Chapter 2

PLATE I.—GROUP OF SUN-SPOTS AND VEILED SPOTS.Observed on June 17th 1875 at 7 h. 30 m. A.M.

PLATE I.—GROUP OF SUN-SPOTS AND VEILED SPOTS.Observed on June 17th 1875 at 7 h. 30 m. A.M.

PLATE I.—GROUP OF SUN-SPOTS AND VEILED SPOTS.

Observed on June 17th 1875 at 7 h. 30 m. A.M.

The group of Sun-spots represented in Plate I., was observed and drawn on June 17th, 1875, at 7h. 30m. A. M. The first traces of this group were seen on June 15th, at noon, and consisted of three small black dots disseminated among the granulations. At that time, no disturbance of the surface was noticeable, and no faculæ were seen in the vicinity of these spots. On June 16th, at 8 o'clock A. M., the three small spots had become considerably enlarged, and, as usual, the group consisted of two principal spots. Between these two spots all was in motion: the granulations, stretched into long, wavy, parallel lines, had somewhat the appearance of a liquid in rapid motion. At 1 o'clock, P. M., on the same day, the group had considerably enlarged; the faculæ, the granulations, and the penumbral filaments being interwoven in an indescribable manner. On the morning of the 17th, these spots had assumed the complicated form and development represented in the drawing; while at the same time two conspicuous veiled spots were seen on the left hand, at some distance above the group.

Some luminous bridges are visible upon the left hand spot, traversing the penumbra and umbra of this spot in various directions. The umbra of one of the spots is occupied, and partly filled with gray and rosy veils, similar to those above described, and the granulations of the solar surface form a background to the group of spots.

This group of spots was not so remarkable for its size as for its complicated structure. The diameter of the group from east to west was only 2½ minutes of arc, or about 67,000 miles. The upper part of the umbra of the spot situated on the right hand side of the group was nearly 7,000 miles in diameter, or less by 1,000 miles than the diameter of the Earth. Some of the long filaments composing that part of the penumbra, situated on the left hand side of the same spot, were 17,000 miles in length. One of these fiery elements would be sufficient to encircle two-thirds of the circumference of the Earth.

The chromosphere forming the outlying envelope of the Sun, is subject, as has been shown above, to great disturbances in certain regions, causing considerable upheavals of its surface and violent outbursts of its gases. From these upheavals and outbursts of the chromosphere result certain curious and very interesting forms, which are known under the name of "Solar Protuberances," "Prominences," or "Flames."

These singular forms, which could, until recently, be observed only during the short duration of the total eclipses of the Sun, can now be seen on every clear day with the spectroscope, thanks to Messrs. Janssen and Lockyer, to whose researches solar physics is so much indebted.

PLATE II.—SOLAR PROTUBERANCES.Observed on May 5, 1873 at 9h, 40m. A.M.

PLATE II.—SOLAR PROTUBERANCES.Observed on May 5, 1873 at 9h, 40m. A.M.

PLATE II.—SOLAR PROTUBERANCES.

Observed on May 5, 1873 at 9h, 40m. A.M.

The solar protuberances, the Sun-spots, and the faculæ to which they are closely related, are confined within the same general regions of the Sun, although the protuberances attain higher heliocentric latitudes.

There is certainly a very close relation between the faculæ and the solar protuberances, since when a group of the faculæ traverses the Sun's limb, protuberances are always seen at the same place. It seems very probable that the faculæ and the protuberances are in the main identical. The faculæ may be the brighter portion of the protuberances, consisting of gases which are still undergoing a high temperature and pressure; while the gases which have been relieved from this pressure and have lost a considerable amount of their heat, may form that part of the protuberances which is only visible on the Sun's limb.

A daily study of the solar protuberances, continued for ten years, has shown me that these objects are distributed on two zones which are equidistant from the solar equator, and parallel with it. The zone arrangement of the protuberances is more easily recognized during the years of minimum solar activity, as in these years the zones are very narrow and widely separated. During these years the belt of protuberances is situated between 40° and 45° of latitude, north and south. In years of great solar activity the zones spread considerably on either side of these limits, especially towards the equator, which they nearly reach, only a narrow belt, usually free from protuberances, remaining between them. Towards the poles the zones do not spread so much, and there the space free from protuberances is considerably greater than it is at the equator.

During years of maximum solar activity, the protuberances, like the Sun-spots and the faculæ, are very numerous, very large, and very complicated—sometimes occupying a great part of the whole solar limb. As many as twenty distinct flames are sometimes observed at one time. In years of minimum solar activity, on the contrary, the prominences are very few in number, and they are of small size; but, as far as my observations go, they are never totally absent.

