented by a diameter perpendicular to the equator, we find that the mean size of the spots is not the same with regard to that meridian. It appears certain that the correction required for perspective does not suffice to explain this difference; and that another element must be introduced in order to secure that the apparent dimensions of the spots may be the same on both sides. We do not yet possess a very clear explanation of this fact; but the most probable is this:—the spots are surrounded by a projecting bank, which seems todisappear in part during their transit across the Sun. This bank is more elevated on the preceding than on the following side; accordingly, the spots ought to seem smaller when they are in the eastern half of the disc; larger when they are in the western half; for in the first position the observer’s eye meets an elevated obstacle, which hides a portion of the spot itself. (2) De La Rue specially studied the spots observed at the times when the planets Venus and Mars were at a heliocentric distance from the Earth equal to 0, 90, 180, and 270 degrees, and arrived at this result; the spots are larger in the part of the Sun which is away from Venus and Mars, and they are smaller on the side on which these planets happen to be. The same result was obtained, whether Carrington’s figures or the Kew photographs were employed. (3) Meanwhile it does not appear that Jupiter emits any similar influence. This influence should be easily perceived, for if we calculate the action of the planets in the way that we calculate the tides, treating it as directly proportional to the masses and inversely proportional to the cubes of the distances, the influence of Jupiter should greatly outweigh that of Venus.

Wolf thought that he had noticed traces of some influence being exerted by Saturn; but this remains altogether without confirmation.

De La Rue noticed that large spots are generally situated at extremities of the same diameter. This law also often applies to the development of large prominences. The coincidence agrees well with the theory that there exists on the Sun some action resembling that of our tides.

Whatever may be the amount of probabilitywhich attaches to these explanations we ought not to forget that we are still far off from possessing the power of giving a vigorous demonstration of them. If we consider with attention the periodical variations of the spots we shall not be long in coming to the conclusion that it is impossible to connect them directly with any one astronomical function in particular, for the spots appear in a sudden and irregular manner which contrasts in a striking degree with the continuous and progressive action of the ordinary perturbations which we meet with in the study of Celestial Mechanics. There is but one reply possible to this objection. The spots and their changes must be visible manifestations of the periodical activity of the Sun—an activity which itself depends (as assumed) on the action of the planets and on their relative positions. The cause, thus defined, of the Sun’s activity may be very regular; the activity itself may vary in a continuous manner without the resulting phenomena possessing the same continuity and the same regularity. We see this in the periodical succession of the Seasons on the Earth. The position of the Sun, and consequently its manner of acting upon our globe, varies with a remarkable uniformity, but nevertheless the meteorological phenomena which result are irregular and capricious. Thus it comes about that physicists are more and more inclined to believe that the spots are only secondary effects produced by causes more important and more fundamental.

Whatever may be our ignorance as to the causes which produce variations in the Sun’s activity we may at least draw one conclusion from the preceding remarks: it is, that the Sun is avery long way from having arrived at a state of tranquillity and freedom from internal commotion. On the contrary, it is the seat of great movements. Its activity is subject to numberless periodical changes which ought in their turn to influence the intensity of the heat and light given out by the Sun; and so re-act on the planets which receive their heat, light, and life from the Sun.

No account of the periodicity of the spots on the Sun can be deemed complete which does not include information respecting certain other periodical phenomena which have been found to exhibit features of alternation closely resembling in their sequence and character the periodical changes which take place in regard to the spots on the Sun. There is evidently a deep mystery lying hid under the curious fact (which is clearly established) that the 11-year period of the spots coincides in a manner as unexpected as it is certain with the period of the variation of terrestrial magnetism. The magnetic needle is subject to a diurnal variation which reaches its extreme amount every 11 years, and not only so, but the epoch of maximum variation corresponds with the epoch of the maximum prevalence of Sun spots. And similarly years in which the needle is least disturbed are also years in which the Sun spots are fewest. Two other very curious discoveries have also been made which are in evident close connection with the foregoing. The manifestation of the Aurora Borealis and of those strange currents of electricity known as magnetic earth currents (which travel below the Earth’s surface and frequently interfere with telegraphic operations), likewise exhibit periodical changes which take 11 years to go through all their stages. Thisfact alone would be sufficiently curious, but when we come to find that the curve which exhibits the changes these two manifestations of force go through, also shows that their maxima and minima are contemporaneous with the maxima and minima of the Sun spots and magnetic needle variations, we cannot doubt that (to use Balfour Stewart’s words) “a bond of union exists between these four phenomena. The question next arises, what is the nature of this bond? Now, with respect to that which connects Sun spots with magnetic disturbances we can as yet form no conjecture.” To cut a long story short, it may be said generally that whilst without doubt electricity is the common basis of the three last-named of the four phenomena just mentioned, it seems scarcely too great a stretch of the imagination to go one step further and suggest that electricity has in some or other occult manner something to do with all these things and therefore with the spots on the Sun.

