CHAPTER VI.

Fig. 6.Fig. 6.View of a small Furnace Chamber, with portion of wall broken away to show the "Convoluted" Stove.

In cheap baths the interior face of furnace chamber may be of stock brickwork; but best glazed work should be adopted in good ones. All hot and cold-air ducts should be similarly lined with glazed ware. In first-class work the floors of horizontal and inclined flues should be of white glazed tiles set in cement. Manholes must be provided for cleaning when necessary. Every portion of furnace chamber, flues, shafts, and conduits for hot and cold air must be "get-at-able" either by means of manholes or by long brushes. Air-tight doors must be indicated on the plans wherever this necessity demands them.

The iron smoke-pipe from furnace must be conducted to the smoke flue, and the connection between furnace chamber and flue hermetically sealed. The walls for a small furnace chamber need not be more than 4½ in. thick. Large furnaces require walls one-brick thick.

Fig. 7.Fig. 7.An Air Filter.

The cold-air flues leading from either side of the furnace must be conducted to their respective inlets. If possible, at least two inlets should be provided, facing different ways: this with regard to the possibility of certain winds drawing the air out where it is wanted to enter. The openings should be vertical, like windows, and, in cities, furnished with a solid frame and casement, fitted with louvres of plate glass with polished edges. Between the rebate and the casement it is a good plan to leave a space of an inch and a half for a movable stretcher-frame holding several layers of "cheese-cloth" to filter the air. The construction of such an air filter is shown at Fig. 7. The glass louvres keep out the wet, and throw off coarse particles of falling soot; and the provision of a movable stretcher permits the cloths to be frequently changed for clean ones—a veryimportant point, though little heeded, if not, perhaps, wholly ignored.

Fig. 8.Fig. 8.Plans and Section of a Furnace Chamber, &c., for a Bath on the ordinary Hot-air Principle.View larger image

The position of air intake is a matter of great importance, especially in large towns. It evidently is bad to draw a supply of air from the bottom of an area. Even the position shown in Fig. 8 is not good: the shaftshould be carried higher. The best places for the intakes are where there is always a current of pure air blowing, and away from smoky chimneys. Theoretically, it would seem that the higher the level of intake the better; but in cities, by going high we get among the belching chimney-tops, even if we escape the stagnation below. Moreover, a high inlet with a strong wind tending to exhaust the air in the shaft might find the architect with the cold air sweeping through his bath, and all the heated air rushing up the supply-shaft. A large "lobster-back" automatically turningtowardsthe wind, would in many cases prevent such a disastrous result. Even in low-level intakes, as I have said, trouble will sometimes arise from the same cause. This may be remedied by providing more than one inlet, so that only the one facing the current of air will be employed, the other being closed, which could be effected by fixing the glass louvres, spoken of above, on pivots, and connecting them with a rod and adjustable rack. It would be a very simple matter to make the wind itself automatically open and shut the louvres.

The theory of the heating and ventilation of the hot rooms requires most careful study, and the particular scheme to be adopted in any new bath must be well considered with respect to the restrictions of the site. At Fig. 8, I have endeavoured to show how to make the best of what is perhaps a bad job: the site only admits of ventilation at a back area, it is impossible to construct flues anywhere else, and the fresh air must be drawn from the same area. On the ground floor are cooling and dressing rooms; the bath rooms are in the basementand the furnace in a sub-basement, reached from a passage at the end of the stairs for the bather. Two convoluted stoves are shown in a vault; three air-inlets are provided, and the foul air is drawn up into the smoke flues, two in number, which, above, could join one another. Let us follow the air in its passage through the bath. Entering at the intakes, any coarse impurities are thrown off by the smooth louvres, and the tendency of finer particles to rush in is checked by the stretched canvas cheese-cloths. Thus deprived of its actually visible impurities, the air passes through a longer or shorter conduit of glazed brickwork until it reaches the horizontal flues running to beneath the furnace walls, along which it is rapidly drawn, and, ascending between the walls and heating surfaces and between the two adjacent heating surfaces, absorbs the radiating heat and enters the laconicum by way of the rectangular shaft constructed above the vault spanning the two stoves.

Questions of temperature I will omit for the present. The air, on passing through the laconicum, will be practically pure, as it is in such great bulk compared with the number of occupants of this highly-heated chamber, and it will not be absolutely necessary to provide ventilators. These should commence in the calidarium, and should, in the scheme of ventilation here considered, be so disposed that the nearer they are to the lavatorium and shampooing-room, the more frequent will they become. The object of this disposition of outlets for vitiated air is, that the cross currents thus created may not interfere with the main flow from the heating chamber to the lavatorium.Were too many ventilators to be placed near the hotter end of the sudatorium, this stream would be diverted. Too much of the freshly-heated air would flow out at these points, and the onward movement of the air would be enfeebled. There would then be difficulty in maintaining the temperature in the tepidarium and lavatorium.