In general, the solar flames undergo rapid changes, especially those which are situated in the vicinity of Sun-spots, although they occasionally remain unchanged in appearance and form for several hours at a time. The protuberances situated in higher latitudes are less liable to great and sudden changes, often retaining the same form for several days. The changes observed in the protuberances of the equatorial regions are due in part to the comparatively great changes in their position with respect to the spectator, which are occasioned by the rotation of the Sun. This rotation, of course, has a greater angular velocity on the equator than in higher latitudes. In most cases, however, the changes of the equatorial protuberances are too great and too sudden to be thus explained. They are, in fact, due to the greater solar activity developed in the equatorial zones, and wherever spots are most numerous.

The solar protuberances appear under various shapes, and are often so complicated in appearance that they defy description. Some resemble huge clumsy masses having a few perforations on their sides; while others form a succession of arches supported by pillars of different styles. Others form vertical or inclined columns, often surmounted by cloud-like masses, or by various appendages, which sometimes droop gracefully, resembling gigantic palm leaves. Some resemble flames driven by the wind; others, which are composed of a multitude of long and narrow filaments, appear as immense fiery bundles, from which sometimes issue long and delicate columns surmounted by torch-like objects of the most fantastic pattern. Some others resemble trees, or animal forms, in a very striking manner; while still others, apparently detached from the solar limb, float above it, forming graceful streamers or clouds of various shapes. Some of the protuberances are very massive, while others are so thin and transparent as to form a mere veil, through which more distant flames can easily be seen.

Notwithstanding this variety of form, two principal classes of solar protuberances may be recognized: the cloud-like or quiescent, and the eruptive or metallic protuberances.

The first class, which is the most common, comprises all the cloud-like protuberances resting upon the chromosphere or floating about it. The protuberances of this type often obtain enormous horizontal proportions, and it is not rare to see some among them occupying 20° and 30° of the solar limb. The height attained by protuberances of this class does not correspond in general to their longitudinal extent; although some of their branches attain considerable elevations. These prominences very seldom have the brilliancy displayed by the other type, and are sometimes so faint as to be seen with difficulty. Although it is generally stated by observers that some of the protuberances belonging to this class are detached from the solar surface, and kept in suspension above the surface, like the clouds in our atmosphere, yet it seems to me very doubtful whether protuberances are ever disconnected from the chromosphere, since, in an experience of ten years, I have never been able to satisfy myself that such a thing has occurred. Many of them have appeared to me at first sight to be detached from the surface, but with a little patience and attention I was always able to detect faint traces of filamentary elements connecting them with the chromosphere. Quite often I have seen bright protuberances gradually lose their light and become invisible, while soon after they had regained it, and were as clearly visible as before. Observations of this kind seem to show that while the prominences are for the most part luminous, there are also a few which are non-luminous and invisible to the eye. These dark and invisible forms are most generally found in the vicinity of Sun-spots in great activity. When observing such regions with the spectroscope, it is not rare to encounter them in the form of large dark spots projecting on the solar spectrum near the hydrogen lines. On July 28th, 1872, I observed with the spectroscope a dark spot of this kind issuing from the vicinity of a large Sun-spot, and extending over one-fifth of the diameter of the Sun. This object had been independently observed in France a little earlier by M. Chacornac with the telescope, in which it appeared as a bluish streak.

The second class of solar protuberances, comprising the eruptive type, is the most interesting, inasmuch as it conveys to us a conception of the magnitude and violence of the solar forces. The protuberances of this class, which are always intensely bright, appear for the most part in the immediate vicinity of Sun-spots or faculæ. These protuberances, which seem to be due to the outburst of the chromosphere, and to the violent ejection of incandescent gases and metallic vapors from the interior of the Sun, sometimes attain gigantic proportions and enormous heights.

While the spectrum of the protuberances of the cloudy type is simple, and usually composed of four hydrogen lines and the yellow line D3, that of the eruptive class is very complicated, and, besides the hydrogen lines and D3, it often exhibits the bright lines of sodium, magnesium, barium, titanium, and iron, and occasionally, also, a number of other bright lines.

The phenomena of a solar outburst are grand and imposing. Suddenly immense and acute tongues and jets of flames of a dazzling brilliancy rise up from the solar limb and extend in various directions. Some of these fiery jets appear perfectly rigid, and remain apparently motionless in the midst of the greatest disorder. Immense straps and columns form and rise in an instant, bending and waving in all sorts of ways and assuming innumerable shapes. Sometimes powerful jets resembling molten metal spring up from the Sun, describing graceful parabolas, while in their descent they form numerous fiery drops which acquire a dazzling brilliancy when they approach the surface.

