CHAPTER XVII.

These facts with respect to plants show that in some few cases certain varieties have had their sexual powers so far modified, that they cross together less readily and yield less seed than other varieties of the same species. We shall presently see that the sexual functions of most animals and plants are eminently liable to be affected by the conditions of life to which they are exposed; and hereafter we shall briefly discuss the conjoint bearing of this and other facts on the difference in fertility between crossed varieties and crossed species.

Domestication eliminates the tendency to Sterility which is general with Species when crossed.

This hypothesis was first propounded by Pallas,[239]and has been adopted by several authors. I can find hardly any direct facts in its support; but unfortunately no one has compared, in the case of either animals or plants, the fertility of anciently domesticated varieties, when crossed with a distinct species, with that of the wild parent-species when similarly crossed. No one has compared, for instance, the fertility ofGallus bankivaand of the domesticated fowl, when crossed with a distinct species of Gallus or Phasianus; and theexperiment would in all cases be surrounded by many difficulties. Dureau de la Malle, who has so closely studied classical literature, states[240]that in the time of the Romans the common mule was produced with more difficulty than at the present day; but whether this statement may be trusted I know not. A much more important, though somewhat different, case is given by M. Groenland,[241]namely, that plants, known from their intermediate character and sterility to be hybrids between Ægilops and wheat, have perpetuated themselves under culture since 1857,with a rapid but varying increase of fertility in each generation. In the fourth generation the plants, still retaining their intermediate character, had become as fertile as common cultivated wheat.

The indirect evidence in favour of the Pallasian doctrine appears to me to be extremely strong. In the earlier chapters I have attempted to show that our various breeds of dogs are descended from several wild species; and this probably is the case with sheep. There can no longer be any doubt that the Zebu or humped Indian ox belongs to a distinct species from European cattle: the latter, moreover, are descended from two or three forms, which may be called either species or wild races, but which co-existed in a state of nature and kept distinct. We have good evidence that our domesticated pigs belong to at least two specific types,S. scrofaandIndica, which probably lived together in a wild state in South-eastern Europe. Now, a widely-extended analogy leads to the belief that if these several allied species, in the wild state or when first reclaimed, had been crossed, they would have exhibited, both in their first unions and in their hybrid offspring, some degree of sterility. Nevertheless the several domesticated races descended from them are now all, as far as can be ascertained, perfectly fertile together. If this reasoning be trustworthy, and it is apparently sound, we must admit the Pallasian doctrine that long-continued domestication tends to eliminate that sterility which is natural to species when crossed in their aboriginal state.

On increased Fertility from Domestication and Cultivation.

Increased fertility from domestication, without any reference to crossing, may be here briefly considered. This subject bears indirectly on two or three points connected with the modification of organic beings. As Buffon long ago remarked,[242]domestic animals breed oftener in the year and produce more young at a birth than wild animals of the same species; they, also, sometimes breed at an earlier age. The case would hardly have deserved further notice, had not some authors lately attempted to show that fertility increases and decreases in an inverse ratio with the amount of food. This strange doctrine has apparently arisen from individual animals when supplied with an inordinate quantity of food, and from plants of many kinds when grown on excessively rich soil, as on a dunghill, becoming sterile; but to this latter point I shall have occasion presently to return. With hardly an exception, our domesticated animals, which have long been habituated to a regular and copious supply of food, without the labour of searching for it, are more fertile than the corresponding wild animals. It is notorious how frequently cats and dogs breed, and how many young they produce at a birth. The wild rabbit is said generally to breed four times yearly, and to produce from four to eight young; the tame rabbit breeds six or seven times yearly, and produces from four to eleven young. The ferret, though generally so closely confined, is more prolific than its supposed wild prototype. The wild sow is remarkably prolific, for she often breeds twice in the year, and produces from four to eight and sometimes even twelve young at a birth; but the domestic sow regularly breeds twice a year, and would breed oftener if permitted; and a sow that produces less than eight at a birth "is worth little, and the sooner she is fattened for the butcher the better." The amount of food affects the fertility even of the same individual: thus sheep, which on mountains never produce more than one lamb at a birth, when broughtdown to lowland pastures frequently bear twins. This difference apparently is not due to the cold of the higher land, for sheep and other domestic animals are said to be extremely prolific in Lapland. Hard living, also, retards the period at which animals conceive; for it has been found disadvantageous in the northern islands of Scotland to allow cows to bear calves before they are four years old.[243]

Birds offer still better evidence of increased fertility from domestication: the hen of the wildGallus bankivalays from six to ten eggs, a number which would be thought nothing of with the domestic hen. The wild duck lays from five to ten eggs; the tame one in the course of the year from eighty to one hundred. The wild grey-lag goose lays from five to eight eggs; the tame from thirteen to eighteen, and she lays a second time; as Mr. Dixon has remarked, "high-feeding, care, and moderate warmth induce a habit of prolificacy which becomes in some measure hereditary." Whether the semi-domesticated dovecot pigeon is more fertile than the wild rock-pigeonC. livia, I know not; but the more thoroughly domesticated breeds are nearly twice as fertile as dovecots: the latter, however, when caged and highly fed, become equally fertile with house pigeons. The peahen alone of domesticated birds is rather more fertile, according to some accounts, when wild in its native Indian home, than when domesticated in Europe and exposed to our much colder climate.[244]With respect to plants, no one would expect wheat to tiller more, and each ear to produce more grain, in poor than in rich soil; or to get in poor soil a heavy crop of peas or beans. Seeds vary so much in numberthat it is difficult to estimate them; but on comparing beds of carrots saved for seed in a nursery garden with wild plants, the former seemed to produce about twice as much seed. Cultivated cabbages yielded thrice as many pods by measure as wild cabbages from the rocks of South Wales. The excess of berries produced by the cultivated Asparagus in comparison with the wild plant is enormous. No doubt many highly cultivated plants, such as pears, pineapples, bananas, sugar-cane, &c., are nearly or quite sterile; and I am inclined to attribute this sterility to excess of food and to other unnatural conditions; but to this subject I shall presently recur.

Birds offer still better evidence of increased fertility from domestication: the hen of the wildGallus bankivalays from six to ten eggs, a number which would be thought nothing of with the domestic hen. The wild duck lays from five to ten eggs; the tame one in the course of the year from eighty to one hundred. The wild grey-lag goose lays from five to eight eggs; the tame from thirteen to eighteen, and she lays a second time; as Mr. Dixon has remarked, "high-feeding, care, and moderate warmth induce a habit of prolificacy which becomes in some measure hereditary." Whether the semi-domesticated dovecot pigeon is more fertile than the wild rock-pigeonC. livia, I know not; but the more thoroughly domesticated breeds are nearly twice as fertile as dovecots: the latter, however, when caged and highly fed, become equally fertile with house pigeons. The peahen alone of domesticated birds is rather more fertile, according to some accounts, when wild in its native Indian home, than when domesticated in Europe and exposed to our much colder climate.[244]

With respect to plants, no one would expect wheat to tiller more, and each ear to produce more grain, in poor than in rich soil; or to get in poor soil a heavy crop of peas or beans. Seeds vary so much in numberthat it is difficult to estimate them; but on comparing beds of carrots saved for seed in a nursery garden with wild plants, the former seemed to produce about twice as much seed. Cultivated cabbages yielded thrice as many pods by measure as wild cabbages from the rocks of South Wales. The excess of berries produced by the cultivated Asparagus in comparison with the wild plant is enormous. No doubt many highly cultivated plants, such as pears, pineapples, bananas, sugar-cane, &c., are nearly or quite sterile; and I am inclined to attribute this sterility to excess of food and to other unnatural conditions; but to this subject I shall presently recur.

In some cases, as with the pig, rabbit, &c., and with those plants which are valued for their seed, the direct selection of the more fertile individuals has probably much increased their fertility; and in all cases this may have occurred indirectly, from the better chance of the more numerous offspring produced by the more fertile individuals having survived. But with cats, ferrets, and dogs, and with plants like carrots, cabbages, and asparagus, which are not valued for their prolificacy, selection can have played only a subordinate part; and their increased fertility must be attributed to the more favourable conditions of life under which they have long existed.

ON THE GOOD EFFECTS OF CROSSING, AND ON THE EVIL EFFECTS OF CLOSE INTERBREEDING.

DEFINITION OF CLOSE INTERBREEDING—AUGMENTATION OF MORBID TENDENCIES—GENERAL EVIDENCE ON THE GOOD EFFECTS DERIVED FROM CROSSING, AND ON THE EVIL EFFECTS FROM CLOSE INTERBREEDING—CATTLE, CLOSELY INTERBRED; HALF-WILD CATTLE LONG KEPT IN THE SAME PARKS—SHEEP—FALLOW-DEER—DOGS—RABBITS—PIGS—MAN, ORIGIN OF HIS ABHORRENCE OF INCESTUOUS MARRIAGES—FOWLS—PIGEONS—HIVE-BEES—PLANTS, GENERAL CONSIDERATIONS ON THE BENEFITS DERIVED FROM CROSSING—MELONS, FRUIT-TREES, PEAS, CABBAGES, WHEAT, AND FOREST-TREES—ON THE INCREASED SIZE OF HYBRID PLANTS, NOT EXCLUSIVELY DUE TO THEIR STERILITY—ON CERTAIN PLANTS WHICH EITHER NORMALLY OR ABNORMALLY ARE SELF-IMPOTENT, BUT ARE FERTILE, BOTH ON THE MALE AND FEMALE SIDE, WHEN CROSSED WITH DISTINCT INDIVIDUALS EITHER OF THE SAME OR ANOTHER SPECIES—CONCLUSION.

DEFINITION OF CLOSE INTERBREEDING—AUGMENTATION OF MORBID TENDENCIES—GENERAL EVIDENCE ON THE GOOD EFFECTS DERIVED FROM CROSSING, AND ON THE EVIL EFFECTS FROM CLOSE INTERBREEDING—CATTLE, CLOSELY INTERBRED; HALF-WILD CATTLE LONG KEPT IN THE SAME PARKS—SHEEP—FALLOW-DEER—DOGS—RABBITS—PIGS—MAN, ORIGIN OF HIS ABHORRENCE OF INCESTUOUS MARRIAGES—FOWLS—PIGEONS—HIVE-BEES—PLANTS, GENERAL CONSIDERATIONS ON THE BENEFITS DERIVED FROM CROSSING—MELONS, FRUIT-TREES, PEAS, CABBAGES, WHEAT, AND FOREST-TREES—ON THE INCREASED SIZE OF HYBRID PLANTS, NOT EXCLUSIVELY DUE TO THEIR STERILITY—ON CERTAIN PLANTS WHICH EITHER NORMALLY OR ABNORMALLY ARE SELF-IMPOTENT, BUT ARE FERTILE, BOTH ON THE MALE AND FEMALE SIDE, WHEN CROSSED WITH DISTINCT INDIVIDUALS EITHER OF THE SAME OR ANOTHER SPECIES—CONCLUSION.