In passing onward through the various rooms, two changes are wrought in the air: it loses so much of the caloric with which it is charged for every foot it travels, and it becomes laden with the exhalations from the lungs of the bathers. A large proportion of carbonic acid is thrown into the air, and as the normal temperature of the human body remains, in a healthy person, at about 98° Fahr., and rises but a few points even when submitted to the action of heat, these exhalations, in addition to being heavier than air, are very much below the average temperature of a sudatory chamber. Consequently they fall, and must be extracted at the floor level.

The total area of the outlets for vitiated air should be about equal to the area of the narrowest part of the shaft that conducts the fresh, hot air from the heating chamber. Thus, supposing the latter to be 5 superficial feet, and the size of outlet ventilators a clear 12 in. by 3 in., there may be 20 ventilators disposed round the bath-rooms, say 4 in the calidarium, 7 in the tepidarium, and 9 in the combined shampooing room and lavatorium.

In the diagrams at Figs. 8 and 9 the foul-air conduit is the space comprised under the marble-topped benches running round the hot rooms. At the end of the laconicum they enter flues, which I have shown as running side by side with the smoke flues.

Other methods of heating the air, besides those mentioned, include coils of iron flue-pipes in a brick chamber—a principle that has been frequently adopted in the past—and plain cylindrical iron radiating stoves, such as employed at the Hammam in Jermyn Street.

Fig. 9.Fig. 9.Section of Hot Room, showing Foul-air Conduit.

In the latter plan, however, a great expense is created by the large number of furnace-fires to be kept constantly burning. An exposed stove in a hot room, has, moreover, the objection to its use that it re-heats the air in the bath, which should never on any account be done.

If the iron stove-pipe system is adopted, a furnace similar to the one shown at Fig. 10 must be provided, and after an additional few feet of brick flue the iron pipe would commence and turn back upon itself much as the flue in the fire-brick furnace. Proper supports must beprovided, and the pipes must be stout and jointed together with expansion joints, otherwise considerable difficulty will be found in keeping a long length of flue pipe perfectly free from leakage. Furnaces on this principle may be designed so that they throw a certain amount of radiant heat direct into the hot-rooms, and they possess this advantage over a mere stove, that they warm the air more gradually. The furnace should be built adjoining the laconicum, the partition wall being of 4½-inch glazed brickwork, having a large number of small openings made therein by leaving void spaces as described further on for the fireclay heating apparatus. Behind this wall the iron flue-pipe should be placed, turning back upon itself, as described above, for perhaps half-a-dozen times, and ending in the vertical brick flue. The furnace itself should be of fire-clay, and so designed that its utmost heating power may be economically employed in warming the incoming air, which should pass over the furnace and iron flues, through the holes in partition wall, and thus into the hot rooms. The flue, if of wrought iron, should be rectangular in section, but if of cast-iron it should be round.

The most economical way of obtaining a high temperature in a small, inexpensive, and unpretentious private bath is by means of a common laundry stove, with a longer or shorter length of iron flue in the apartment. This is the cheapest and quickest method of raising the temperature of a room for sudorific purposes.

Fig. 10.Fig. 10.A Fireclay Heating Apparatus.View larger image

To turn to methods of heating from a radiating surface of firebrick, at Fig. 10 I have given the plan, elevation, and sections of a fireclay heating apparatus. It is constructed wholly of fireclay—fireclay bricks, quarries, and cement. In the main it consists of a long flue of firebricks and slabs, which coils backwards and forwards over itself till the desired amount of radiatingsurface is gained. Between the coils are spaces for super-heating the air already warmed by passing over the actual furnace and into the warm air chamber, the air passing through by means of perforated bricks. The illustration shows a simple furnace; but it would be an easy matter to improve upon this by providing iron air-tight doors lined with fireclay, for cleansing flues and air-chambers. The example given is only suited to heat a small public bath. For a large set of hot rooms, a compound apparatus could be constructed by placing an additional furnace in a sub-basement, the one on the level of the sudatory supplying radiant heat, and the lower one hot air. Two such apparatus might be placed one behind the other, end to end, or might form thesidesof the laconicum; the last plan, however, being the least to be recommended, as in such positions they would not directly radiate their heat into the adjoining hot rooms.

The advantage of such a furnace as that shown is that it supplies radiant heat of a most exhilarating kind, besides a proportion of heated air, and from a fireclay surface, the employment of which renders it absolutely impossible to overheat the air, or to contaminate it by deleterious particles resulting from the decomposition of metal. Moreover, the stoking of this class of furnace requires less arduous attention than an iron stove. Its disadvantage is that, should the temperature of the bath be allowed to fall markedly, it requires some time for the extra heat to be made up again. Inasmuch, however, as fires at public baths must be kept banked up overnight, this is not a matter of importance. It is thisvery slowness of increase in temperature that constitutes the safeguard against that overheated air, the presence of which we can, with practice, detect by the smell in so many baths. The difficulties involved in the construction of a furnace of this nature relate to the prevention of cracking and consequent escape of sulphurous fumes and carbon into the air. The very simplicity of the construction of the flues and air-chambers constitutes the chief danger, as the chances are that, unless the architect stands by and sees every joint made, the work will be done badly. Absolutely faultless workmanship must be employed throughout, and the fireclay materials must be literally of the very best and soundest description. Every single joint must be perfectly made with fireclay cement or paste. The fireclay bricks, &c., must be selected with regard to the amount of indestructible silica in the clay, consistent with hardness and toughness. Homogeneity of material must be obtained, having regard to expansion and contraction. The same material used for the bricks, &c., worked into a paste, must be employed for the joints.