The upward motion of the protuberances in process of formation is sometimes very rapid. Some protuberances have been observed to ascend in the solar atmosphere at the rate of from 120 to 497 miles a second. Great as this velocity may appear, it is nevertheless insignificant when compared with that sometimes attained by protuberances moving in the line of sight instead of directly upwards. Movements of this kind are indicated by the displacement of the bright or dark lines in the spectrum. A remarkable instance of this kind occurred on the 26th of June, 1874. On that day I observed a displacement of the hydrogen C line corresponding to a velocity of motion of 1,600 miles per second. The mass of hydrogen gas in motion producing such a displacement was, according to theory, moving towards the Earth at this incredible rate, when it instantly vanished from sight as if it had been annihilated, and was seen no more.

Until recently the protuberances had not been observed to rise more than 200,000 miles above the solar surface; but, on October 7th, 1880, a flame, which had an elevation of 80,000 miles when I observed it at 8h. 55m. A. M., had attained the enormous altitude of 350,000 miles when it was observed at noon by Professor C. A. Young. If we had such a protuberance on the Earth, its summit would be at a height sufficient not merely to reach, but to extend 100,000 miles beyond the Moon.

Although the solar protuberances represented in Plate II. have not the enormous proportions attained by some of these objects, yet they are as characteristic as any of the largest ones, and afford a good illustration of the purely eruptive type of protuberances. The height of the largest column in the group equals 4' 43", or a little over 126,000 miles. A large group of Sun-spots was in the vicinity of these protuberances when they were observed and delineated.

A solar eclipse is due to the passage of the Moon directly between the observer and the Sun. Such an eclipse can only occur at New Moon, since it is only at that time that our satellite passes between us and the Sun. The Moon's orbit does not lie precisely in the same plane as the orbit of the Earth, but is inclined about five degrees to it, otherwise an eclipse of the Sun would occur at every New Moon, and an eclipse of the Moon at every Full Moon.

Since the Moon's orbit is inclined to that of the Earth, it must necessarily intersect this orbit at two opposite points. These points are called the nodes of the Moon's orbit. When our satellite passes through either of the nodes when the Moon is new, it appears interposed to some extent between the Sun and the Earth, and so produces a solar eclipse; while if it passes a node when the Moon is full, it is more or less obscured by the Earth's shadow, which then produces an eclipse of the Moon. But, on the other hand, when the New Moon and the Full Moon do not coincide with the passage of our satellite through the nodes of its orbit, no eclipse can occur, since the Moon is not then on a line with the Sun and the Earth, but above or below that line.

Owing to the ellipticity of the Moon's orbit, the distance of our satellite from the Earth varies considerably during each of its revolutions around us, and its apparent diameter is necessarily subject to corresponding changes. Sometimes it is greater, sometimes it is less, than the apparent diameter of the Sun. If it is greater at the time of a solar eclipse, the eclipse will be total to a terrestrial observer stationed nearly on the line of the centres of the Sun and Moon, while it will be only partial to another observer stationed further from this line. But the Moon's distance from the Earth may be so great and its apparent diameter consequently so small that even those observers nearest the central line of the eclipse see the border of the Sun all round the black disk of the Moon; the eclipse is then annular. Even during the progress of one and the same eclipse the distance of the Moon from the parts of the Earth towards which its shadow is directed may vary so much that, while the eclipse is total to some observers, others equally near the central line, but stationed at a different place, will see it as annular.

The shadow cast by the Moon on the Earth during total eclipses, travels along upon the surface of the Earth, in consequence of the daily movement of rotation of our globe combined with the movements of the Earth and Moon in their orbits. The track of the Moon's shadow over the Earth's surface has a general eastward course, so that the more westerly observers see it earlier than those east of them. An eclipse may continue total at one place for nearly eight minutes, but in ordinary cases the total phase is much shorter.

The nodes of the Moon's orbit do not invariably occupy the same position, but move nearly uniformly, their position with regard to the Sun, Earth, and Moon being at any time approximately what it formerly was at a series of times separated by equal intervals from each other. Each interval comprises 223 lunations, or 18 years, 11 days, and 7 or 8 hours. The eclipses which occur within this interval are almost exactly repeated during the next similar interval. This period, called the "Saros," was well known to the ancients, who were enabled by its means to predict eclipses with some certainty.

PLATE III.—TOTAL ECLIPSE OF THE SUN.Observed July 29, 1878, at Creston, Wyoming Territory

PLATE III.—TOTAL ECLIPSE OF THE SUN.Observed July 29, 1878, at Creston, Wyoming Territory

PLATE III.—TOTAL ECLIPSE OF THE SUN.