The gain in constitutional vigour, derived from an occasional cross between individuals of the same variety, but belonging to distinct families, or between distinct varieties, has not been so largely or so frequently discussed, as have the evil effects of too close interbreeding. But the former point is the more important of the two, inasmuch as the evidence is more decisive. The evil results from close interbreeding are difficult to detect, for they accumulate slowly, and differ much in degree with different species; whilst the good effects which almost invariably follow a cross are from the first manifest. It should, however, be clearly understood that the advantage of close interbreeding, as far as the retention of character is concerned, is indisputable, and often outweighs the evil of a slight loss of constitutional vigour. In relation to the subject of domestication, the whole question is of some importance, as too close interbreeding interferes with the improvement of old races, and especially with the formation of new ones. It is important as indirectly bearing on Hybridism; and perhaps on the extinction of species, when any form has become so rare that only a few individualsremain within a confined area. It bears in an important manner on the influence of free intercrossing, in obliterating individual differences, and thus giving uniformity of character to the individuals of the same race or species; for if additional vigour and fertility be thus gained, the crossed offspring will multiply and prevail, and the ultimate result will be far greater than otherwise would have occurred. Lastly, the question is of high interest, as bearing on mankind. Hence I shall discuss this subject at full length. As the facts which prove the evil effects of close interbreeding are more copious, though less decisive, than those on the good effects of crossing, I shall, under each group of beings, begin with the former.

There is no difficulty in defining what is meant by a cross; but this is by no means easy in regard to "breeding in and in" or "too close interbreeding," because, as we shall see, different species of animals are differently affected by the same degree of interbreeding. The pairing of a father and daughter, or mother and son, or brothers and sisters, if carried on during several generations, is the closest possible form of interbreeding. But some good judges, for instance Sir J. Sebright, believe that the pairing of a brother and sister is closer than that of parents and children; for when the father is matched with his daughter he crosses, as is said, with only half his own blood. The consequences of close interbreeding carried on for too long a time, are, as is generally believed, loss of size, constitutional vigour, and fertility, sometimes accompanied by a tendency to malformation. Manifest evil does not usually follow from pairing the nearest relations for two, three, or even four generations; but several causes interfere with our detecting the evil—such as the deterioration being very gradual, and the difficulty of distinguishing between such direct evil and the inevitable augmentation of any morbid tendencies which may be latent or apparent in the related parents. On the other hand, the benefit from a cross, even when there has not been any very close interbreeding, is almost invariably at once conspicuous. There is reason to believe, and this was the opinion of that most experienced observer Sir J. Sebright,[245]that the evil effects of close interbreeding may be checked by the related individualsbeing separated during a few generations and exposed to different conditions of life.

That evil directly follows from any degree of close interbreeding has been denied by many persons; but rarely by any practical breeder; and never, as far as I know, by one who has largely bred animals which propagate their kind quickly. Many physiologists attribute the evil exclusively to the combination and consequent increase of morbid tendencies common to both parents: that this is an active source of mischief there can be no doubt. It is unfortunately too notorious that men and various domestic animals endowed with a wretched constitution, and with a strong hereditary disposition to disease, if not actually ill, are fully capable of procreating their kind. Close interbreeding, on the other hand, induces sterility; and this indicates something quite distinct from the augmentation of morbid tendencies common to both parents. The evidence immediately to be given convinces me that it is a great law of nature, that all organic beings profit from an occasional cross with individuals not closely related to them in blood; and that, on the other hand, long-continued close interbreeding is injurious.

Various general considerations have had much influence in leading me to this conclusion; but the reader will probably rely more on special facts and opinions. The authority of experienced observers, even when they do not advance the grounds of their belief, is of some little value. Now almost all men who have bred many kinds of animals and have written on the subject, such as Sir J. Sebright, Andrew Knight, &c.,[246]have expressed the strongest conviction on the impossibility of long-continued close interbreeding. Those who have compiled works on agriculture, and have associated much with breeders, such as the sagacious Youatt, Low, &c., have strongly declared their opinion to the same effect. Prosper Lucas, trusting largely to French authorities, has come to a similar conclusion. The distinguished German agriculturist Hermann von Nathusius, who has written the most able treatise on this subject which I have met with, concurs; and as I shall have to quote fromthis treatise, I may state that Nathusius is not only intimately acquainted with works on agriculture in all languages, and knows the pedigrees of our British breeds better than most Englishmen, but has imported many of our improved animals, and is himself an experienced breeder.

Evidence of the evil effects of close interbreeding can most readily be acquired in the case of animals, such as fowls, pigeons, &c., which propagate quickly, and, from being kept in the same place, are exposed to the same conditions. Now I have inquired of very many breeders of these birds, and I have hitherto not met with a single man who was not thoroughly convinced that an occasional cross with another strain of the same sub-variety was absolutely necessary. Most breeders of highly-improved or fancy birds value their own strain, and are most unwilling, at the risk, in their opinion, of deterioration, to make a cross. The purchase of a first-rate bird of another strain is expensive, and exchanges are troublesome; yet all breeders, as far as I can hear, excepting those who keep large stocks at different places for the sake of crossing, are driven after a time to take this step.

Another general consideration which has had great influence on my mind is, that with all hermaphrodite animals and plants, which it might have been thought would have perpetually fertilised themselves, and thus have been subjected for long ages to the closest interbreeding, there is no single species, as far as I can discover, in which the structure ensures self-fertilisation. On the contrary, there are in a multitude of cases, as briefly stated in the fifteenth chapter, manifest adaptations which favour or inevitably lead to an occasional cross between one hermaphrodite and another of the same species; and these adaptive structures are utterly purposeless, as far as we can see, for any other end.