The design for a furnace on the principle shown at Fig. 10 must be prepared with constant regard to expansion and contraction in heating and cooling. Should this warning be disregarded, fractures will result. It will be seen, upon reference to the plans, that the block of flues and air spaces is left quite free, to allow of any expansion, the connection with the smoke-shaft being by means of an iron flue-pipe, which, being provided in considerable length before passing through the party-wall of laconicum and stokery, by its flexible naturepermits any slight movement in a vertical direction. If an "expansion" joint were provided, there would be a sufficient length of iron pipe if it passed direct from the junction with the heating apparatus into the stokery. So much of the iron flue as is in the laconicum must be coated with asbestos or some composition, or the heating will not be wholly by firebrick. The junction of iron flue and heating apparatus is shown by a cast-iron cap sliding over a projecting rim of fireclay, moulded into the last quarry cover, similar to the way in which cast-iron mouthpieces are fitted to retorts.

This heating apparatus is shown visible in the laconicum, but if thought desirable it could be screened by a wall of glazed bricks—9 in. and miss 4½ in. The 4½ by 3 in. holes can be arranged in diamond patterns. This screen wall, however, cuts off a large quantity of radiant heat.

The first flue past the actual furnace—shown with ordinary dead-plate, raking fire-bars, ashpit, fire-door, and ashpit door for regulating draught—has walls 4½ in. thick; above, smaller bricks, 3 in. wide; but in a larger apparatus, 9 in. and 4½ in. respectively would be required. The quarries between flues and air spaces are 24 in. by 24 in. by 3 in., with rebated joints. Larger covers would be more liable to crack at any provocation.

In addition to heating by means of furnaces, steam-heating may be employed, if found, as in many cases it would be, convenient and economical. The chief disadvantage of this method of heating Turkish baths, is the constant danger, however slight, of bursting apipe in the heating coil, which, by immediately filling the highly-heated atmosphere with vapour, might prove most disastrous to the occupants of the hot rooms, who would be seriously scalded. Nevertheless, the principle has been largely employed in the heating of the most recent Turkish baths in Germany.

If adopted it may be either on the hot-air or radiating plan, as in heating by means of furnaces. In the first method the fresh air is introduced into a chamber containing a coil of steam-pipes, and passes thence into the laconicum by a shaft or conduit, as in the case of air heated by a stove. In the second method, steam radiators—compact batteries of pipes—must be placed in recesses in the hot rooms, fresh air being introduced over them. The steam-pipes employed should be of the "small bore" type, about 5/8 inch internal diameter, and of wrought iron or copper. In order to ensure as far as possible against the danger of explosion, the system of pipes should be tested, when fixed, by severe hydraulic pressure.

It is certainly a great advantage, in point of ease and economy, to be able to warm a building, drive machinery, and heat Turkish and Russian baths from one boiler, which can readily be done, very ordinary pressures of steam giving sufficient heat to keep the radiators of the requisite temperature. But the nature of the heating accomplished by means of steam-pipes is very inferior to that from large radiating surfaces of firebrick.

The average temperatures of a public bath should range from about 110° in the shampooing rooms to250°-260° in the hottest part of the laconicum, taking the readings of the thermometer at a level of 6 ft. 6 in. above floor-line. Between the entrance of the heated air and its point of furthest travel in the shampooing rooms, the bather should be able to select any temperature that may be most agreeable to him, and as many find by experience that a certain degree of heat is best suited to themselves, it shows attention to thehabituésof the bath, if the hot rooms are carefully maintained at the same uniform temperatures throughout the year. This may be 110°-120° in the shampooing rooms, 140° in the tepidarium, 180° in the calidarium, and 250° in the laconicum. These must be the maxima of the average temperatures of each room at 6 ft. 6 in. above the floor. In a pure atmosphere the highest temperatures are comfortable, but in a foul one they become insupportable.

In a good bath, where there is a rapid and continuous flow of air, there will be comparatively little difference between the temperature at say 4 ft., 6 ft., and 8 ft. above the floor. In badly-ventilated rooms, where the air stagnates, there will be a considerable difference. And here we may note a serious objection to the heating of a bath by convection; for while the head may be in a high degree of heat the feet are in comparatively cool air, whereas, if possible, it should be just the reverse. In convected heat, this of course applies in its entirety, as where so-called radiant heat is employed the evil is not quite so marked. And here, too, we may note the admirable nature of the Roman system of heating, where the floors radiated the majority of the heat, andthe walls a slightly less amount. The fresh air under the ancient system must have entered through the cooler rooms, and being drawn towards thecalidariumfound its exit through the ceilings, at times by way of the regulating device mentioned by Vitruvius. Thus the ancient bather would not suffer the inconvenience that accrues to the bather in the modern hot-air bath, whose head, when he is standing upright, is in a considerably higher temperature than any other portion of his body.