Observed July 29, 1878, at Creston, Wyoming Territory

A total eclipse of the Sun is a most beautiful and imposing phenomenon. At the predicted time the perfectly round disk of the Sun becomes slightly indented at its western limb by the yet invisible Moon. This phenomenon is known as the "first contact."

The slight indentation observed gradually increases with the advance of the Moon from west to east, the irregularities of the surface of our satellite being plainly visible on the border of the dark segment advancing on the Sun's disk. With the advance of the Moon on the Sun, the light gradually diminishes on the Earth. Every object puts on a dull and gloomy appearance, as when night is approaching; while the bright sky, losing its light, changes its pure azure for a livid grayish color.

Two or three minutes before totality begins, the solar crescent, reduced to minute proportions, gives comparatively so little light that faint traces of the Sun's atmosphere appear on the western side behind the dark body of the Moon, whose limb then becomes visible outside of the Sun. I observed this phenomenon at Creston during the eclipse of 1878. From 15 to 20 seconds before totality, the narrow arc of the Sun's disk not yet obscured by the Moon seems to break and separate towards the extremities of its cusps, which, thus divided, form independent points of light, which are called "Baily's beads." A moment after, the whole solar crescent breaks into numerous beads of light, separated by dark intervals, and, suddenly, they all vanish with the last ray of Sunlight, and totality has begun with the "second contact." This phenomenon of Baily's beads is undoubtedly caused by the irregularities of the Moon's border, which, on reaching the solar limb, divide the thin solar crescent into as many beads of light and dark intervals as there are peaks and ravines seen sidewise on that part of the Moon's limb.

With the disappearance of the last ray of light, the planets and the stars of the first and second magnitude seem to light up and become visible in the sky. The darkness, which had been gradually creeping in with the progress of the eclipse, is then at its maximum. Although subject to great variations in different eclipses, the darkness is never so great as might be expected from the complete obscuration of our luminary, as the part of our atmosphere which is still exposed to the direct rays of the Sun, reflects to us some of that light, which thus diminishes the darkness resulting from the disappearance of the Sun. Usually the darkness is sufficient to prevent the reading of common print, and to deceive animals, causing them to act as if night was really approaching. During totality the temperature decreases, while the humidity of the atmosphere augments.

Simultaneously with the disappearance of Baily's beads, a pale, soft, silvery light bursts forth from behind the Moon, as if the Sun, in disappearing, had been vaporized and expanded in all directions into soft phosphorescent rays and streamers. This pale light is emitted by gases constituting the solar atmosphere surrounding the bright nucleus now obscured by the dark body of our satellite. This solar atmosphere is calledCorona, from its distant resemblance to the aureola, or glory, represented by ancient painters around the heads of saints.

With the bursting forth of the corona, a very thin arc of bright white light is seen along the Moon's limb, where the solar crescent has just disappeared. This thin arc of light is the reversing layer, which, when observed with the spectroscope at that moment, exhibits bright lines answering to the dark lines of the ordinary solar spectrum. Immediately above this reversing layer, and concentric with it, appears the pink-colored chromospheric layer, with its curiously shaped flames and protuberances. During totality, the chromosphere and protuberances are seen without the aid of the spectroscope, and appear of their natural color, which, although somewhat varying in their different parts, is, on the whole, pinkish, and similar to that of peach-blossoms; yet it is mixed here and there with delicate prismatic hues, among which the pink and straw colors predominate.

The color of the corona seems to vary in every eclipse, but as its tints are very delicate, it may depend, in a great measure, upon the vision of the observer; although there seems to be no doubt that there are real variations. At Creston, in 1878, it appeared to both Professor W. Harkness and myself of a decided pale greenish hue.

The corona appears under different forms, and has never been observed twice alike. Its dimensions are also subject to considerable variations. Sometimes it appears regular and very little extended, its distribution around the Sun being almost uniform; although in general it spreads a little more in the direction of the ecliptic, or of the solar equator. At other times it appears much larger and more complicated, and forms various wings and appendages, which in some cases, as in 1878, extend to immense distances; while delicate rays radiate in straight or curved lines from the spaces left in the polar regions between the wings. The corona has sometimes appeared as if divided by immense dark gaps, apparently free from luminous matter, and strongly resembling the dark rifts seen in the tails of comets. This was observed in Spain and Sicily during the total eclipse of the Sun in 1870. Different structures, forming wisps and streamers of great length, and interlaced in various ways, are sometimes present in the corona, while faint but more complicated forms, distantly resembling enormous solar protuberances with bright nuclei, have also been observed.

As the Moon continues its eastward progress, it gradually covers the chromosphere and the solar protuberances on the eastern side of the Sun; while, at the same time, the protuberances and the chromosphere on the opposite limb gradually appear from under the retreating Moon. Then, the thin arc of the reversing layer is visible for an instant, and is instantly followed by the appearance of a point of dazzling white light, succeeded immediately by the apparition of Daily's beads on each side, and totality is over, with this third contact. The corona continues to be visible on the eastern side of the Sun for several minutes longer, and then rapidly vanishes.