WithCattlethere can be no doubt that extremely close interbreeding may be long carried on, advantageously with respect to external characters and with no manifestly apparent evil as far as constitution is concerned. The same remark is applicable to sheep. Whether these animals have gradually been rendered less susceptible than others to this evil, in order to permit them to live in herds,—a habit which leads the old and vigorous males to expel all intruders, and in consequence often to pair with their own daughters, I will not pretend to decide. The case of Bakewell's Long-horns, which were closely interbred for a long period, has often beenquoted; yet Youatt says[247]the breed "had acquired a delicacy of constitution inconsistent with common management," and "the propagation of the species was not always certain." But the Shorthorns offer the most striking case of close interbreeding; for instance, the famous bull Favourite (who was himself the offspring of a half-brother and sister from Foljambe) was matched with his own daughter, granddaughter, and great-granddaughter; so that the produce of this last union, or the great-great-granddaughter, had 15-16ths, or 93.75 per cent. of the blood of Favourite in her veins. This cow was matched with the bull Wellington, having 62.5 per cent. of Favourite blood in his veins, and produced Clarissa; Clarissa was matched with the bull Lancaster, having 68.75 of the same blood, and she yielded valuable offspring.[248]Nevertheless Collings, who reared these animals, and was a strong advocate for close breeding, once crossed his stock with a Galloway, and the cows from this cross realised the highest prices. Bates's herd was esteemed the most celebrated in the world. For thirteen years he bred most closely in and in; but during the next seventeen years, though he had the most exalted notion of the value of his own stock, he thrice infused fresh blood into his herd: it is said that he did this, not to improve the form of his animals, but on account of their lessened fertility. Mr. Bates's own view, as given by a celebrated breeder,[249]was, that "to breed in and in from a bad stock was ruin and devastation; yet that the practice may be safely followed within certain limits when the parents so related are descended from first-rate animals." We thus see that there has been extremely close interbreeding with Shorthorns; but Nathusius, after the most careful study of their pedigrees, says that he can find no instance of a breeder who has strictly followed this practice during his whole life. From this study and his own experience, he concludes that close interbreeding is necessary to ennoble the stock; but that in effecting this the greatest care is necessary, on account of the tendency to infertility and weakness. It may be added, that another high authority[250]asserts that many more calves are born cripples from Shorthorns than from other and less closely interbred races of cattle.Although by carefully selecting the best animals (as Nature effectually does by the law of battle) close interbreeding may be long carried on with cattle, yet the good effects of a cross between almost any two breeds is at once shown by the greater size and vigour of the offspring; as Mr. Spooner writes to me, "crossing distinct breeds certainly improves cattle for the butcher." Such crossed animals are of course of no value to the breeder; but they have been raised during many years in severalparts of England to be slaughtered;[251]and their merit is now so fully recognised, that at fat-cattle shows a separate class has been formed for their reception. The best fat ox at the great show at Islington in 1862 was a crossed animal.The half-wild cattle, which have been kept in British parks probably for 400 or 500 years, or even for a longer period, have been advanced by Culley and others as a case of long-continued interbreeding within the limits of the same herd without any consequent injury. With respect to the cattle at Chillingham, the late Lord Tankerville owned that they were bad breeders.[252]The agent, Mr. Hardy, estimates (in a letter to me, dated May, 1861) that in the herd of about fifty the average number annually slaughtered, killed by fighting, and dying, is about ten, or one in five. As the herd is kept up to nearly the same average number, the annual rate of increase must be likewise about one in five. The bulls, I may add, engage in furious battles, of which battles the present Lord Tankerville has given me a graphic description, so that there will always be rigorous selection of the most vigorous males. I procured in 1855 from Mr. D. Gardner, agent to the Duke of Hamilton, the following account of the wild cattle kept in the Duke's park in Lanarkshire, which is about 200 acres in extent. The number of cattle varies from sixty-five to eighty; and the number annually killed (I presume by all causes) is from eight to ten; so that the annual rate of increase can hardly be more than one in six. Now in South America, where the herds are half-wild, and therefore offer a nearly fair standard of comparison, according to Azara the natural increase of the cattle on an estancia is from one-third to one-fourth of the total number, or one in between three and four; and this, no doubt, applies exclusively to adult animals fit for consumption. Hence the half-wild British cattle which have long interbred within the limits of the same herd are relatively far less fertile. Although in an unenclosed country like Paraguay there must be some crossing between the different herds, yet even there the inhabitants believe that the occasional introduction of animals from distant localities is necessary to prevent "degeneration in size and diminution of fertility."[253]The decrease in size from ancient times in the Chillingham and Hamilton cattle must have been prodigious, for Professor Rütimeyer has shown that they are almost certainly the descendants of the giganticBos primigenius. No doubt this decrease in size may be largely attributed to less favourable conditions of life; yet animals roaming over large parks, and fed during severe winters, can hardly be considered as placed under very unfavourable conditions.WithSheepthere has often been long-continued interbreeding within the limits of the same flock; but whether the nearest relations have been matched so frequently as in the case of Shorthorn cattle, I do not know. The Messrs. Brown during fifty years have never infused fresh blood into their excellent flock of Leicesters. Since 1810 Mr. Barford has acted on the same principle with the Foscote flock. He asserts that half a centuryof experience has convinced him that when two nearly related animals are quite sound in constitution, in-and-in breeding does not induce degeneracy; but he adds that he "does not pride himself on breeding from the nearest affinities." In France the Naz flock has been bred for sixty years without the introduction of a single strange ram.[254]Nevertheless, most great breeders of sheep have protested against close interbreeding prolonged for too great a length of time.[255]The most celebrated of recent breeders, Jonas Webb, kept five separate families to work on, thus "retaining the requisite distance of relationship between the sexes."[256]Although by the aid of careful selection the near interbreeding of sheep may be long continued without any manifest evil, yet it has often been the practice with farmers to cross distinct breeds to obtain animals for the butcher, which plainly shows that good is derived from this practice. Mr. Spooner sums up his excellent Essay on Crossing by asserting that there is a direct pecuniary advantage in judicious cross-breeding, especially when the male is larger than the female. A former celebrated breeder, Lord Somerville, distinctly states that his half-breeds from Ryelands and Spanish sheep were larger animals than either the pure Ryelands or pure Spanish sheep.[257]As some of our British parks are ancient, it occurred to me that there must have been long-continued close interbreeding with the fallow deer (Cervus dama) kept in them; but on inquiry I find that it is a common practice to infuse new blood by procuring bucks from other parks. Mr. Shirley,[258]who has carefully studied the management of deer, admits that in some parks there has been no admixture of foreign blood from a time beyond the memory of man. But he concludes "that in the end the constant breeding in-and-in is sure to tell to the disadvantage of the whole herd, though it may take a very long time to prove it; moreover, when we find, as is very constantly the case, that the introduction of fresh blood has been of the very greatest use to deer, both by improving their size and appearance, and particularly by being of service in removing the taint of 'rickback,' if not of other diseases, to which deer are sometimes subject when the blood has not been changed, there can, I think, be no doubt but that a judicious cross with a good stock is of the greatest consequence, and is indeed essential, sooner or later, to the prosperity of every well-ordered park."Mr. Meynell's famous foxhounds have been adduced, as showing that no ill effects follow from close interbreeding; and Sir J. Sebright ascertained from him that he frequently bred from father and daughter, mother andson, and sometimes even from brothers and sisters. Sir J. Sebright, however, declares,[259]that by breedingin-and-in, by which he means matching brothers and sisters, he has actually seen strong spaniels become weak and diminutive lapdogs. The Rev. W. D. Fox has communicated to me the case of a small lot of bloodhounds, long kept in the same family, which had become very bad breeders, and nearly all had a bony enlargement in the tail. A single cross with a distinct strain of bloodhounds restored their fertility, and drove away the tendency to malformation in the tail. I have heard the particulars of another case with bloodhounds, in which the female had to be held to the male. Considering how rapid is the natural increase of the dog, it is difficult to understand the high price of most highly improved breeds, which almost implies long-continued close interbreeding, except on the belief that this process lessens fertility and increases liability to distemper and other diseases. A high authority, Mr. Scrope, attributes the rarity and deterioration in size of the Scotch deerhound (the few individuals now existing throughout the country being all related) in large part to close interbreeding.With all highly-bred animals there is more or less difficulty in getting them to procreate quickly, and all suffer much from delicacy of constitution; but I do not pretend that these effects ought to be wholly attributed to close interbreeding. A great judge of rabbits[260]says, "the long-eared does are often too highly bred or forced in their youth to be of much value as breeders, often turning out barren or bad mothers." Again: "Very long-eared bucks will also sometimes prove barren." These highly-bred rabbits often desert their young, so that it is necessary to have nurse-rabbits.WithPigsthere is more unanimity amongst breeders on the evil effects of close interbreeding than, perhaps, with any other large animal. Mr. Druce, a great and successful breeder of the Improved Oxfordshires (a crossed race), writes, "without a change of boars of a different tribe, but of the same breed, constitution cannot be preserved." Mr. Fisher Hobbs, the raiser of the celebrated Improved Essex breed, divided his stock into three separate families, by which means he maintained the breed for more than twenty years, "by judicious selection from thethree distinct families."[261]Lord Western was the first importer of a Neapolitan boar and sow. "From this pair he bred in-and-in, until the breed was in danger of becoming extinct, a sure result (as Mr. Sidney remarks) of in-and-in breeding." Lord Western then crossed his Neapolitan pigs with the old Essex, and made the first great step towards the Improved Essex breed. Here is a more interesting case. Mr. J. Wright, well known as a breeder, crossed[262]the same boar with the daughter, granddaughter, and great-granddaughter, and so on for seven generations. The result was, that in many instances the offspring failed to breed; in others they produced few that lived; and of the latter many were idiotic, without senseeven to suck, and when attempting to move could not walk straight. Now it deserves especial notice, that the two last sows produced by this long course of interbreeding were sent to other boars, and they bore several litters of healthy pigs. The best sow in external appearance produced during the whole seven generations was one in the last stage of descent; but the litter consisted of this one sow. She would not breed to her sire, yet bred at the first trial to a stranger in blood. So that, in Mr. Wright's case, long-continued and extremely close interbreeding did not affect the external form or merit of the young; but with many of them the general constitution and mental powers, and especially the reproductive functions, were seriously affected.Nathusius gives[263]an analogous and even more striking case: he imported from England a pregnant sow of the large Yorkshire breed, and bred the product closely in-and-in for three generations: the result was unfavourable, as the young were weak in constitution, with impaired fertility. One of the latest sows, which he esteemed a good animal, produced, when paired with her own uncle (who was known to be productive with sows of other breeds), a litter of six, and a second time a litter of only five weak young pigs. He then paired this sow with a boar of a small black breed, which he had likewise imported from England, and which boar, when matched with sows of his own breed, produced from seven to nine young: now, the sow of the large breed, which was so unproductive when paired with her own uncle, yielded to the small black boar, in the first litter twenty-one, and in the second litter eighteen young pigs; so that in one year she produced thirty-nine fine young animals!As in the case of several other animals already mentioned, even when no injury is perceptible from moderately close interbreeding, yet, to quote the words of Mr. Coate, a most successful breeder (who five times won the annual gold medal of the Smithfield Club Show for the best pen of pigs), "Crosses answer well for profit to the farmer, as you get more constitution and quicker growth; but for me, who sell a great number of pigs for breeding purposes, I find it will not do, as it requires many years to get anything like purity of blood again."[264]

WithCattlethere can be no doubt that extremely close interbreeding may be long carried on, advantageously with respect to external characters and with no manifestly apparent evil as far as constitution is concerned. The same remark is applicable to sheep. Whether these animals have gradually been rendered less susceptible than others to this evil, in order to permit them to live in herds,—a habit which leads the old and vigorous males to expel all intruders, and in consequence often to pair with their own daughters, I will not pretend to decide. The case of Bakewell's Long-horns, which were closely interbred for a long period, has often beenquoted; yet Youatt says[247]the breed "had acquired a delicacy of constitution inconsistent with common management," and "the propagation of the species was not always certain." But the Shorthorns offer the most striking case of close interbreeding; for instance, the famous bull Favourite (who was himself the offspring of a half-brother and sister from Foljambe) was matched with his own daughter, granddaughter, and great-granddaughter; so that the produce of this last union, or the great-great-granddaughter, had 15-16ths, or 93.75 per cent. of the blood of Favourite in her veins. This cow was matched with the bull Wellington, having 62.5 per cent. of Favourite blood in his veins, and produced Clarissa; Clarissa was matched with the bull Lancaster, having 68.75 of the same blood, and she yielded valuable offspring.[248]Nevertheless Collings, who reared these animals, and was a strong advocate for close breeding, once crossed his stock with a Galloway, and the cows from this cross realised the highest prices. Bates's herd was esteemed the most celebrated in the world. For thirteen years he bred most closely in and in; but during the next seventeen years, though he had the most exalted notion of the value of his own stock, he thrice infused fresh blood into his herd: it is said that he did this, not to improve the form of his animals, but on account of their lessened fertility. Mr. Bates's own view, as given by a celebrated breeder,[249]was, that "to breed in and in from a bad stock was ruin and devastation; yet that the practice may be safely followed within certain limits when the parents so related are descended from first-rate animals." We thus see that there has been extremely close interbreeding with Shorthorns; but Nathusius, after the most careful study of their pedigrees, says that he can find no instance of a breeder who has strictly followed this practice during his whole life. From this study and his own experience, he concludes that close interbreeding is necessary to ennoble the stock; but that in effecting this the greatest care is necessary, on account of the tendency to infertility and weakness. It may be added, that another high authority[250]asserts that many more calves are born cripples from Shorthorns than from other and less closely interbred races of cattle.

Although by carefully selecting the best animals (as Nature effectually does by the law of battle) close interbreeding may be long carried on with cattle, yet the good effects of a cross between almost any two breeds is at once shown by the greater size and vigour of the offspring; as Mr. Spooner writes to me, "crossing distinct breeds certainly improves cattle for the butcher." Such crossed animals are of course of no value to the breeder; but they have been raised during many years in severalparts of England to be slaughtered;[251]and their merit is now so fully recognised, that at fat-cattle shows a separate class has been formed for their reception. The best fat ox at the great show at Islington in 1862 was a crossed animal.

The half-wild cattle, which have been kept in British parks probably for 400 or 500 years, or even for a longer period, have been advanced by Culley and others as a case of long-continued interbreeding within the limits of the same herd without any consequent injury. With respect to the cattle at Chillingham, the late Lord Tankerville owned that they were bad breeders.[252]The agent, Mr. Hardy, estimates (in a letter to me, dated May, 1861) that in the herd of about fifty the average number annually slaughtered, killed by fighting, and dying, is about ten, or one in five. As the herd is kept up to nearly the same average number, the annual rate of increase must be likewise about one in five. The bulls, I may add, engage in furious battles, of which battles the present Lord Tankerville has given me a graphic description, so that there will always be rigorous selection of the most vigorous males. I procured in 1855 from Mr. D. Gardner, agent to the Duke of Hamilton, the following account of the wild cattle kept in the Duke's park in Lanarkshire, which is about 200 acres in extent. The number of cattle varies from sixty-five to eighty; and the number annually killed (I presume by all causes) is from eight to ten; so that the annual rate of increase can hardly be more than one in six. Now in South America, where the herds are half-wild, and therefore offer a nearly fair standard of comparison, according to Azara the natural increase of the cattle on an estancia is from one-third to one-fourth of the total number, or one in between three and four; and this, no doubt, applies exclusively to adult animals fit for consumption. Hence the half-wild British cattle which have long interbred within the limits of the same herd are relatively far less fertile. Although in an unenclosed country like Paraguay there must be some crossing between the different herds, yet even there the inhabitants believe that the occasional introduction of animals from distant localities is necessary to prevent "degeneration in size and diminution of fertility."[253]The decrease in size from ancient times in the Chillingham and Hamilton cattle must have been prodigious, for Professor Rütimeyer has shown that they are almost certainly the descendants of the giganticBos primigenius. No doubt this decrease in size may be largely attributed to less favourable conditions of life; yet animals roaming over large parks, and fed during severe winters, can hardly be considered as placed under very unfavourable conditions.