Fig. 8.—The Sun totally eclipsed, July 18, 1860 (Feilitzsch).Fig. 8.—The Sun totally eclipsed, July 18, 1860 (Feilitzsch).

Fig. 8.—The Sun totally eclipsed, July 18, 1860 (Feilitzsch).

The reader who has followed me thus far will by this time be in a position to appreciate a remark made in an earlier part of this chapter, that the multitude of facts known to us in connection with the Sun and its spots is so great, as to render it impossible to exhibit in a single chapter anything more than the barest outline of them. The numerous observations of recent eclipses of the Sun, especially since that of 1860, and the extensive application of the spectroscope to the Sun both in connection with these eclipses, and generally, may be said to have completely revolutionised our knowledge of solar phenomena during the present generation; or perhaps it might be more correct to say have enormously increased our knowledge of the facts of the case and have revolutionised in no small degree the conclusions deduced from the facts.

So far as we know at present, Mercury is the nearest planet to the Sun. The circumstances under which it presents itself to us and a brief general account of its movements have already been stated. In the present chapter, therefore (and this remark applies in substance to each ofthe succeeding chapters appropriated to particular planets), I shall limit myself to such topics as seem to be of interest to an observer armed with a telescope. Mercury, as already mentioned, exhibits from time to time phases which may be said to be the same as those of the moon; but as the only chance of seeing it is when it is at its greatest distance east or west of the Sun, practically it can only be studied when in, or rather near to, what may be called the half-moon phase; and even then observations on its physical appearance can only be obtained with difficulty. Perhaps its most definite feature is its colour. This, undoubtedly, is more or less pink. Strange to say, in spite of the multiplication of telescopes and observers, comparatively little attention has been paid to this planet, and we really know very little more about it than Schröter told us nearly a hundred years ago. He obtained what he conceived to be satisfactory evidence of the existence of at any rate one mountain, having a height of about 11 English miles—a height which it will be noted, far exceeds, not only relatively but absolutely, any mountain on the earth. What Schröter based this conclusion upon was the fact that when the planet was near inferior conjunction, the southern horn presented a truncated appearance, which might be the result of a lofty projection arresting the Sun’s light. Schröter also announced that Mercury rotated on its axis in 24 hours 5 minutes. Sir W. Herschel failed to satisfy himself that Schröter’s conclusions were well-founded, but it must certainly be admitted that some support for them is furnished by certain observations made within the last few years. It is matter for regret, however, that most of thesewere made with instruments of sizes which, for the most part, cannot be said to have been equal to the task to which they were applied. The truncature of the southern horn first spoken of by Schröter, was thought by Denning, in 1882, to be obvious; and in the same year, by watching the displacement of certain bright and dusky spaces on the disc, the same observer concluded that a rotation period of about 25 hours was indicated.

In 1882 Schiaparelli at Milan commenced a prolonged study of Mercury. Believing that it was essential to observe through a good condition of atmosphere, and that this was impossible if the planet were only looked at in twilight, when it was necessarily at a low altitude, Schiaparelli made all his observations with the Sun and planet high up in the heavens. He considered, in effect, that the blaze of the Sun’s light was a lesser evil than the tremors inseparable from observations of the planet, clear it might be in some degree of inconvenient Sun-light, but viewed through the vapours and atmospheric disturbances, which always spoil all observations near the horizon. Schiaparelli’s observations yielded various results, most of them novel, and one of them very startling. He considers Mercury to be a much spotted globe and to be enveloped in a tolerably dense atmosphere. He thought he noticed brownish stripes and streaks (which might be regarded as permanent markings), more clearly visible on some occasions than on others; and that these systematically disappeared near the limb, owing to the increased depth there of the atmosphere through which they had to be looked at.

The foregoing observations may be regarded as not unreasonable; they may even be acceptedwithout further question. But what are we to say to Schiaparelli’s conclusions that these markings are so nearly permanent, taking one day with another, that Mercury’s rotation cannot be measured in hours at all, but is a matter of days,—in point of fact, of 88 days; and that in reality Mercury occupies in its rotation on its axis the whole of the 88 days which constitute its sidereal year, or period of revolution round the Sun. The counterpart of this for us would be that, instead of the inhabitants of the earth having a day of 24 hours, they would have only one day and night every 365 days. Astronomers are not at present satisfied to accept this conclusion in regard to Mercury.