The thin solar crescent increases in breadth as the Moon advances; while, at the same time, the darkness and gloom spread over nature gradually disappear, and terrestrial objects begin to resume their natural appearance. Finally the limb of the Moon separates from that of the Sun at the instant of "fourth contact," and the eclipse is over.

The phenomena exhibited by the corona in different eclipses are very complex, and, so far, they have not been sufficiently studied to enable us to understand the true nature of the solar atmosphere. From the spectral analysis of the corona, and the phenomena of polarization, it has been learned, at least, that while the matter composing the upper part of the solar atmosphere is chiefly composed of an unknown substance, producing the green line 1474, its lower part is mainly composed of hydrogen gas at different temperatures, a part of which is self-luminous, while the other part only reflects the solar light. But the proportion of the gaseous particles emitting light, to those simply reflecting it, is subject to considerable variations in different eclipses. At present it would seem that in years of great solar disturbances, the particles emitting light are found in greater quantity in the corona than those reflecting it; but further observations will be required to confirm these views.

It is very difficult to understand how the corona, which in certain eclipses extends only one diameter of the Sun, should, in other cases, as in 1878, extend to the enormous distance of twelve times the same diameter. Changes of such magnitude in the solar atmosphere, if due to the operation of forces with which we are acquainted, cannot yet be accounted for by what is known of such forces. Their causes are still as mysterious as those concerned in the production of the monstrous tails displayed by some comets on their approach to the Sun.

Plate 3, representing the total eclipse of the Sun of July 29th, 1878, was drawn from my observations made at Creston, Wyoming Territory, for the Naval Observatory. The eclipse is represented as seen in a refracting telescope, having an aperture of 6⅓ inches, and as it appeared a few seconds before totality was over, and when the chromosphere was visible on the western limb of the Sun. The two long wings seen on the east and west side of the Sun, appeared considerably larger in the sky than they are represented in the picture.

The name of Polar Auroras is given to certain very remarkable luminous meteoric phenomena which appear at intervals above the northern or the southern horizons of both hemispheres of the Earth. When the phenomenon is produced in our northern sky, it is called "Aurora Borealis," or "Northern Lights;" and when it appears in the southern sky, it is called "Aurora Australis," or southern aurora.

Marked differences appear in the various auroras observed from our northern latitudes. While some simply consist in a pale, faint luminosity, hardly distinguishable from twilight, others present the most gorgeous and remarkable effects of brightness and colors.

A great aurora is usually indicated in the evening soon after twilight, by a peculiar grayish appearance of the northern sky just above the horizon. The grayish vapors giving that appearance, continuing to form there, soon assume a dark and gloomy aspect, while they gradually take the form of a segment of a circle resting on the horizon. At the same time that this dark segment is forming, a soft pearly light, which seems to issue from its border, spreads up in the sky, where it gradually vanishes, being the brightest at its base. This arc of light, gradually increasing in extent as well as in brightness, reaches sometimes as far as the polar star. On some rare occasions, one or two, and even three, concentric arches of bright light form one above the other over the dark segment, where they appear as brilliant concentric rainbows. While the aurora continues to develop and spread out its immense arc, the border of the dark segment loses its regularity and appears indented at several places by patches of light, which soon develop into long, narrow, diverging rays and streamers of great beauty. For the most part the auroral light is either whitish or of a pale, greenish tint; but in some cases it exhibits the most beautiful colors, among which the red and green predominate. In these cases the rays and streamers, which are usually of different colors, produce the most magnificent effects by their continual changes and transformations.

The brightness and extent of the auroral rays are likewise subject to continual changes. An instant suffices for their development and disappearance, which may be succeeded by the sudden appearance of others elsewhere, as though the original streamers had been swiftly transported to a new place while invisible. It frequently happens that all the streamers seem to move sidewise, from west to east, along the arch, continuing meanwhile to exhibit their various changes of form and color. For a time, these appearances of motion continue to increase, a succession of streamers alternately shooting forth and again fading, when a sudden lull occurs, during which all motion seems to have ceased. The stillness then prevailing is soon succeeded by slight pulsations of light, which seem to originate on the border-of the dark segment, and are propagated upwards along the streamers, which have now become more numerous and active. Slow at first, these pulsations quicken by degrees, and after a few minutes the whole northern sky seems to be in rapid vibration. The lively upward and downward movement of these streamers entitles them to the name of "merry dancers" given them in northern countries where they are frequent.