WithSheepthere has often been long-continued interbreeding within the limits of the same flock; but whether the nearest relations have been matched so frequently as in the case of Shorthorn cattle, I do not know. The Messrs. Brown during fifty years have never infused fresh blood into their excellent flock of Leicesters. Since 1810 Mr. Barford has acted on the same principle with the Foscote flock. He asserts that half a centuryof experience has convinced him that when two nearly related animals are quite sound in constitution, in-and-in breeding does not induce degeneracy; but he adds that he "does not pride himself on breeding from the nearest affinities." In France the Naz flock has been bred for sixty years without the introduction of a single strange ram.[254]Nevertheless, most great breeders of sheep have protested against close interbreeding prolonged for too great a length of time.[255]The most celebrated of recent breeders, Jonas Webb, kept five separate families to work on, thus "retaining the requisite distance of relationship between the sexes."[256]

Although by the aid of careful selection the near interbreeding of sheep may be long continued without any manifest evil, yet it has often been the practice with farmers to cross distinct breeds to obtain animals for the butcher, which plainly shows that good is derived from this practice. Mr. Spooner sums up his excellent Essay on Crossing by asserting that there is a direct pecuniary advantage in judicious cross-breeding, especially when the male is larger than the female. A former celebrated breeder, Lord Somerville, distinctly states that his half-breeds from Ryelands and Spanish sheep were larger animals than either the pure Ryelands or pure Spanish sheep.[257]

As some of our British parks are ancient, it occurred to me that there must have been long-continued close interbreeding with the fallow deer (Cervus dama) kept in them; but on inquiry I find that it is a common practice to infuse new blood by procuring bucks from other parks. Mr. Shirley,[258]who has carefully studied the management of deer, admits that in some parks there has been no admixture of foreign blood from a time beyond the memory of man. But he concludes "that in the end the constant breeding in-and-in is sure to tell to the disadvantage of the whole herd, though it may take a very long time to prove it; moreover, when we find, as is very constantly the case, that the introduction of fresh blood has been of the very greatest use to deer, both by improving their size and appearance, and particularly by being of service in removing the taint of 'rickback,' if not of other diseases, to which deer are sometimes subject when the blood has not been changed, there can, I think, be no doubt but that a judicious cross with a good stock is of the greatest consequence, and is indeed essential, sooner or later, to the prosperity of every well-ordered park."

Mr. Meynell's famous foxhounds have been adduced, as showing that no ill effects follow from close interbreeding; and Sir J. Sebright ascertained from him that he frequently bred from father and daughter, mother andson, and sometimes even from brothers and sisters. Sir J. Sebright, however, declares,[259]that by breedingin-and-in, by which he means matching brothers and sisters, he has actually seen strong spaniels become weak and diminutive lapdogs. The Rev. W. D. Fox has communicated to me the case of a small lot of bloodhounds, long kept in the same family, which had become very bad breeders, and nearly all had a bony enlargement in the tail. A single cross with a distinct strain of bloodhounds restored their fertility, and drove away the tendency to malformation in the tail. I have heard the particulars of another case with bloodhounds, in which the female had to be held to the male. Considering how rapid is the natural increase of the dog, it is difficult to understand the high price of most highly improved breeds, which almost implies long-continued close interbreeding, except on the belief that this process lessens fertility and increases liability to distemper and other diseases. A high authority, Mr. Scrope, attributes the rarity and deterioration in size of the Scotch deerhound (the few individuals now existing throughout the country being all related) in large part to close interbreeding.

With all highly-bred animals there is more or less difficulty in getting them to procreate quickly, and all suffer much from delicacy of constitution; but I do not pretend that these effects ought to be wholly attributed to close interbreeding. A great judge of rabbits[260]says, "the long-eared does are often too highly bred or forced in their youth to be of much value as breeders, often turning out barren or bad mothers." Again: "Very long-eared bucks will also sometimes prove barren." These highly-bred rabbits often desert their young, so that it is necessary to have nurse-rabbits.

WithPigsthere is more unanimity amongst breeders on the evil effects of close interbreeding than, perhaps, with any other large animal. Mr. Druce, a great and successful breeder of the Improved Oxfordshires (a crossed race), writes, "without a change of boars of a different tribe, but of the same breed, constitution cannot be preserved." Mr. Fisher Hobbs, the raiser of the celebrated Improved Essex breed, divided his stock into three separate families, by which means he maintained the breed for more than twenty years, "by judicious selection from thethree distinct families."[261]Lord Western was the first importer of a Neapolitan boar and sow. "From this pair he bred in-and-in, until the breed was in danger of becoming extinct, a sure result (as Mr. Sidney remarks) of in-and-in breeding." Lord Western then crossed his Neapolitan pigs with the old Essex, and made the first great step towards the Improved Essex breed. Here is a more interesting case. Mr. J. Wright, well known as a breeder, crossed[262]the same boar with the daughter, granddaughter, and great-granddaughter, and so on for seven generations. The result was, that in many instances the offspring failed to breed; in others they produced few that lived; and of the latter many were idiotic, without senseeven to suck, and when attempting to move could not walk straight. Now it deserves especial notice, that the two last sows produced by this long course of interbreeding were sent to other boars, and they bore several litters of healthy pigs. The best sow in external appearance produced during the whole seven generations was one in the last stage of descent; but the litter consisted of this one sow. She would not breed to her sire, yet bred at the first trial to a stranger in blood. So that, in Mr. Wright's case, long-continued and extremely close interbreeding did not affect the external form or merit of the young; but with many of them the general constitution and mental powers, and especially the reproductive functions, were seriously affected.

Nathusius gives[263]an analogous and even more striking case: he imported from England a pregnant sow of the large Yorkshire breed, and bred the product closely in-and-in for three generations: the result was unfavourable, as the young were weak in constitution, with impaired fertility. One of the latest sows, which he esteemed a good animal, produced, when paired with her own uncle (who was known to be productive with sows of other breeds), a litter of six, and a second time a litter of only five weak young pigs. He then paired this sow with a boar of a small black breed, which he had likewise imported from England, and which boar, when matched with sows of his own breed, produced from seven to nine young: now, the sow of the large breed, which was so unproductive when paired with her own uncle, yielded to the small black boar, in the first litter twenty-one, and in the second litter eighteen young pigs; so that in one year she produced thirty-nine fine young animals!

As in the case of several other animals already mentioned, even when no injury is perceptible from moderately close interbreeding, yet, to quote the words of Mr. Coate, a most successful breeder (who five times won the annual gold medal of the Smithfield Club Show for the best pen of pigs), "Crosses answer well for profit to the farmer, as you get more constitution and quicker growth; but for me, who sell a great number of pigs for breeding purposes, I find it will not do, as it requires many years to get anything like purity of blood again."[264]

Before passing on to Birds, I ought to refer to man, though I am unwilling to enter on this subject, as it is surrounded by natural prejudices. It has moreover been discussed by various authors under many points of view.[265]Mr. Tylor[266]has shownthat with widely different races, in the most distant quarters of the world, marriages between relations—even between distant relations—have been strictly prohibited. A few exceptional cases can be specified, especially with royal families; and these have been enlarged on in a learned article[267]by Mr. W. Adam, and formerly in 1828 by Hofacker. Mr. Tylor is inclined to believe that the almost universal prohibition of closely-related marriages has arisen from their evil effects having been observed, and he ingeniously explains some apparent anomalies in the prohibition not extending equally to the relations on both the male and female side. He admits, however, that other causes, such as the extension of friendly alliances, may have come into play. Mr. W. Adam, on the other hand, concludes that related marriages are prohibited and viewed with repugnance from the confusion which would thus arise in the descent of property, and from other still more recondite reasons; but I cannot accept this view, seeing that the savages of Australia and South America,[268]who have no property to bequeath or fine moral feelings to confuse, hold the crime of incest in abhorrence.

It would be interesting to know, if it could be ascertained, as throwing light on this question with respect to man, what occurs with the higher anthropomorphous apes—whether the young males and females soon wander away from their parents, or whether the old males become jealous of their sons and expel them, or whether any inherited instinctive feeling, from being beneficial, has been generated, leading the young males and females of the same family to prefer pairing with distinct families, and to dislike pairing with each other. A considerable body of evidence has already been advanced, showing that the offspring from parents which are not related are more vigorous and fertile than those from parents which are closely related; hence any slight feeling, arising from the sexual excitement of novelty or other cause, which led to the former rather than to the latter unions, would be augmented through natural selection, and thus might become instinctive; for those individuals which had an innate preference of this kind would increase in number. It seems more probable, that degraded savages shouldthus unconsciously have acquired their dislike and even abhorrence of incestuous marriages, rather than that they should have discovered by reasoning and observation the evil results. The abhorrence occasionally failing is no valid argument against the feeling being instinctive, for any instinct may occasionally fail or become vitiated, as sometimes occurs with parental love and the social sympathies. In the case of man, the question whether evil follows from close interbreeding will probably never be answered by direct evidence, as he propagates his kind so slowly and cannot be subjected to experiment; but the almost universal practice of all races at all times of avoiding closely-related marriages is an argument of considerable weight; and whatever conclusion we arrive at in regard to the higher animals may be safely extended to man.