The temperature of a bath should not be regulated by the firing of the furnace. This should be regularly stoked, and kept at one uniform heat-giving condition. Bad firing and forced firing may crack the stove should it be of iron, and the air may be overheated. The temperature should be regulated by means of the hit-and-miss ventilators at the floor level. Fanlights between the various hot rooms, with screw-rod adjustment, serve as a means for regulating their relative temperatures.

The heating power of furnaces must be studied. Having calculated the cubical contents of the rooms to be heated, and given the heating power of the stove or apparatus to be employed per cwt. of metal or superficial foot of radiating surface, we arrive at the necessary size.

Messrs. Constantine give the following tables to show the heating power of the "Convoluted" stove. The figures give the requisite size of stove to raise the air to about the relative temperatures I have mentioned before, and with ordinary firing.

Weight of metal.Sq. ft. of heating surface.Area capable of heating.cwt.sq. ft.cub. ft.143550020551,20022692,000341193,500361395,000451808,0005023112,0005629616,000

When different kinds of heating apparatus are employed, their heating power must be carefully ascertained and calculations entered into, or it may be found necessary to resort to the costly and humiliating process of dragging out the stove or pulling down the furnace and refitting a larger one. This point is worth attention. Such mistakes are not unfrequently made.

As regards the amount of air that should flow through the hot rooms, an allowance of 40 cubic feet per head per minute should be the minimum, if purity of atmosphere is to be maintained. In a bath, the importance of perfect ventilation cannot possibly be over estimated, as not only has the respired air from the lungs to be removed, but also the deleterious exhalations from the skin which are produced by perspiration.

The allowance of 40 cubic feet per head per minute should not, if properly distributed, cause an unpleasant draught in any part of the hot rooms; for it must be remembered that even in a highly-heated atmosphere a waft of air of the same temperature is felt to be cold. The main thing to be studied in this provision of a large volume of air is that the cold inlet be ample, and thepassage from this intake to the point where the air is debouched into the laconicum equally roomy and unobstructed. The rapidity of flow will depend upon the means provided for the extraction of the foul air. With large horizontal flues, and a capacious and tall shaft, the so-called natural system of ventilation will be as effective as could be desired. Greater extraction power is gained if in the brick stack a smoke-pipe can be placed running up the whole height. In many cases mechanical ventilation could be employed with the greatest benefit. A powerful air-propeller fixed at the end of a system of horizontal flues under the floors of the hot rooms, and running so as to exhaust, would do away with all the objectionable odours and nastiness of many baths.

The purity or foulness of the air in the hot rooms forms all the difference between a good bath and a bad one, which latter is infinitely worse than no bath at all. There exist, at the present time, scores of baths where the odours of the sudatory chambers are nauseating. Such foulness arises from stagnation of the air. There is no continuous flow, and the respirations and exhalations of the bathers are not removed. A system of ventilation may be pointed out, but it is on the wrong principle, and does not act. There is no change of air. The atmosphere of such places becomes pestilential.

Owing to the expansion by heat, a relatively greater volume of air enters the laconicum than the cold intake. This fact, however, does not practically affect the arrangements for ventilation, &c. Theoretically, however, it would seem to demand that the shaft conducting from furnace to hot rooms should be of greater sectional area than that to the furnace from the intake—about one-third larger—and that the total area of outlets for the escape of vitiated air should be about midway between the two.

The whole principle of the ventilation of the hot rooms of a Turkish bath resolves itself, primarily, into the fact that we have to continually removethe bottom layer of air. The provision of the foul-air conduits below the floor level is equivalent to providing a suspended floor with a hollow space under. This is just the reverse of the principle of ventilating rooms of ordinary temperature, where we require to constantly remove the top layer, and often actually do so when we provide false ceilings to passages, &c.

The ventilators placed at the floor level of the hot rooms should be actually so, and not 3 in. or 6 in. above. Long, wide gratings 6 in. deep are preferable to those of deeper and narrower design. In theory, indeed, the whole circumference of the hot rooms should be lined round with gratings, thus making the sudatorium like a lidless box inverted, into which hot air is thrown and escapes all round the bottom edges.

There is one point about the circulation of air in a set of hot rooms that requires considerable attention, and that is theback-flowalong the floor. In any bath where hot air is supplied, if the bather will hold his linen "check" across the top of the doorway between the rooms he will find that the air is flowing from the laconicum to the shampooing room. If, however, the sheetbe held across the lower portion of the doorway, he will find that there is a current of air setting in an opposite direction—from the shampooing room to the laconicum. This is shown at Fig. 11.

Fig. 11.Fig. 11.Longitudinal Section of Sudatory Chambers.View larger image

It will be seen from the diagram that the bather is really in this back-flow when he is standing between andin a line with the doors of the hot rooms. All the air appears to be travelling along the top of the bath, and the bather reclining on the marble-topped benches would seem to be bathed in air that has passed along the top of the bath, round the shampooing rooms, and back along the floor. In reality, however, it is only from door to door that the currents exist exactly as shown at the diagram, Fig. 11, there being a secondary circulating process in each room.