Long waves of light, quickly succeeded by others, are propagated in an instant from the horizon to the zenith; these, in their rapid passage, cause bends and curves in the streamers, which then, losing their original straightness, wave and undulate in graceful folds, resembling those of a pennant in a gentle breeze. Although the coruscations add to the grandeur of the spectacle, they tend to destroy the diverging streamers, which, being disconnected from the dark segment, or torn in various ways, are, as it were, bodily carried up towards the zenith.

In this new phase the aurora is transformed into a glorious crown of light, called the "Corona." From this corona diverge in all directions long streamers of different colors and forms, gracefully undulating in numerous folds, like so many banners of light. Some of the largest of these streamers appear like fringes composed of short transverse rays of different intensity and colors, producing the most fantastic effects, when traversed by the pulsations and coruscations which generally run across these rays during the great auroral displays.

The aurora has now attained its full development and beauty. It may continue in this form for half an hour, but usually the celestial fires begin to fade at the end of fifteen or twenty minutes, reviving from time to time, but gradually dying out. The northern sky usually appears covered by gray and luminous streaks and patches after a great aurora, these being occasionally rekindled, but more often they gradually disappear, and the sky resumes its usual appearance.

The number of auroras which develop a corona near the zenith is comparatively small in our latitudes; but many of them, although not exhibited on so grand a scale, are nevertheless very interesting. On some very rare occasions the auroral display has been confined almost exclusively to the dark segment, which appeared then as if pierced along its border by many square openings, like windows, through which appeared the bright auroral light.

PLATE IV.—AURORA BOREALIS.As observed March 1, 1872, at 9h. 25m. P.M.

PLATE IV.—AURORA BOREALIS.As observed March 1, 1872, at 9h. 25m. P.M.

PLATE IV.—AURORA BOREALIS.

As observed March 1, 1872, at 9h. 25m. P.M.

Among the many auroras which I have had occasion to observe, none are more interesting, excepting the type first described, than those which form an immense arch of light spanning the heavens from East to West. This form of aurora, which is quite rare, I last observed on September 12th, 1881. All the northern sky was covered with light vapors, when a small auroral patch appeared in the East at about 20° above the horizon. This patch of light, gradually increasing westward, soon reached the zenith, and continued its onward progress until it arrived at about 20° above the western horizon, where it stopped. The aurora then appeared as a narrow, wavy band of light, crossed by numerous parallel rays of different intensity and color. These rays seemed to have a rapid motion from West to East along the delicately-fringed streamer, which, on the whole, moved southward, while its extremities remained undisturbed. Aside from the apparent displacement of the fringes, a singular vibrating motion was observed in the auroral band, which was traversed by pulsations and long waves of light. The phenomena lasted for about twenty minutes, after which the arch was broken in many places, and it slowly vanished.

The aurora usually appears in the early part of the evening, and attains its full development between ten and eleven o'clock. Although the auroral light may have apparently ceased, yet the phenomenon is not at an end, as very often a solitary ray is visible from time to time; and even towards morning these rays sometimes become quite numerous. On some occasions the phenomenon even continues through the following day, and is manifested by the radial direction of the cirrus-clouds in the heights of our atmosphere. In 1872 I, myself, observed an aurora which apparently continued for two or three consecutive days and nights. In August, 1859, the northern lights remained visible in the United States for a whole week.

The height attained by these meteors is considerable, and it is now admitted that they are produced in the rarefied air of the upper regions of our atmosphere. From the researches of Professor Elias Loomis on the great auroras observed in August and September, 1859, it was ascertained that the inferior part of the auroral rays had an altitude of 46 miles, while that of their summits was 428 miles. These rays had, therefore, a length of 382 miles. From the observation of thirty auroral displays, it has been found that the mean height attained by the summit of these streamers above the Earth's surface was 450 miles.

But if the auroral streamers are generally manifested at great heights in our atmosphere, it would appear from the observations of persons living in the regions where the auroras are most frequent, as also from those who have been stationed in high northern and southern latitudes, that the phenomenon sometimes descends very low. Both Sabine and Parry saw the auroral rays projected on a distant mountain; Ross saw them almost at sea-level projected on the polar ice; while Wrangel, Franklin, and others observed similar phenomena. Dr. Hjaltalin, who has lived in latitude 64° 46' north, and has made a particular study of the aurora, on one occasion saw the aurora much below the summit of a hill 1,600 feet high, which was not very far off.