Turning now to Birds: in the case of theFowla whole array of authorities could be given against too close interbreeding. Sir J. Sebright positively asserts that he made many trials, and that his fowls, when thus treated, became long in the legs, small in the body, and bad breeders.[269]He produced the famous Sebright Bantams by complicated crosses, and by breeding in-and-in; and since his time there has been much close interbreeding with these Bantams; and they are now notoriously bad breeders. I have seen Silver Bantams, directly descended from his stock, which had become almost as barren as hybrids; for not a single chicken had been that year hatched from two full nests of eggs. Mr. Hewitt says that with these Bantams the sterility of the male stands, with rare exceptions, in the closest relation with their loss of certain secondary male characters: he adds, "I have noticed, as a general rule, that even the slightest deviation from feminine character in the tail of the male Sebright—say the elongation by only half an inch of the two principal tail-feathers—brings with it improved probability of increased fertility."[270]Mr. Wright states[271]that Mr. Clark, "whose fighting-cocks were so notorious, continued to breed from his own kind till they lost their disposition to fight, but stood to be cut up without making any resistance, and were so reduced in size as to be under those weights required for the best prizes; but on obtaining a cross from Mr. Leighton, they again resumed their former courage and weight." It should be borne in mind that game-cocks before they fought were always weighed, so that nothing was left to the imagination about any reduction or increase ofweight. Mr. Clark does not seem to have bred from brothers and sisters, which is the most injurious kind of union; and he found, after repeated trials, that there was a greater reduction in weight in the young from a father paired with his daughter, than from a mother with her son. I may add that Mr. Eyton, of Eyton, the well-known ornithologist, who is a large breeder of Grey Dorkings, informs me that they certainly diminish in size, and become less prolific, unless a cross with another strain is occasionally obtained. So it is with Malays, according to Mr. Hewitt, as far as size is concerned.[272]An experienced writer[273]remarks that the same amateur, as is well known, seldom long maintains the superiority of his birds; and this, he adds, undoubtedly is due to all his stock "being of the same blood;" hence it is indispensable that he should occasionally procure a bird of another strain. But this is not necessary with those who keep a stock of fowls at different stations. Thus, Mr. Ballance, who has bred Malays for thirty years, and has won more prizes with these birds than any other fancier in England, says that breeding in-and-in does not necessarily cause deterioration; "but all depends upon how this is managed." "My plan has been to keep about five or six distinct runs, and to rear about two hundred or three hundred chickens each year, and select the best birds from each run for crossing. I thus secure sufficient crossing to prevent deterioration."[274]We thus see that there is almost complete unanimity with poultry-breeders that, when fowls are kept at the same place, evil quickly follows from interbreeding carried on to an extent which would be disregarded in the case of most quadrupeds. On the other hand, it is a generally received opinion that cross-bred chickens are the hardiest and most easily reared.[275]Mr. Tegetmeier, who has carefully attended to poultry of all breeds, says[276]that Dorking hens, allowed to run with Houdan or Crevecœur cocks, "produce in the early spring chickens that for size, hardihood, early maturity, and fitness for the market, surpass those of any pure breed that we have ever raised." Mr. Hewitt gives it as a general rule with fowls, that crossing the breed increases their size. He makes this remark after stating that hybrids from the pheasant and fowl are considerably larger than either progenitor: so again, hybrids from the male golden pheasant and hen common pheasant "are of far larger size than either parent-bird."[277]To this subject of the increased size of hybrids I shall presently return.WithPigeons, breeders are unanimous, as previously stated, that it is absolutely indispensable, notwithstanding the trouble and expense thus caused, occasionally to cross their much-prized birds with individuals of another strain, but belonging, of course, to the same variety. It deservesnotice that, when large size is one of the desired characters, as with pouters,[278]the evil effects of close interbreeding are much sooner perceived than when small birds, such as short-faced tumblers, are valued. The extreme delicacy of the high fancy breeds, such as these tumblers and improved English carriers, is remarkable; they are liable to many diseases, and often die in the egg or during the first moult; and their eggs have generally to be hatched under foster-mothers. Although these highly-prized birds have invariably been subjected to much close interbreeding, yet their extreme delicacy of constitution cannot perhaps be thus fully explained. Mr. Yarrell informed me that Sir J. Sebright continued closely interbreeding some owl-pigeons, until from their extreme sterility he as nearly as possible lost the whole family. Mr. Brent[279]tried to raise a breed of trumpeters, by crossing a common pigeon, and recrossing the daughter, granddaughter, great-granddaughter, and great-great-granddaughter, with the same male trumpeter, until he obtained a bird with15/16ths of trumpeter's blood; but then the experiment failed, for "breeding so close stopped reproduction." The experienced Neumeister[280]also asserts that the offspring from dovecotes and various other breeds are "generally very fertile and hardy birds:" so again, MM. Boitard and Corbié,[281]after forty-five years' experience, recommend persons to cross their breeds for amusement; for, if they fail to make interesting birds, they will succeed under an economical point of view, "as it is found that mongrels are more fertile than pigeons of pure race."I will refer only to one other animal, namely, the Hive-bee, because a distinguished entomologist has advanced this as a case of inevitable close interbreeding. As the hive is tenanted by a single female, it might have been thought that her male and female offspring would always have bred together, more especially as bees of different hives are hostile to each other; a strange worker being almost always attacked when trying to enter another hive. But Mr. Tegetmeier has shown[282]that this instinct does not apply to drones, which are permitted to enter any hive; so that there is noà prioriimprobability of a queen receiving a foreign drone. The fact of the union invariably and necessarily taking place on the wing, during the queen's nuptial flight, seems to be a special provision against continued interbreeding. However this may be, experience has shown, since the introduction of the yellow-banded Ligurian race into Germany and England, that bees freely cross: Mr. Woodbury, who introduced Ligurian bees into Devonshire, found during a single season that three stocks, at distances of from one to two miles from his hives, were crossed by his drones. In one case the Ligurian drones must have flown over the city of Exeter, and over several intermediate hives. On another occasion several common black queens were crossed by Ligurian drones at a distance of from one to three and a half miles.[283]

Turning now to Birds: in the case of theFowla whole array of authorities could be given against too close interbreeding. Sir J. Sebright positively asserts that he made many trials, and that his fowls, when thus treated, became long in the legs, small in the body, and bad breeders.[269]He produced the famous Sebright Bantams by complicated crosses, and by breeding in-and-in; and since his time there has been much close interbreeding with these Bantams; and they are now notoriously bad breeders. I have seen Silver Bantams, directly descended from his stock, which had become almost as barren as hybrids; for not a single chicken had been that year hatched from two full nests of eggs. Mr. Hewitt says that with these Bantams the sterility of the male stands, with rare exceptions, in the closest relation with their loss of certain secondary male characters: he adds, "I have noticed, as a general rule, that even the slightest deviation from feminine character in the tail of the male Sebright—say the elongation by only half an inch of the two principal tail-feathers—brings with it improved probability of increased fertility."[270]

Mr. Wright states[271]that Mr. Clark, "whose fighting-cocks were so notorious, continued to breed from his own kind till they lost their disposition to fight, but stood to be cut up without making any resistance, and were so reduced in size as to be under those weights required for the best prizes; but on obtaining a cross from Mr. Leighton, they again resumed their former courage and weight." It should be borne in mind that game-cocks before they fought were always weighed, so that nothing was left to the imagination about any reduction or increase ofweight. Mr. Clark does not seem to have bred from brothers and sisters, which is the most injurious kind of union; and he found, after repeated trials, that there was a greater reduction in weight in the young from a father paired with his daughter, than from a mother with her son. I may add that Mr. Eyton, of Eyton, the well-known ornithologist, who is a large breeder of Grey Dorkings, informs me that they certainly diminish in size, and become less prolific, unless a cross with another strain is occasionally obtained. So it is with Malays, according to Mr. Hewitt, as far as size is concerned.[272]

An experienced writer[273]remarks that the same amateur, as is well known, seldom long maintains the superiority of his birds; and this, he adds, undoubtedly is due to all his stock "being of the same blood;" hence it is indispensable that he should occasionally procure a bird of another strain. But this is not necessary with those who keep a stock of fowls at different stations. Thus, Mr. Ballance, who has bred Malays for thirty years, and has won more prizes with these birds than any other fancier in England, says that breeding in-and-in does not necessarily cause deterioration; "but all depends upon how this is managed." "My plan has been to keep about five or six distinct runs, and to rear about two hundred or three hundred chickens each year, and select the best birds from each run for crossing. I thus secure sufficient crossing to prevent deterioration."[274]

We thus see that there is almost complete unanimity with poultry-breeders that, when fowls are kept at the same place, evil quickly follows from interbreeding carried on to an extent which would be disregarded in the case of most quadrupeds. On the other hand, it is a generally received opinion that cross-bred chickens are the hardiest and most easily reared.[275]Mr. Tegetmeier, who has carefully attended to poultry of all breeds, says[276]that Dorking hens, allowed to run with Houdan or Crevecœur cocks, "produce in the early spring chickens that for size, hardihood, early maturity, and fitness for the market, surpass those of any pure breed that we have ever raised." Mr. Hewitt gives it as a general rule with fowls, that crossing the breed increases their size. He makes this remark after stating that hybrids from the pheasant and fowl are considerably larger than either progenitor: so again, hybrids from the male golden pheasant and hen common pheasant "are of far larger size than either parent-bird."[277]To this subject of the increased size of hybrids I shall presently return.

WithPigeons, breeders are unanimous, as previously stated, that it is absolutely indispensable, notwithstanding the trouble and expense thus caused, occasionally to cross their much-prized birds with individuals of another strain, but belonging, of course, to the same variety. It deservesnotice that, when large size is one of the desired characters, as with pouters,[278]the evil effects of close interbreeding are much sooner perceived than when small birds, such as short-faced tumblers, are valued. The extreme delicacy of the high fancy breeds, such as these tumblers and improved English carriers, is remarkable; they are liable to many diseases, and often die in the egg or during the first moult; and their eggs have generally to be hatched under foster-mothers. Although these highly-prized birds have invariably been subjected to much close interbreeding, yet their extreme delicacy of constitution cannot perhaps be thus fully explained. Mr. Yarrell informed me that Sir J. Sebright continued closely interbreeding some owl-pigeons, until from their extreme sterility he as nearly as possible lost the whole family. Mr. Brent[279]tried to raise a breed of trumpeters, by crossing a common pigeon, and recrossing the daughter, granddaughter, great-granddaughter, and great-great-granddaughter, with the same male trumpeter, until he obtained a bird with15/16ths of trumpeter's blood; but then the experiment failed, for "breeding so close stopped reproduction." The experienced Neumeister[280]also asserts that the offspring from dovecotes and various other breeds are "generally very fertile and hardy birds:" so again, MM. Boitard and Corbié,[281]after forty-five years' experience, recommend persons to cross their breeds for amusement; for, if they fail to make interesting birds, they will succeed under an economical point of view, "as it is found that mongrels are more fertile than pigeons of pure race."

I will refer only to one other animal, namely, the Hive-bee, because a distinguished entomologist has advanced this as a case of inevitable close interbreeding. As the hive is tenanted by a single female, it might have been thought that her male and female offspring would always have bred together, more especially as bees of different hives are hostile to each other; a strange worker being almost always attacked when trying to enter another hive. But Mr. Tegetmeier has shown[282]that this instinct does not apply to drones, which are permitted to enter any hive; so that there is noà prioriimprobability of a queen receiving a foreign drone. The fact of the union invariably and necessarily taking place on the wing, during the queen's nuptial flight, seems to be a special provision against continued interbreeding. However this may be, experience has shown, since the introduction of the yellow-banded Ligurian race into Germany and England, that bees freely cross: Mr. Woodbury, who introduced Ligurian bees into Devonshire, found during a single season that three stocks, at distances of from one to two miles from his hives, were crossed by his drones. In one case the Ligurian drones must have flown over the city of Exeter, and over several intermediate hives. On another occasion several common black queens were crossed by Ligurian drones at a distance of from one to three and a half miles.[283]

Plants.