This circulation of air will exist in any bath heated on the modern system—that is to say, where freshly-heated air is passed in in sufficient quantity. It is a natural result, and tends to distribute the heat more equally. The back-flow is only objectionable when a door is opened direct from the heated shampooing rooms to a cooler apartment, as the plunge bath chamber. The bather standing in a line between the doorways may then feel a cold draught. To guard against this, double doors, with a small lobby between, should be provided to any means of communication with a cold chamber.

A set of hot rooms could be constructed so that the bather would be in the top current of air that flows from the heating apparatus. By reference to Fig. 11 the reader will understand that by the provision of a platform or grating midway between the floor and ceiling this end would be attained.

The atmosphere of the sudatorium must be perfectly free from vapour. "Perfect dryness of the air," says Mr. Urquhart, "is indispensable to the enduring of a high temperature.... This dryness is further requisite for electrical isolation. With vapour in the chamber anatmosphere is created injurious to health and conducive to disease. It is the very condition in which low, putrid, and typhus fevers flourish. The electrical spark will not ignite in such an atmosphere, and the magnet will lose its attractive power. We all know the difference of our own sensations on a dry and on a damp day."

The water-fittings of a Turkish bath include a boiler of some form for heating the water, a cold-water cistern, and a hot-water tank; supply-pipes, flow and return pipes, and branch pipes; lavatorium fittings, comprising bowls, basins, and cocks; douche room fittings, as the "needle" bath, shower, douche, spray, and "wave" baths; a warm shower-bath for bathers entering the bath, or desiring such a shower at intervals; and the fittings of the plunge bath. In addition to this there may be required a drinking fountain in the tepidarium, and an ornamental fountain in the frigidarium; lavatories in various positions; and, possibly, fittings and appliances for the laundry.

Premising an ample supply of pure water, it must be brought into the building through a water-meter to the cold water cistern, which should be at a sufficiently high level to obtain a good "head." This cistern must be capacious and properly connected, on the ordinary circulating principle, with a hot water tank and boiler. Of suitable boilers there are several in the market, of many and varied designs. Simplicity of construction should be the guide to a selection. The boiler will perhaps its most conveniently placed in the stokery, and have beseparate furnace and flue, any scheme for combining the heating of the hot rooms and of the water being out of the question. In small baths, however, the hot-water tank may, for economy's sake, be placed near the ceiling in the laconicum. Where waste steam can be obtained, a water super-heater, with steam coil, may be employed with advantage; but in the majority of cases the ordinary circulating system will be found the most suitable.

The supply-pipes must be of large section, and indeed, the whole scheme of water-fitting should be liberal. It must be remembered that, in addition to the wants of the lavatorium and douche room, plunge, &c., there will be a large amount of water required for laundry purposes, if washing be done upon the premises.

The cold supply cistern may, by the exigencies of the case, be kept down as low as the ceiling of the bath-rooms, and be placed over some subsidiary apartment. This does not give much pressure of water. For all purposes it is best to have the cistern at a minimum height of about 20 ft. above the draw-off taps and valves of the various bathing appliances. This will ensure a good head of water, and make the douche a formidable affair.

The pipes, unions, tees, valves, and cocks should all be of the best description in so important a work as the fitting-up of a public bath. Ordinary bungling plumbing is here out of place. Lead piping should be discarded for all but very cheap work, and iron employed in its stead, with proper screwed joints, angles, and tees.Should there be sufficient means,copperpiping should be employed for anything under 1 in. internal diameter, and gunmetal should be used for unions, &c., and for cocks and valves.

Handsome, large, and well-made water-fittings conduce, in no small degree, to the effect of a bath. There should be no attempt at hiding away of pipes, &c. They should be made features of the bath, and be designed with care and neatly finished. Every pipe, joint, and connection should be prearranged, and the means of fixing and supporting the same carefully designed. Boxings, and the like, should be discarded, and everything frankly exhibited. The day for mysterious plumbing has gone by. There is some beauty even in a pipe.

To consider the fittings, we will commence with the lavatorium. Branches from the hot and cold water supply pipes must be conducted to each shampooer's basin. These may be finished separately, with independent nozzles, as at Fig. 12; or the pipes may be connected with the valve shown at Fig. 13, about 18 in. above the basin, the outlet of the valve being fitted with a foot or 15 in. of indiarubber hose. In the latter case the pipes and valve would stand some 9 in. from the wall, and depend from the horizontal supply pipes, which in their turn could be carried on wrought-iron brackets affixed to the wall, or be hung by iron ties, as indicated by dotted lines at Fig. 16. Theinternaldiameter—the measurement given in all the figures—of these branch pipes to taps over shampooing basins should be 3/4 in.

Fig. 12.Fig. 12.A Shampooing Basin.

Cocks and valves for the purposes of the Turkish bath are best of the "gland" pattern. They should have bold handles. Those of the screw-down type are useless, except as stop-cocks. Roundways should be used, and, to insure freedom of running, the turning part should be equal to the inner diameter of the pipes. The whole should be of gunmetal, and, if the pipes tobe used be of iron, screwed at the end. Fig. 13 shows the type of valve to be employed to regulate the temperature of water for shower baths, &c. To be useful, as well as bold and effective in appearance, the handles should be large.