The same aurora is sometimes observed on the same night at places very far distant from one another. The great aurora borealis of August 28th, 1859, for instance, was seen over a space occupying 150° in longitude—from California to the Ural Mountains in Russia. It even appears now very probable that the phenomenon is universal on our globe, and that the northern lights observed in our hemisphere are simultaneous with the aurora australis of the southern hemisphere. The aurora of September 2d, 1859, was observed all through North and South America, the Sandwich Islands, Australia, and Africa; the streamers and pulsations of light of the north pole responding to the rays and coruscations of the south pole. Of thirty-four auroras observed at Hobart Town, in Tasmania, twenty-nine corresponded with aurora borealis observed in our hemisphere.

The auroral phenomena, although sometimes visible within the tropics, are, however, quite rare in these regions. For the most part they are confined within certain zones situated in high latitudes north and south. The zone where they are most frequent in our hemisphere forms an ellipse, which has the north pole at one of its foci; while the other is situated somewhere in North America, in the vicinity of the magnetic pole. The central line of the zone upon which the auroras seem to be most frequent passes from the northern coast of Alaska through Hudson's Bay and Labrador to Iceland, and then follows the northern coast of Europe and Asia. The number of auroras diminishes as the observer recedes from this zone, and it is only in exceptional cases that they are seen near the equator. Near the pole the phenomenon is less frequent than it is in the region described. In North America we occupy a favorable position for the observation of auroras, as we are nearer the magnetic poles than are the Europeans and Asiatics, and we consequently have a greater number of auroras in corresponding latitudes.

The position of the dark auroral segment varies with the place occupied by the observer, and its centre always corresponds with the magnetic meridian. In our Eastern States the auroral segment appears a little to the west of the north point; but as the observer proceeds westward it gradually approaches this point, and is due north when seen from the vicinity of Lake Winnipeg. At Point Barrow, in the extreme north-west of the United States, the aurora is observed in the east. In Melville Islands, Parry saw it in the south; while in Greenland it is directly in the west.

It is stated that auroras are more numerous about the equinoxes than they are at any other seasons; and also, when the earth is in perigee, than when it is in apogee. An examination which I have made of a catalogue by Professor Loomis, comprising 4,137 auroras observed in the temperate zone of our hemisphere from 1776 to 1873, sustains this statement. During this period, one hundred more auroras were recorded during each of the months comprising the equinoxes, than during any other months of the year; while eighty more auroras were observed when the earth was in perigee, than when it was in apogee. But to establish the truth of this assertion on a solid basis, more observations in both hemispheres will be required.

The aurora is not simply a terrestrial phenomenon, but is associated in some mysterious way with the conditions of the Sun's surface. It is a well-known fact that terrestrial magnetism is influenced directly by the Sun, which creates the diurnal oscillations of the magnetic needle. Between sunrise and two o'clock, the north pole of the needle moves towards the west in our northern hemisphere, and in the afternoon and evening it moves the other way. These daily oscillations of the needle are not uniform in extent; they have a period of regular increase and decrease. At a given place the daily oscillations of the magnetic needle increase and decrease with regularity during a period which is equal to 10⅓ years. As this period closely coincides with the Sun-spot period, the connection between the variation of the needle and these solar disturbances has been recognized.

Auroral phenomena generally accompany the extraordinary perturbations in the oscillations of the magnetic needle, which are commonly called "magnetic storms," and the greater the auroral displays, the greater are the magnetic perturbations. Not only is the needle subject to unusual displacements during an aurora, but its movements seem to be simultaneous with the pulsations and waving motions of the delicate auroral streamers in the sky. When the aurora sends forth a coruscation, or a streamer in the sky, the magnetic needle responds to it by a vibration. The inference that the auroral phenomena are connected with terrestrial magnetism is further supported by the fact that the centre of the corona is always situated exactly in the direction of that point in the heavens to which the dipping needle is directed.

It has been found that the aurora is a periodical phenomenon, and that its period corresponds very closely with those of the magnetic needle and Sun-spots. The years which have the most Sun-spots and magnetic disturbances have also the most auroras. There is an almost perfect similarity between the courses of the three sets of phenomena, from which it is concluded that the aurora is connected in some mysterious way with the action of the Sun, as well as with the magnetic condition of the earth.

A very curious observation, which has been supposed to have some connection with this subject, was made on Sept. 1st, 1859, by Mr. Carrington and Mr. Hodgson, in England. While these observers, who were situated many miles from one another, were both engaged at the same time in observing the same Sun-spot, they suddenly saw two luminous spots of dazzling brilliancy bursting into sight from the edge of the Sun-spot. These objects moved eastward for about five minutes, after which they disappeared, having then traveled nearly 34,000 miles. Simultaneously with these appearances, a magnetic disturbance was registered at Kew by the self-registering magnetic instruments. The very night that followed these observations, great magnetic perturbations, accompanied by brilliant auroral displays, were observed in Europe. A connection between the terrestrial magnetism and the auroral phenomena is further proved by the fact that, before the appearance of an aurora, the magnetic intensity of our globe considerably increases, but diminishes as soon as the first flashes show themselves.