When a single plant of a new species is introduced into any country, if propagated by seed, many individuals will soon be raised, so that if the proper insects be present there will be crossing. With newly-introduced trees or other plants not propagated by seed we are not here concerned. With old-established plants it is an almost universal practice occasionally to make exchanges of seed, by which means individuals which have been exposed to different conditions of life,—and this, as we have seen, diminishes the evil from close interbreeding,—will occasionally be introduced into each district.Experiments have not been tried on the effects of fertilising flowers with their own pollen duringseveralgenerations. But we shall presently see that certain plants, either normally or abnormally, are more or less sterile, even in the first generation, when fertilised by their own pollen. Although nothing is directly known on the evil effects of long-continued close interbreeding with plants, the converse proposition that great good is derived from crossing is well established.With respect to the crossing of individuals belonging to the same sub-variety, Gärtner, whose accuracy and experience exceeded that of all other hybridisers, states[284]that he has many times observed good effects from this step, especially with exotic genera, of which the fertility is somewhat impaired, such as Passiflora, Lobelia, and Fuchsia. Herbert also says,[285]"I am inclined to think that I have derived advantage from impregnating the flower from which I wished to obtain seed with pollen from another individual of the same variety, or at least from another flower, rather than with its own." Again, Professor Lecoq asserts that he has ascertained that crossed offspring are more vigorous and robust than their parents.[286]General statements of this kind, however, can seldom be fully trusted; consequently I have begun a series of experiments, which, if they continue to give the same results as hitherto, will for ever settle the question of the good effects of crossing two distinct plants of the same variety, and of the evil effects of self-fertilisation. A clear light will thus also be thrown on the fact that flowers are invariably constructed so as to permit, or favour, or necessitate the union of two individuals. We shall clearly understand why monœcious and diœcious,—why dimorphic and trimorphic plants exist, and many other such cases. The plan which I have followed in my experiments is to grow plants in the same pot, or in pots of the same size, or close together in the open ground; to carefully exclude insects; and then to fertilise some of the flowers with pollen from the same flower, and others on the same plant with pollen from a distinct but adjoining plant. In many, but not all, of these experiments, the crossed plants yielded much more seed than the self-fertilised plants; and I have never seen thereversed case. The self-fertilised and crossed seeds thus obtained were allowed to germinate in the same glass vessel on damp sand; and as the seeds successively germinated, they were planted in pairs on opposite sides of the same pot, with a superficial partition between them, and were placed so as to be equally exposed to the light. In other cases the self-fertilised and crossed seeds were simply sown on opposite sides of the same small pot. I have, in short, followed different plans, but in every case have taken all the precautions which I could think of, so that the two lots should be equally favoured. Now, I have carefully observed the growth of plants raised from crossed and self-fertilised seed, from their germination to maturity, in species of the following genera, namely, Brassica, Lathyrus, Lupinus, Lobelia, Lactuca, Dianthus, Myosotis, Petunia, Linaria, Calceolaria, Mimulus, and Ipomœa, and the difference in their powers of growth, and of withstanding in certain cases unfavourable conditions, was most manifest and strongly marked. It is of importance that the two lots of seed should be sown or planted on opposite sides of the same pot, so that the seedlings may struggle against each other; for if sown separately in ample and good soil, there is often but little difference in their growth.I will briefly describe the two most striking cases as yet observed by me. Six crossed and six self-fertilised seeds ofIpomœa purpurea, from plants treated in the manner above described, were planted as soon as they had germinated, in pairs on opposite sides of two pots, and rods of equal thickness were given them to twine up. Five of the crossed plants grew from the first more quickly than the opposed self-fertilised plants; the sixth, however, was weakly and was for a time beaten, but at last its sounder constitution prevailed and it shot ahead of its antagonist. As soon as each crossed plant reached the top of its seven-foot rod its fellow was measured, and the result was that, when the crossed plants were seven feet high, the self-fertilised had attained the average height of only five feet four and a half inches. The crossed plants flowered a little before, and more profusely than the self-fertilised plants. On opposite sides of anothersmallpot a large number of crossed and self-fertilised seeds were sown, so that they had to struggle for bare existence; a single rod was given to each lot: here again the crossed plants showed from the first their advantage; they never quite reached the summit of the seven-foot rod, but relatively to the self-fertilised plants their average height was as seven feet to five feet two inches. The experiment was repeated in the two following generations with plants raised from the self-fertilised and crossed plants, treated in exactly the same manner, and with nearly the same result. In the second generation, the crossed plants, which were again crossed, produced 121 seed-capsules, whilst the self-fertilised plants, again self-fertilised, produced only 84 capsules.Some flowers of theMimulus luteuswere fertilised with their own pollen, and others were crossed with pollen from distinct plants growing in the same pot. The seeds after germinating were thickly planted on opposite sides of a pot. The seedlings were at first equal in height; but when the young crossed plants were exactly half an inch, theself-fertilised plants were only a quarter of an inch high. But this inequality did not continue, for, when the crossed plants were four and a half inches high, the self-fertilised were three inches; and they retained the same relative difference till their growth was complete. The crossed plants looked far more vigorous than the uncrossed, and flowered before them; they produced also a far greater number of flowers, which yielded capsules (judging, however, from only a few) containing more seeds. As in the former case, the experiment was repeated in the same manner during the next two generations, and with exactly the same result. Had I not watched these plants of the Mimulus and Ipomœa during their whole growth, I could not have believed it possible, that a difference apparently so slight, as that of the pollen being taken from the same flower, and from a distinct plant growing in the same small pot, could have made so wonderful a difference in the growth and vigour of the plants thus produced. This, under a physiological point of view, is a most remarkable phenomenon.With respect to the benefit derived from crossing distinct varieties, plenty of evidence has been published. Sageret[287]repeatedly speaks in strong terms of the vigour of melons raised by crossing different varieties, and adds that they are more easily fertilised than common melons, and produce numerous good seed. Here follows the evidence of an English gardener:[288]"I have this summer met with better success in my cultivation of melons, in an unprotected state, from the seeds of hybrids (i.e.mongrels) obtained by cross impregnation, than with old varieties. The offspring of three different hybridisations (one more especially, of which the parents were the two most dissimilar varieties I could select) each yielded more ample and finer produce than any one of between twenty and thirty established varieties."Andrew Knight[289]believed that his seedlings from crossed varieties of the apple exhibited increased vigour and luxuriance; and M. Chevreul[290]alludes to the extreme vigour of some of the crossed fruit-trees raised by Sageret.By crossing reciprocally the tallest and shortest peas, Knight[291]says, "I had in this experiment a striking instance of the stimulative effects of crossing the breeds; for the smallest variety, whose height rarely exceeded two feet, was increased to six feet; whilst the height of the large and luxuriant kind was very little diminished." Mr. Laxton gave me seed-peas produced from crosses between four distinct kinds; and the plants thus raised were extraordinarily vigorous, being in each case from one to two or three feet taller than the parent-forms growing close alongside them.Wiegmann[292]made many crosses between several varieties of cabbage; and he speaks with astonishment of the vigour and height of the mongrels, which excited the amazement of all the gardeners who beheld them. Mr. Chaundy raised a great number of mongrels by planting together six distinct varieties of cabbage. These mongrels displayed an infinite diversity of character; "But the most remarkable circumstance was, that, while all the other cabbages and borecoles in the nursery were destroyed by a severe winter, these hybrids were little injured, and supplied the kitchen when there was no other cabbage to be had."Mr. Maund exhibited before the Royal Agricultural Society[293]specimens of crossed wheat, together with their parent varieties; and the editor states that they were intermediate in character, "united with that greater vigour of growth, which it appears, in the vegetable as in the animal world, is the result of a first cross." Knight also crossed several varieties of wheat,[294]and he says "that in the years 1795 and 1796, when almost the whole crop of corn in the island was blighted, the varieties thus obtained, and these only, escaped in this neighbourhood, though sown in several different soils and situations."Here is a remarkable case: M. Clotzsch[295]crossedPinus sylvestrisandnigricans,Quercus roburandpedunculata, Alnus glutinosaandincana,Ulmus campestrisandeffusa; and the cross-fertilised seeds, as well as seeds of the pure parent-trees, were all sown at the same time and in the same place. The result was, that after an interval of eight years, the hybrids were one-third taller than the pure trees!The facts above given refer to undoubted varieties, excepting the trees crossed by Clotzsch, which are ranked by various botanists as strongly-marked races, sub-species, or species. That true hybrids raised from entirely distinct species, though they lose in fertility, often gain in size and constitutional vigour, is certain. It would be superfluous to quote any facts; for all experimenters, Kölreuter, Gärtner, Herbert, Sageret, Lecoq, and Naudin, have been struck with the wonderful vigour, height, size, tenacity of life, precocity, and hardiness of their hybrid productions. Gärtner[296]sums up his conviction on this head in the strongest terms. Kölreuter[297]gives numerous precise measurements of the weight and height of his hybrids in comparison with measurements of both parent-forms; and speaks with astonishment of their "statura portentosa," their "ambitus vastissimus ac altitudo valde conspicua." Some exceptions to the rule in the case of very sterile hybrids have, however, been noticed by Gärtner andHerbert; but the most striking exceptions are given by Max Wichura,[298]who found that hybrid willows were generally tender in constitution, dwarf, and short-lived.Kölreuter explains the vast increase in the size of the roots, stems, &c., of his hybrids, as the result of a sort of compensation due to their sterility, in the same way as many emasculated animals are larger than the perfect males. This view seems at first sight extremely probable, and has been accepted by various authors;[299]but Gärtner[300]has well remarked that there is much difficulty in fully admitting it; for with many hybrids there is no parallelism between the degree of their sterility and their increased size and vigour. The most striking instances of luxuriant growth have been observed with hybrids which were not sterile in any extreme degree. In the genus Mirabilis, certain hybrids are unusually fertile, and their extraordinary luxuriance of growth, together with their enormous roots,[301]have been transmitted to their progeny. The increased size of the hybrids produced between the fowl and pheasant, and between the distinct species of pheasants, has been already noticed. The result in all cases is probably in part due to the saving of nutriment and vital force through the sexual organs not acting, or acting imperfectly, but more especially to the general law of good being derived from a cross. For it deserves especial attention that mongrel animals and plants, which are so far from being sterile that their fertility is often actually augmented, have, as previously shown, their size, hardiness, and constitutional vigour generally increased. It is not a little remarkable that an accession of vigour and size should thus arise under the opposite contingencies of increased and diminished fertility.It is a perfectly well ascertained fact[302]that hybrids will invariably breed more readily with either pure parent, and not rarely with a distinct species, than with each other. Herbert is inclined to explain even this fact by the advantage derived from a cross; but Gärtner more justly accounts for it by the pollen of the hybrid, and probably its ovules, being in some degree vitiated, whereas the pollen and ovules of both pure parents and of any third species are sound. Nevertheless there are some well-ascertained and remarkable facts, which, as we shall immediately see, show that the act of crossing in itself undoubtedly tends to increase or re-establish the fertility of hybrids.

When a single plant of a new species is introduced into any country, if propagated by seed, many individuals will soon be raised, so that if the proper insects be present there will be crossing. With newly-introduced trees or other plants not propagated by seed we are not here concerned. With old-established plants it is an almost universal practice occasionally to make exchanges of seed, by which means individuals which have been exposed to different conditions of life,—and this, as we have seen, diminishes the evil from close interbreeding,—will occasionally be introduced into each district.

Experiments have not been tried on the effects of fertilising flowers with their own pollen duringseveralgenerations. But we shall presently see that certain plants, either normally or abnormally, are more or less sterile, even in the first generation, when fertilised by their own pollen. Although nothing is directly known on the evil effects of long-continued close interbreeding with plants, the converse proposition that great good is derived from crossing is well established.