Fig. 13.Fig. 13.Valve for Regulating Temperature of Water.

In every case, the cold water must be placed on the right hand, and the hot on the left.

The earthenware basin is provided to hold watermixed to the required temperature. A waste and overflow are not shown in the illustration, but they should be provided. The basin is best wide and shallow—shallower than shown. There should be no overhanging ledge to catch the shampooer's hand-basin; for this reason I have shown, at Fig. 12, the basin sunk into the marble slab, instead of the marble being on top, as ordinary. The copper hand-basin is provided for the shampooer to take water from the earthenware basin and throw over the shampooing slab, or over the bather. In addition, a wooden, copper-banded soap-bowl must be provided.

Should there be a row of shampooing basins and benches, the horizontal supply-pipes must be continued along the wall, and branches dropped to each basin. The basins are most conveniently placed when raised somewhat higher than the benches. In the illustration given, I have shown how to arrange horizontal foul-air flues under the basins. In other cases the fixing of the basins will be much simpler. For pure lavatorium purposes these basins, cocks, &c., are all the water-fittings to be considered; but in an apartment combining the purposes of douche room—and perhaps a plunge bath chamber—as well as a washing and massage room, more or less of the fittings about to be described will have to be accommodated.

The tonic appliances for treating the bather subsequently to the shampooing, the soaping, and the cleansing, are various. The most useful is the simple shower bath, with a very large rose, and amply supplied with water through a regulating valve. It is employed forthoroughly cleansing the bather before he enters the plunge, whose waters are for the common use of all. In many small baths its place is efficiently taken by an ordinary hand rose or spray of the kind shown at Fig. 15. The shower proper is usually fixed above the "needle" bath, as at Fig. 14, or formed by a continuation of the "backbone" of the needle. It is best to have separate regulating valves for the needle and shower, as at Fig. 16; but at Fig. 14 it is shown with a branch from the pipe conducting to the needle, and with stop cocks. The needle-bath is a skeleton-like structure having a large hollow backbone and branching ribs. The water ascends the backbone, and, passing into the ribs, squirts out of small holes punctured in their internal circumferences. The bather stands in the centre of the apparatus, with the ribs encircling him. The ribs should be of 1/2-in. copper piping, the backbone and lesser supports being of iron, 2½ and 1½ in. diameter respectively. In a convenient position for the attendant must be placed the regulating valve.

A more elaborate contrivance may be made, which will include needle, shower, ascending shower, spinal douche, and back shower; but this should be left for hydropathic institutions and invalids. Simplicity in these matters should be the great desideratum. The above-named additions, however, may be briefly described. At Fig. 14 I have indicated the position of ascending shower. It would be connected with the pipe supplying needle and shower, and have a stop-cock. The spinal douche is a little nozzle behind the shower proper, and should have similar connection with thesupply-pipe. The back shower or spinal spray would be a rose placed about half-way up the iron backbone, and be connected in the same manner. Avoid these complications in a bath for healthy persons.

Fig. 14.Fig. 14.A Needle Bath.

The needle bath is best left exposed, but it may be enclosed in a metal shield if desired. This bath may be placed in one of three positions—(1) in the shampooing room, (2) in a separate chamber, (3) in the plunge bath chamber. It is most conveniently placed where the bather passes iten routefrom the washing room to theplunge. For this appliance a good head of water is absolutely essential, as with a low pressure it is very ineffective. The illustration shows the bath standing on iron shoes. If fixed in a corner, as ordinarily, it can be secured to the wall by such cramps or brackets as may be necessary.

Fig. 15.Fig. 15.Spray, Wave, and Douche Baths.

Besides the needle and shower, as above, the tonic bathing appliances may include an ordinary horizontal douche that can be pointed in any direction, a spray, or large rose, and a "wave." These three appliances may be placed together as at Fig. 15. They are connected to the pipes from the regulating valves by means of a foot or so of flexible hose. To this is secured a tapering copper pipe. The douche has a gunmetal nozzle. It is directed against the back and spine, but must not be used upon the head or chest. With a good head of water this is a most powerful appliance, feeling more like a rod of some solid substance pressing against one than a stream of water. The "wave"is formed by a copper spreader. The spray is simply a large rose, 6 in. or 8 in. diameter.

Fig. 16.Fig. 16.Regulating Valves for Needle, Douche, &c.

It may be found convenient to arrange the valves for the whole of the above-mentioned appliances together, as at Fig. 16. Each pair of hot and cold handles are here brought together. These handles should be long, so as to admit of easy regulating of the temperature of the water; they may well be 9 in. in length. The douche, wave, and spray should be kept as close as possible to the handles that regulate their temperature.

I would repeat the caution that it is very necessary to beware of complications in these water-fittings and appliances. Some of the more "fussy" contrivances—as, for example, the elaborated needle bath as above described—require so much regulating, and so many valves and stop-cocks, that it is quite an undertaking for the attendant to set them going. Simplicity in design and construction should be observed in this work: the pipes as few as need be; the valves as simple as possible; and the whole put together in a manner that will permit of their being easily examined and repaired.