The auroral phenomena are also connected in some way with electricity, and generate serious disturbances in the electric currents traversing our telegraphic lines, which are thus often rendered useless for the transmission of messages during great auroral displays. It sometimes happens, however, during such displays, that the telegraphic lines can be operated for a long distance, without the assistance of a battery; the aurora, or at least its cause, furnishing the necessary electric current for the working of the line. During auroras, the telephonic lines are also greatly affected, and all kinds of noises and crepitations are heard in the instruments.

Two observations of mine, which may have a bearing on the subject, present some interest, as they seem to indicate the action of the aurora on some of the clouds of our atmosphere. On January 6th, 1872, after I had been observing a brilliant aurora for over one hour, an isolated black cumulus cloud appeared at a little distance from the western extremity of the dark auroral segment. This cloud, probably driven by the wind, rapidly advanced eastward, and was soon followed by a succession of similar clouds, all starting from the same point. All these black clouds apparently followed the same path, which was not a straight line, but parallel to and concentric with the border of the dark auroral segment. When the first cloud arrived in the vicinity of the magnetic meridian passing through the middle of the auroral arc, it very rapidly dissolved, and on reaching this meridian became invisible. The same phenomenon was observed with the succession of black clouds following, each rapidly dissolving as it approached the magnetic meridian. This phenomenon of black clouds vanishing like phantoms in crossing the magnetic meridian, was observed for nearly an hour. On June 17th, 1879, I observed a similar phenomenon during a fine auroral display. About midway between the horizon and the polar star, but a little to the west of the magnetic meridian, there was a large black cumulo-stratus cloud which very slowly advanced eastward. As it progressed in that direction, its eastern extremity was dissolved in traversing the magnetic meridian; while, at the same time, several short and quite bright auroral rays issued from its western extremity, which in its turn dissolved rapidly, as if burned or melted away in the production of the auroral flame.

It seems to be a well observed fact, that during auroras, a strong sulphurous odor prevails in high northern latitudes. According to Dr. Hjaltalin, during these phenomena, "the ozone of the atmosphere increases considerably, and men and animals exposed out of doors emit a sulphurous odor when entering a heated room." The Esquimaux and other inhabitants of the northern regions assert that great auroras are sometimes accompanied by crepitations and crackling noises of various sorts. Although these assertions have been denied by several travelers who have visited the regions of these phenomena, they are confirmed by many competent observers. Dr. Hjaltalin, who has heard these noises about six times in a hundred observations, says that they are especially audible when the weather is clear and calm; but that when the atmosphere is agitated they are not heard. He compares them to the peculiar sound produced by a silk cloth when torn asunder, or to the crepitations of the electric machine when its motion is accelerated. "When the auroral light is much agitated and the streamers show great movements, it is then that these noises are heard at different places in the atmosphere."

The spectrum of the auroral light, although it varies with almost every aurora, always shows a bright green line on a faint continuous spectrum. In addition to this green line I have frequently observed four broad diffused bands of greater refrangibility in the spectra of some auroras. In two cases, when the auroras appeared red towards the west, the spectrum showed a bright red line, in addition to the green line and the broad bands described. These facts evidently show that the light of the aurora is due to the presence of luminous vapors in our atmosphere; and it may reasonably be supposed that these vapors are rendered luminous by the passage of electric discharges through them.

In our northern latitudes may be seen, on every clear winter and spring evening, a column of faint, whitish, nebulous light, rising obliquely above the western horizon. A similar phenomenon may also be observed in the east, before day-break, on any clear summer or autumn night. To this pale, glimmering luminosity the name of "Zodiacal Light" has been given, from the fact that it lies in the zodiac along the ecliptic.

In common with all the celestial bodies, the zodiacal light participates in the diurnal motion of the sky, and rises and sets with the constellations in which it appears. Aside from this apparent motion, it is endowed with a motion of its own, accomplished from west to east, in a period of a year. In its motion among the stars, the zodiacal light always keeps pace with the Sun, and appears as if forming two faint luminous wings, resting on opposite sides of this body. In reality it extends on each side of the Sun, its axis lying very nearly in the plane of the ecliptic.

In our latitudes the phenomena can be observed most advantageously towards the equinoxes, in March and September, when twilight is of short duration. As we proceed southward it becomes more prominent, and gradually increases in size and brightness. It is within the tropical regions that the zodiacal light acquires all its splendor: there it is visible all the year round, and always appears very nearly perpendicular to the horizon, while at the same time its proportions and brilliancy are greatly increased.


Back to IndexNext