Some observers have thought that Mercury is more easy to observe than Venus, and that, speaking generally, its surface, if we could only get to see it constantly under favourable circumstances, might be considered to resemble in most respects that of Mars. Mercury revolves round the Sun at a mean distance of 36 millions of miles. Owing, however, to the fact that the eccentricity of its orbit (or its departure from the circular form) is greater than that of any of the other major planets, it may approach to within 28½ millions of miles or recede to more than 43 millions of miles. Its apparent diameter varies between 4½″ in superior conjunction to 13″ in inferior conjunction. The real diameter may be taken at about 3000 miles.

The planet Venus has two things in common with Mercury. One is, that being an inferior planet, that is to say, a planet revolving round the Sun in an orbit within that of the Earth, it is never very far distant from the Sun, and therefore can never be seen on a distinctly dark sky. The second point alluded to arises out of the first; Venus exhibits from time to time a series of phases which are identical in character with those of Mercury, and therefore with those of the Moon. Venus differs, however, from Mercury in the very important point of size. Inasmuch as its diameter is considerably more than double the diameter of Mercury it has a surface more than six times as great, and therefore exhibits a far larger area of illumination than Mercury does. The result of this (coupled with another fact which will be stated presently) is that the planet may often be easily seen in broad daylight, and sometimes casts a sensible shadow at night. Under special circumstances, which recur every 8 years, this planet shines with very peculiar brilliancy. True, that only about ¼th of the whole disc is then illuminated, but that fraction transmits to us more light than phases of greater extent do, because these latter coincide with epochs when the planet is more remote from the Earth.

Spots and shadings have on various occasions been noticed on Venus, and though it is not easy to harmonise the various accounts, there seems no doubt of the reality of the facts, or that theymust be ascribed to the existence of mountains. Schröter found very much the same state of things to exist on Venus that he found on Mercury, and putting together what he saw he arrived at the conclusion that Venus possesses mountains of considerable height, and that his observations must be taken to imply that the planet revolved on its axis in rather more than 23 hours. This conclusion as regards the planet’s axial rotation was not first arrived at by Schröter, for the two Cassinis, one about 1666, and the other about 1740, both ascribed to Venus a rotation period of about 23 hours, an evaluation which was fully confirmed by Di Vico at Rome between 1839 and 1841, and by Flammarion in 1894.

What has been already said with respect to Mercury is true also of Venus, namely that it has been much neglected by modern observers; and accordingly an announcement made by Schiaparelli in 1890, that the rotation period of Venus is to be measured not by hours but by months, came upon the astronomical world as a startling revelation; but it is a revelation which has been keenly contested, and certainly awaits legal proof. Schiaparelli has not ventured to assert as he has done in the case of Mercury, that Venus’s rotation period is identical with the period of 7½ months in which it revolves round the Sun; he only claims this as a strong probability arising out of what he says he is certain of, namely that its period of rotation cannot be less than six months and may be as much as nine months. His assumption is that previous observers in endeavouring to ascertain Venus’s rotation period have used and relied upon evanescent shadings which probably were of atmospheric origin and scarcelyrecognisable from day to day, whereas he fixed his attention upon round defined white spots, which, whatever their origin, are so far permanent that their existence has been spoken of for two centuries. Miss Clarke thus puts the matter:—“His steady watch over them showed the invariability of their position with regard to the terminator; and this is as much as to say that the regions of day and night do not shift on the surface of the planet. In other words she keeps the same face always turned towards the Sun.”

Various recent observations, some of them made with the express object of throwing light upon Schiaparelli’s conclusions, are strangely contradictory. Perrotin at Nice in 1890 thought his observations confirmed Schiaparelli’s; on the other hand Niesten at Brussels considered that numerous drawings of Venus made by himself and Stuyvaert between 1881 and 1890 harmonised well with Di Vico’s rotation period of 23h. 21m. 22s.; which Trouvelot in 1892 only wished to increase to about 24 hours.

There is a general consensus of opinion that great irregularities exist on the surface of Venus. These are made specially manifest to us in connection with the terminator or visible edge of the planet seen as an illuminated crescent. If the planet had a smooth surface this line would at all times be a perfect and continuous curve, instead of which it is frequently to be noticed as a jagged or broken line. Observations to this effect go back as far as 1643, when Fontana at Naples observed this to be the condition of the terminator. La Hire, Schröter, Mädler, Di Vico and many others down to the present epoch have noted the same thing. The fact that the southern horn ofVenus is constantly to be seen blunted is so well established as to admit of no doubt, and this blunting is commonly ascribed to the existence of a lofty mountain, to which Schröter ascribed a height of 27 miles. Whatever we may think as to the precise accuracy of this figure, it seems impossible to doubt the main fact on which it depends; whilst a Belgian observer, Van Ertborn, in 1876 repeatedly saw a point of light in this locality which he regarded as due to Sun-light impinging on a detached peak, adjacent valleys remaining in shadow. This effect is common enough in the case of the Moon, and is familiar to all who are in the habit of studying the Moon.