I have before hinted at the desirability of making some sort of provision whereby the bather may, on entering the bath, have a warm spray or shower, of any temperature that may be agreeable to him. In high class baths this feature should always be provided, as it is a great luxury, and, moreover, to certain constitutions a necessity, thus to be able to take such a shower before entering the hot rooms, or at such intervals during the sojourn in these apartments as may be desired. The proper position for this shower-bath requires some consideration. Were it only for the entering bather that it should be provided, it would be best placed in a lobby near the entrance to the hot rooms; but as the occupants of the hot rooms may frequently desire some such shower, it must be arranged with regard to this fact. It should be convenient for the entering bathers and for those in thebath. A small chamber entered by doors from the lobby to the tepidarium, and also from the tepidarium itself, would be convenient. At times it may be placed in a nook off the shampooing room. Wherever it be placed, the apparatus provided for the purpose of the shower must be such as can be managed by the bather himself, so as not to take up the time of the attendants; and for this reason it must be capable of easy regulation, and free from liability of scalding the user, unless through gross carelessness. A valve with one handle only must be employed, as, unless the bather has had some practice, it is difficult to obtain this immunity from danger of scalding when two handles are used. A valve such as that shown at Fig. 17 should be employed. This valve must be so designed as to supply cold, tepid, and hot waterin regular gradation—not intermittently, as do some valves of this description. It must be so placed that any one taking the shower may, whilst beneath the rose, be able to easily reach the handle. The rose should not be less than 6 in. or 7 in. diameter. Fig. 12 illustrates the complete fitting up of this bather's shower-bath.

In hydropathic establishments it might be an improvement to add a small foot-bath, formed by a sinking of about 6 in. in the floor, and filled with hot water; for physiologists tell us it is bad for invalids to enter the hot rooms with cold feet. Supply pipes, a waste, and overflow would have to be provided for this bath, and a marble seat might be placed round it. A marble coping and mosaic flooring would render it pleasing in appearance.

Fig. 17.Fig. 17.Bather's Shower Bath.

I have hereinbefore, at Fig. 4, given plan and sections of a plunge bath, and shown its water-fittings. The overflow and waste run into cast-iron drainpipes, which should be employed till outside the building. On theend of the overflow pipe is screwed a gunmetal rose with leather packing, the screw-holes being drilled into the flange of pipe. For the waste I have shown a "disc" valve of gunmetal. This is similarly screwed to flange of pipe, and with leather packing. The valve is opened and closed by a movable rod. Iffixed, it might catch the toes of the swimmer, and for this reason it would perhaps be best to set the valve itself back in a recess. Instead of this valve, an ordinary 4-in., 5-in., or 6-in. "plug" waste could be employed, but it is rather clumsy on such a scale. When practicable, a screw-down valve, with wheel and spindle outside the bath, is the best means of letting out the waste water. The supply-pipe should be connected with the main supply just after the water meter. The valve should be of the "screw-down" pattern, either with a thumbscrew, wheel and spindle, or a key.

In coast towns, where asea-waterplunge may be employed, a little rose on a bracket should be provided in a convenient position, for cleansing the hair from salt water.

Of the lavatory fittings in the cooling room, and of the "sanitary" water-fittings, it is unnecessary to speak, except to say that, in a place devoted to the attainment of cleanliness, plumbing of this nature should be as perfect as possible.

A drinking fountain is a desirable feature in the tepidarium of a bath of any pretension. It should be placed at the coolest end of the room, affixed to a wall, and provided with a supply-pipe, waste,and tap of some sort. The bowl is best formed of glazed earthenware.

If an ornamental fountain be required in the frigidarium, it should be of terra-cotta or modelled glazed ware, and must be provided with supply-pipe, waste, and means of regulating the jet of water. A fountain is a very desirable addition to a cooling room, as it is restful to the ear, and may be made pleasant to the eye by means of flowers and plants arranged around and upon it.

Light and shade being the soul of all ornamental effect, we may well consider first the methods of lighting the bath. As a rule, much artificial light will be required. The hot rooms, being often in a basement, are as a rule but feebly illumined from areas and the like. Seeing that purity of atmosphere in these apartments is of so vital importance, the method of artificial lighting adopted should not be such as impregnates the air with obnoxious and harmful, if unnoticeable, fumes. Gas, for this reason, used in the ordinary manner, is objectionable, as the ventilation being by means of low-level exits for the foul air, the products of combustion must of necessity pass by and envelop persons below the burners, though, of course, in a diluted state. Should, therefore, gas-lighting be employed in a sudatory chamber, it should for preference be on one of those systems whereby the burner is cut off from the atmosphere of the room, and provision made for carrying off the fumes. Happily, the use of electric lighting is at last increasing with marked rapidity; and the incandescent light is admirably adapted for all purposes of the Turkish bath. Where it can possibly be adopted it is a great addition to a bath.