With respect to the crossing of individuals belonging to the same sub-variety, Gärtner, whose accuracy and experience exceeded that of all other hybridisers, states[284]that he has many times observed good effects from this step, especially with exotic genera, of which the fertility is somewhat impaired, such as Passiflora, Lobelia, and Fuchsia. Herbert also says,[285]"I am inclined to think that I have derived advantage from impregnating the flower from which I wished to obtain seed with pollen from another individual of the same variety, or at least from another flower, rather than with its own." Again, Professor Lecoq asserts that he has ascertained that crossed offspring are more vigorous and robust than their parents.[286]

General statements of this kind, however, can seldom be fully trusted; consequently I have begun a series of experiments, which, if they continue to give the same results as hitherto, will for ever settle the question of the good effects of crossing two distinct plants of the same variety, and of the evil effects of self-fertilisation. A clear light will thus also be thrown on the fact that flowers are invariably constructed so as to permit, or favour, or necessitate the union of two individuals. We shall clearly understand why monœcious and diœcious,—why dimorphic and trimorphic plants exist, and many other such cases. The plan which I have followed in my experiments is to grow plants in the same pot, or in pots of the same size, or close together in the open ground; to carefully exclude insects; and then to fertilise some of the flowers with pollen from the same flower, and others on the same plant with pollen from a distinct but adjoining plant. In many, but not all, of these experiments, the crossed plants yielded much more seed than the self-fertilised plants; and I have never seen thereversed case. The self-fertilised and crossed seeds thus obtained were allowed to germinate in the same glass vessel on damp sand; and as the seeds successively germinated, they were planted in pairs on opposite sides of the same pot, with a superficial partition between them, and were placed so as to be equally exposed to the light. In other cases the self-fertilised and crossed seeds were simply sown on opposite sides of the same small pot. I have, in short, followed different plans, but in every case have taken all the precautions which I could think of, so that the two lots should be equally favoured. Now, I have carefully observed the growth of plants raised from crossed and self-fertilised seed, from their germination to maturity, in species of the following genera, namely, Brassica, Lathyrus, Lupinus, Lobelia, Lactuca, Dianthus, Myosotis, Petunia, Linaria, Calceolaria, Mimulus, and Ipomœa, and the difference in their powers of growth, and of withstanding in certain cases unfavourable conditions, was most manifest and strongly marked. It is of importance that the two lots of seed should be sown or planted on opposite sides of the same pot, so that the seedlings may struggle against each other; for if sown separately in ample and good soil, there is often but little difference in their growth.

I will briefly describe the two most striking cases as yet observed by me. Six crossed and six self-fertilised seeds ofIpomœa purpurea, from plants treated in the manner above described, were planted as soon as they had germinated, in pairs on opposite sides of two pots, and rods of equal thickness were given them to twine up. Five of the crossed plants grew from the first more quickly than the opposed self-fertilised plants; the sixth, however, was weakly and was for a time beaten, but at last its sounder constitution prevailed and it shot ahead of its antagonist. As soon as each crossed plant reached the top of its seven-foot rod its fellow was measured, and the result was that, when the crossed plants were seven feet high, the self-fertilised had attained the average height of only five feet four and a half inches. The crossed plants flowered a little before, and more profusely than the self-fertilised plants. On opposite sides of anothersmallpot a large number of crossed and self-fertilised seeds were sown, so that they had to struggle for bare existence; a single rod was given to each lot: here again the crossed plants showed from the first their advantage; they never quite reached the summit of the seven-foot rod, but relatively to the self-fertilised plants their average height was as seven feet to five feet two inches. The experiment was repeated in the two following generations with plants raised from the self-fertilised and crossed plants, treated in exactly the same manner, and with nearly the same result. In the second generation, the crossed plants, which were again crossed, produced 121 seed-capsules, whilst the self-fertilised plants, again self-fertilised, produced only 84 capsules.

Some flowers of theMimulus luteuswere fertilised with their own pollen, and others were crossed with pollen from distinct plants growing in the same pot. The seeds after germinating were thickly planted on opposite sides of a pot. The seedlings were at first equal in height; but when the young crossed plants were exactly half an inch, theself-fertilised plants were only a quarter of an inch high. But this inequality did not continue, for, when the crossed plants were four and a half inches high, the self-fertilised were three inches; and they retained the same relative difference till their growth was complete. The crossed plants looked far more vigorous than the uncrossed, and flowered before them; they produced also a far greater number of flowers, which yielded capsules (judging, however, from only a few) containing more seeds. As in the former case, the experiment was repeated in the same manner during the next two generations, and with exactly the same result. Had I not watched these plants of the Mimulus and Ipomœa during their whole growth, I could not have believed it possible, that a difference apparently so slight, as that of the pollen being taken from the same flower, and from a distinct plant growing in the same small pot, could have made so wonderful a difference in the growth and vigour of the plants thus produced. This, under a physiological point of view, is a most remarkable phenomenon.

With respect to the benefit derived from crossing distinct varieties, plenty of evidence has been published. Sageret[287]repeatedly speaks in strong terms of the vigour of melons raised by crossing different varieties, and adds that they are more easily fertilised than common melons, and produce numerous good seed. Here follows the evidence of an English gardener:[288]"I have this summer met with better success in my cultivation of melons, in an unprotected state, from the seeds of hybrids (i.e.mongrels) obtained by cross impregnation, than with old varieties. The offspring of three different hybridisations (one more especially, of which the parents were the two most dissimilar varieties I could select) each yielded more ample and finer produce than any one of between twenty and thirty established varieties."

Andrew Knight[289]believed that his seedlings from crossed varieties of the apple exhibited increased vigour and luxuriance; and M. Chevreul[290]alludes to the extreme vigour of some of the crossed fruit-trees raised by Sageret.

By crossing reciprocally the tallest and shortest peas, Knight[291]says, "I had in this experiment a striking instance of the stimulative effects of crossing the breeds; for the smallest variety, whose height rarely exceeded two feet, was increased to six feet; whilst the height of the large and luxuriant kind was very little diminished." Mr. Laxton gave me seed-peas produced from crosses between four distinct kinds; and the plants thus raised were extraordinarily vigorous, being in each case from one to two or three feet taller than the parent-forms growing close alongside them.

Wiegmann[292]made many crosses between several varieties of cabbage; and he speaks with astonishment of the vigour and height of the mongrels, which excited the amazement of all the gardeners who beheld them. Mr. Chaundy raised a great number of mongrels by planting together six distinct varieties of cabbage. These mongrels displayed an infinite diversity of character; "But the most remarkable circumstance was, that, while all the other cabbages and borecoles in the nursery were destroyed by a severe winter, these hybrids were little injured, and supplied the kitchen when there was no other cabbage to be had."

Mr. Maund exhibited before the Royal Agricultural Society[293]specimens of crossed wheat, together with their parent varieties; and the editor states that they were intermediate in character, "united with that greater vigour of growth, which it appears, in the vegetable as in the animal world, is the result of a first cross." Knight also crossed several varieties of wheat,[294]and he says "that in the years 1795 and 1796, when almost the whole crop of corn in the island was blighted, the varieties thus obtained, and these only, escaped in this neighbourhood, though sown in several different soils and situations."

Here is a remarkable case: M. Clotzsch[295]crossedPinus sylvestrisandnigricans,Quercus roburandpedunculata, Alnus glutinosaandincana,Ulmus campestrisandeffusa; and the cross-fertilised seeds, as well as seeds of the pure parent-trees, were all sown at the same time and in the same place. The result was, that after an interval of eight years, the hybrids were one-third taller than the pure trees!

The facts above given refer to undoubted varieties, excepting the trees crossed by Clotzsch, which are ranked by various botanists as strongly-marked races, sub-species, or species. That true hybrids raised from entirely distinct species, though they lose in fertility, often gain in size and constitutional vigour, is certain. It would be superfluous to quote any facts; for all experimenters, Kölreuter, Gärtner, Herbert, Sageret, Lecoq, and Naudin, have been struck with the wonderful vigour, height, size, tenacity of life, precocity, and hardiness of their hybrid productions. Gärtner[296]sums up his conviction on this head in the strongest terms. Kölreuter[297]gives numerous precise measurements of the weight and height of his hybrids in comparison with measurements of both parent-forms; and speaks with astonishment of their "statura portentosa," their "ambitus vastissimus ac altitudo valde conspicua." Some exceptions to the rule in the case of very sterile hybrids have, however, been noticed by Gärtner andHerbert; but the most striking exceptions are given by Max Wichura,[298]who found that hybrid willows were generally tender in constitution, dwarf, and short-lived.

Kölreuter explains the vast increase in the size of the roots, stems, &c., of his hybrids, as the result of a sort of compensation due to their sterility, in the same way as many emasculated animals are larger than the perfect males. This view seems at first sight extremely probable, and has been accepted by various authors;[299]but Gärtner[300]has well remarked that there is much difficulty in fully admitting it; for with many hybrids there is no parallelism between the degree of their sterility and their increased size and vigour. The most striking instances of luxuriant growth have been observed with hybrids which were not sterile in any extreme degree. In the genus Mirabilis, certain hybrids are unusually fertile, and their extraordinary luxuriance of growth, together with their enormous roots,[301]have been transmitted to their progeny. The increased size of the hybrids produced between the fowl and pheasant, and between the distinct species of pheasants, has been already noticed. The result in all cases is probably in part due to the saving of nutriment and vital force through the sexual organs not acting, or acting imperfectly, but more especially to the general law of good being derived from a cross. For it deserves especial attention that mongrel animals and plants, which are so far from being sterile that their fertility is often actually augmented, have, as previously shown, their size, hardiness, and constitutional vigour generally increased. It is not a little remarkable that an accession of vigour and size should thus arise under the opposite contingencies of increased and diminished fertility.

It is a perfectly well ascertained fact[302]that hybrids will invariably breed more readily with either pure parent, and not rarely with a distinct species, than with each other. Herbert is inclined to explain even this fact by the advantage derived from a cross; but Gärtner more justly accounts for it by the pollen of the hybrid, and probably its ovules, being in some degree vitiated, whereas the pollen and ovules of both pure parents and of any third species are sound. Nevertheless there are some well-ascertained and remarkable facts, which, as we shall immediately see, show that the act of crossing in itself undoubtedly tends to increase or re-establish the fertility of hybrids.

On certain Hermaphrodite Plants which, either normally or abnormally, require to be fertilised by pollen from a distinct individual or species.