Fig. 9.—Venus, Dec. 23, 1885.Fig. 9.—Venus, Dec. 23, 1885.

Fig. 9.—Venus, Dec. 23, 1885.

The existence on Venus of an atmosphere of considerable density and extent is well established. Proof of this is to be found in the marked diminution of the planet’s brilliancy towards the terminator; and in the faint curved line of light which occasionally may be seen when the planet is near inferior conjunction. When so situated, so much of the planet itself as can beseen illuminated shows as a narrow radiant crescent of light, ending off in two points called indifferently cusps or horns. It sometimes happens, however, that from the point of each cusp there runs round to the other cusp a faint continuation of the crescent, resulting in the general appearance of the planet being that of a nearly uniform ring of light. There is no known way in which the Sun can illuminate so much more than the half of Venus so as to permit of a perfect circle being visible except by supposing that an atmosphere exists on the planet and refracts (or transmits by bending, as it were, round the corner) a sufficient amount of Sun-light to give rise to the appearance in question. Further proof of the existence of an atmosphere on Venus is obtainable on those very rare occasions when the planet is seen passing across the disc of the Sun—a phenomenon known as a “Transit of Venus.” It then nearly always happens that a hazy nebulous ring of feeble light may be detected encompassing the planet’s disc indicative of course of the fact that the Sun’s rays are there slightly obstructed in reaching the eye of an observer on the Earth. Some observers scrutinising Venus when in transit have thought that they were able to obtain, by means of the spectroscope, traces of aqueous vapour on the planet, but the evidence of this does not appear to be altogether clear or conclusive.

Fig. 10.—Venus near conjunction as a thin crescent, Sept. 21, 1887 (Flammarion).Fig. 10.—Venus near conjunction as a thin crescent, Sept. 21, 1887 (Flammarion).

Fig. 10.—Venus near conjunction as a thin crescent, Sept. 21, 1887 (Flammarion).

Everybody may be presumed to be acquainted with the spectacle popularly known as “The Old Moon in the New Moon’s Arms” whereby when the Moon is only about two or three days old and exhibits but a narrow crescent of bright light, yet the whole outline of the disc is traceable on the sky. A phenomenon analogous to this may often be seen in the case of Venus when near its inferior conjunction. With the Moon the cause is due to the reflection of Earth-light (so to speak) to the Moon, but that explanation seems inadequate in respect of Venus, because it is conceived that the amount of Earth-light available is altogether insufficient for the purpose. Many other explanations have been put forward including phosphorescence on the surface of Venus, electrical displays in the nature of terrestrial auroræ, and what not, but it must be frankly confessed that astronomers are all at sea on the subject.

The existence of snow at the poles of Venus has been suspected by observers of tried skill and experience such as Phillips and Webb, though the idea was first broached by Gruithuisen in 1813. Flammarion’s observations during 1892 and the two following years are distinctly confirmatory of this idea. He adds that as both polar caps are visible at the same time the planet’s axis cannot be much inclined to the plane of its orbit.

Compared with all the other planets the absolutebrightness of Venus stands very high. Of course it must be understood that by this phrase “absolute brightness” no more is meant than its reflective power. Venus is what it is by virtue of its power of reflecting Sun-light; presumably it has no inherent brightness of its own. What its reflective power is was probably never more effectively brought under the notice of a human eye than on September 26, 1878, when Nasmyth enjoyed an opportunity of seeing Venus and Mercury side by side for several hours in the same field of view. He speaks of Venus as resembling clean silver and Mercury as nothing better than lead or zinc. Seeing that owing to its greater proximity to the Sun the light incident on Mercury must be some 3½ times as strong as the light incident on Venus, it follows that the reflective power of Venus must be very great. As a matter of fact it has been calculated to be nearly equal to newly fallen snow; in other words to reflect fully 70 per cent. of the light which impinges on it.

Venus has no satellite; this fact seems certain. Yet half a dozen or more observers between 1645 and 1768 discovered such a satellite; observed it; followed it! This startling mystery, as it really was, attracted some years ago the attention of a very careful Belgian observer, Stroobant, who examined in a most painstaking manner all the recorded observations. His conclusions were that in almost all cases particular stars (which he identified) were mistaken for a satellite. Where the object seen was not capable of identification, possibly it was a minor planet; whilst in one instance it was probable that it was Uranus which had been seen and regarded as a satellite of Venus.


Back to IndexNext