For cooling room purposes gas is not so objectionable, except that it is heating, and assists in vitiating the atmosphere. But inasmuch as the fumes in this case will ascend with the general body of air, the objection to gas is much lessened in these apartments. Nevertheless, the electric light is the illuminant to be coveted.

The quality of the lighting in the cooling room should be toned and softened. It is not a place for brilliant general illumination, but rather for a soft light pervading the whole, and auxiliary lights where required, such as near couches, &c.—a system, in fact, diametrically opposed to sun-burner illumination. Nothing more objectionable of its kind can well be imagined than a glaring light in the ceiling of a cooling room. It would be found intolerable.

For practical purposes, the greatest amount of light required in any part of a frigidarium is that at the heads of the couches, where it must be of such strength as will admit of comfortable reading. One gas-burner, or one small incandescent lamp, to every two couches is a fair allowance. If effect be desired, there is, of course, much in the distribution of the illuminating agent that affects for good or evil, and the placing and the relative powers of the lamps or burners must be considered. The dominant point of light might be a prettily-designed lantern with a few brilliant points of colour in it, depending from a chain over a fountain, throwing its rays downwards on to the falling waters, andnotin the eyes of those bathers who may be reclining upon the couches.

Throughout the bath, in either natural or artificial lighting, by windows or lamps, it should be the aim not to throw strong light in the eyes of the bather—a principle of universal application, but especially to be regarded in a place where, more often than not, the occupants of the various apartments are reclining,face upwards, on benches or couches. In the hot rooms, as in the cooling room, little general illumination is required. A bright artificial light in such places seems especially painful to the eyes. What light, therefore, may be provided in the sudatory chambers, should be as diffused as possible, the additional lights for the few who practise reading in these apartments being so arranged as not to be objectionable to the majority of bathers. The lights should be shaded so as to throw their rays downwards in a very small compass.

Considerably more light is required in the lavatoria and shampooing rooms. In scheming the plan of bath rooms in a basement, where daylight can only be obtained at one point, it is desirable, if practicable, to arrange the shampooing room so that it may enjoy the benefit of this light.

For effect, the scale of lighting in the bath rooms may be a rather dark laconicum, and a gradually-increased amount of light from thence to the shampooing room. The plunge-bath chamber should be well lighted, but not above the tone of the frigidarium, or the bather will feel to be going from cheerfulness to comparative gloom, which would be unpleasant. A bright, warm light should be that in the plunge-bath chamber, with perhaps an ornamental lamp over thebath itself; and if the intermediary staircase—should there be such a feature—be lighted on a lower scale, the effect on entering the frigidarium will be a cheerful one.

Decorating.

Under this heading, I would speak of the means of obtaining effect in a bath, of the materials to be employed, and of the design of features—of the effect of the whole and the proportions of its parts, rather than of anything implying thelaying onof so-called ornament.

The architecture of a bath isinterior architectureas distinct from that involving external work. Much of this, moreover, can often only be seen by artificial light. These two restrictions point to the employment, for the most part, of surface decoration, rather than of modelling—of tiles, mosaics, marbles, in place of mouldings, cornices, and pilasters.

There are three features of the bath that are fit subjects for handsome designing, and they are the frigidarium, the tepidarium, and the plunge bath. There is an excuse for elaborating the first two, in that these are the apartments in which the bather remains the longest time; and as for the plunge, it is in itself an object capable of giving a very pleasing effect. Over-elaboration—in respect to added ornament—in the hot rooms, however, gives an air of incongruity. Simplicity, with good proportions, seems here the most pleasing. The general effect of the hot rooms should be light, astatement which is wholly in harmony with what I have said on their lighting, though it may not at first sight appear to be so. The tone of the ceilings and walls and floors should be light, the darkest portions being a dado. A generally dark and heavy tone of colouring is very oppressive in a sudatory chamber. Keep them light: light ceilings of plaster for cheap baths, and of lightly decorated, large, thin tiles, or lightly-tinted enamelled iron, for more expensive establishments; light walls of white, ivory, cream, or buff glazed bricks, without startling bands of a vulgar, as distinct from a really bold, contrast; and mosaic floors of a light filling-in and not too dark pattern. The risers to marble-topped benches may be of another tone, but not too dark; and, in place of a dado of bare glazed bricks, it is perhaps best to stretch Indian matting to keep the bather from the burning wall, as at Fig. 20. This will necessitate fillets affixed to plugs in the brickwork. Woodwork looks best dark and polished, affording an agreeable contrast to the lighter materials.

Bright points of colour may be obtained by stained glass in ceiling-lights or windows, and at night by coloured glass shades over lamps, &c.

The use of iron joists with glazed brick arches between is not to be recommended for the ceilings of the hot rooms. To say the least, it is a heavy-looking arrangement. Enamelled iron may be made to look very well if affixed in sheets of delicate tint with light patterns, and affixed with "buttons" with enamelled heads to the fireproof floors, as at Fig. 18. Large thin tiles make an admirable ceiling for small baths. Theymay be fixed with ornamental wood fillets, or made with screw-holes and affixed to ceiling joists.


Back to IndexNext