The facts now to be given differ from those hitherto detailed, as the self-sterility does not here result from long-continued,close interbreeding. These facts are, however, connected with our present subject, because a cross with a distinct individual is shown to be either necessary or advantageous. Dimorphic and trimorphic plants, though they are hermaphrodites, must be reciprocally crossed, one set of forms by the other, in order to be fully fertile, and in some cases to be fertile in any degree. But I should not have noticed these plants, had it not been for the following cases given by Dr. Hildebrand:[303]—

Primula sinensisis a reciprocally dimorphic species: Dr. Hildebrand fertilised twenty-eight flowers of both forms, each by pollen of the other form, and obtained the full number of capsules containing on an average 42.7 seed per capsule; here we have complete and normal fertility. He then fertilised forty-two flowers of both forms with pollen of the same form, but taken from a distinct plant, and all produced capsules containing on an average only 19.6 seed. Lastly, and here we come to our more immediate point, he fertilised forty-eight flowers of both forms with pollen of the same form, taken from the same flower, and now he obtained only thirty-two capsules, and these contained on an average 18.6 seed, or one less per capsule than in the former case. So that, with these illegitimate unions, the act of impregnation is less assured, and the fertility slightly less, when the pollen and ovules belong to the same flower, than when belonging to two distinct individuals of the same form. Dr. Hildebrand has recently made analogous experiments on the long-styled form ofOxalis rosea, with the same result.[304]

Primula sinensisis a reciprocally dimorphic species: Dr. Hildebrand fertilised twenty-eight flowers of both forms, each by pollen of the other form, and obtained the full number of capsules containing on an average 42.7 seed per capsule; here we have complete and normal fertility. He then fertilised forty-two flowers of both forms with pollen of the same form, but taken from a distinct plant, and all produced capsules containing on an average only 19.6 seed. Lastly, and here we come to our more immediate point, he fertilised forty-eight flowers of both forms with pollen of the same form, taken from the same flower, and now he obtained only thirty-two capsules, and these contained on an average 18.6 seed, or one less per capsule than in the former case. So that, with these illegitimate unions, the act of impregnation is less assured, and the fertility slightly less, when the pollen and ovules belong to the same flower, than when belonging to two distinct individuals of the same form. Dr. Hildebrand has recently made analogous experiments on the long-styled form ofOxalis rosea, with the same result.[304]

It has recently been discovered that certain plants, whilst growing in their native country under natural conditions, cannot be fertilised with pollen from the same plant. They are sometimes so utterly self-impotent, that, though they can readily be fertilised by the pollen of a distinct species or even distinct genus, yet, wonderful as the fact is, they never produce a single seed by their own pollen. In some cases, moreover, the plant's own pollen and stigma mutually act on each other in a deleterious manner. Most of the facts to be given relate to Orchids, but I will commence with a plant belonging to a widely different family.

Sixty-three flowers ofCorydalis cava, borne on distinct plants, were fertilised by Dr. Hildebrand[305]with pollen from other plants of the same species; and fifty-eight capsules were obtained, including on an average4.5 seed in each. He then fertilised sixteen flowers produced by the same raceme, one with another, but obtained only three capsules, one of which alone contained any good seeds, namely, two in number. Lastly, he fertilised twenty-seven flowers, each with its own pollen; he left also fifty-seven flowers to be spontaneously fertilised, and this would certainly have ensued if it had been possible, for the anthers not only touch the stigma, but the pollen-tubes were seen by Dr. Hildebrand to penetrate it; nevertheless these eighty-four flowers did not produce a single seed-capsule! This whole case is highly instructive, as it shows how widely different the action of the same pollen is, according as it is placed on the stigma of the same flower, or on that of another flower on the same raceme, or on that of a distinct plant.With exotic Orchids several analogous cases have been observed, chiefly by Mr. John Scott.[306]Oncidium sphacelatumhas effective pollen, for with it Mr. Scott fertilised two distinct species; its ovules are likewise capable of impregnation, for they were readily fertilised by the pollen ofO. divaricatum; nevertheless, between one and two hundred flowers fertilised by their own pollen did not produce a single capsule, though the stigmas were penetrated by the pollen-tubes. Mr. Robinson Munro, of the Royal Botanic Gardens of Edinburgh, also informs me (1864) that a hundred and twenty flowers of this same species were fertilised by him with their own pollen, and did not produce a capsule, but eight flowers fertilised by the pollen ofO. divaricatumproduced four fine capsules: again, between two and three hundred flowers ofO. divaricatum, fertilised by their own pollen, did not set a capsule, but twelve flowers fertilised byO. flexuosumproduced eight fine capsules: so that here we have three utterly self-impotent species, with their male and female organs perfect, as shown by their mutual fertilisation. In these cases fertilisation was effected only by the aid of a distinct species. But, as we shall presently see, distinct plants, raised from seed, ofOncidium flexuosum, and probably of the other species, would have been perfectly capable of fertilising each other, for this is the natural process. Again, Mr. Scott found that the pollen of a plant ofO. microchilumwas good, for with it he fertilised two distinct species; he found its ovules good, for they could be fertilised by the pollen of one of these species, and by the pollen of a distinct plant ofO. microchilum; but they could not be fertilised by pollen of the same plant, though the pollen-tubes penetrated the stigma. An analogous case has been recorded by M. Rivière,[307]with two plants ofO. Cavendishianum, which were both self-sterile, but reciprocally fertilised each other. All these cases refer to the genus Oncidium, but Mr. Scott found thatMaxillaria atro-rubenswas "totally insusceptible of fertilisation with its own pollen," but fertilised, and was fertilised by, a widely distinct species, viz.M. squalens.As these orchids had grown under unnatural conditions, inhot-houses, I concluded without hesitation that their self-sterility was due to this cause. But Fritz Müller informs me that at Desterro, in Brazil, he fertilised above one hundred flowers of the above-mentionedOncidium flexuosum, which is there endemic, with its own pollen, and with that taken from distinct plants; all the former were sterile, whilst those fertilised by pollen from anyother plantof the same species were fertile. During the first three days there was no difference in the action of the two kinds of pollen: that placed on the stigma of the same plant separated in the usual manner into grains, and emitted tubes which penetrated the column, and the stigmatic chamber shut itself; but the flowers alone which had been fertilised by pollen taken from a distinct plant produced seed-capsules. On a subsequent occasion these experiments were repeated on a large scale with the same result. Fritz Müller found that four other endemic species of Oncidium were in like manner utterly sterile with their own pollen, but fertile with that from any other plant: some of them likewise produced seed-capsules when impregnated with pollen of widely distinct genera, such as Leptotes, Cyrtopodium, and Rodriguezia!Oncidium crispum, however, differs from the foregoing species in varying much in its self-sterility; some plants producing fine pods with their own pollen, others failing to do so; in two or three instances, Fritz Müller observed that the pods produced by pollen taken from a distinct flower on the same plant, were larger than those produced by the flower's own pollen. InEpidendrum cinnabarinum, an orchid belonging to another division of the family, fine pods were produced by the plant's own pollen, but they contained by weight only about half as much seed as the capsules which had been fertilized by pollen from a distinct plant, and in one instance from a distinct species; moreover, a very large proportion, and in some cases nearly all the seed produced by the plant's own pollen, was embryonless and worthless. Some self-fertilized capsules of a Maxillaria were in a similar state.Another observation made by Fritz Müller is highly remarkable, namely, that with various orchids the plant's own pollen not only fails to impregnate the flower, but acts on the stigma, and is acted on, in an injurious or poisonous manner. This is shown by the surface of the stigma in contact with the pollen, and by the pollen itself, becoming in from three to five days dark brown, and then decaying. The discolouration and decay are not caused by parasitic cryptogams, which were observed by Fritz Müller in only a single instance. These changes are well shown by placing on the same stigma, at the same time, the plant's own pollen and that from a distinct plant of the same species, or of another species, or even of another and widely remote genus. Thus, on the stigma ofOncidium flexuosum, the plant's own pollen and that from a distinct plant were placed side by side, and in five days' time the latter was perfectly fresh, whilst the plant's own pollen was brown. On the other hand, when the pollen of a distinct plant of theOncidium flexuosum, and of theEpidendrum zebra(nov. spec.?), were placed together on the same stigma, they behaved in exactly the same manner, the grains separating, emitting tubes, and penetrating the stigma, so that the twopollen-masses, after an interval of eleven days, could not be distinguished except by the difference of their caudicles, which, of course, undergo no change. Fritz Müller has, moreover, made a large number of crosses between orchids belonging to distinct species and genera, and he finds that in all cases when the flowers are not fertilised their footstalks first begin to wither; and the withering slowly spreads upwards until the germens fall off, after an interval of one or two weeks, and in one instance of between six and seven weeks; but even in this latter case, and in most other cases, the pollen and stigma remained in appearance fresh. Occasionally, however, the pollen becomes brownish, generally on the external surface, and not in contact with the stigma, as is invariably the case when the plant's own pollen is applied.Fritz Müller observed the poisonous action of the plant's own pollen in the above-mentionedOncidium flexuosum,O. unicorne, pubes(?), and in two other unnamed species. Also in two species of Rodriguezia, in two of Notylia, in one of Burlingtonia, and of a fourth genus in the same group. In all these cases, except the last, it was proved that the flowers were, as might have been expected, fertile with pollen from a distinct plant of the same species. Numerous flowers of one species of Notylia were fertilized with pollen from the same raceme; in two days' time they all withered, the germens began to shrink, the pollen-masses became dark brown, and not one pollen-grain emitted a tube. So that in this orchid the injurious action of the plant's own pollen is more rapid than withOncidium flexuosum. Eight other flowers on the same raceme were fertilized with pollen from a distinct plant of the same species: two of these were dissected, and their stigmas were found to be penetrated by numberless pollen-tubes; and the germens of the other six flowers became well developed. On a subsequent occasion many other flowers were fertilized with their own pollen, and all fell off dead in a few days; whilst some flowers on the same raceme which had been left simply unfertilised adhered and long remained fresh. We have seen that in cross-unions between extremely distinct orchids the pollen long remains undecayed; but Notylia behaved in this respect differently; for when its pollen was placed on the stigma ofOncidium flexuosum, both the stigma and pollen quickly became dark brown, in the same manner as if the plant's own pollen had been applied.Fritz Müller suggests that, as in all these cases the plant's own pollen is not only impotent (thus effectually preventing self-fertilization), but likewise prevents, as was ascertained in the case of the Notylia andOncidium flexuosum, the action of subsequently applied pollen from a distinct individual, it would be an advantage to the plant to have its own pollen rendered more and more deleterious; for the germens would thus quickly be killed, and, dropping off, there would be no further waste in nourishing a part which ultimately could be of no avail. Fritz Müller's discovery that a plant's own pollen and stigma in some cases act on each other as if mutually poisonous, is certainly most remarkable.

Sixty-three flowers ofCorydalis cava, borne on distinct plants, were fertilised by Dr. Hildebrand[305]with pollen from other plants of the same species; and fifty-eight capsules were obtained, including on an average4.5 seed in each. He then fertilised sixteen flowers produced by the same raceme, one with another, but obtained only three capsules, one of which alone contained any good seeds, namely, two in number. Lastly, he fertilised twenty-seven flowers, each with its own pollen; he left also fifty-seven flowers to be spontaneously fertilised, and this would certainly have ensued if it had been possible, for the anthers not only touch the stigma, but the pollen-tubes were seen by Dr. Hildebrand to penetrate it; nevertheless these eighty-four flowers did not produce a single seed-capsule! This whole case is highly instructive, as it shows how widely different the action of the same pollen is, according as it is placed on the stigma of the same flower, or on that of another flower on the same raceme, or on that of a distinct plant.

With exotic Orchids several analogous cases have been observed, chiefly by Mr. John Scott.[306]Oncidium sphacelatumhas effective pollen, for with it Mr. Scott fertilised two distinct species; its ovules are likewise capable of impregnation, for they were readily fertilised by the pollen ofO. divaricatum; nevertheless, between one and two hundred flowers fertilised by their own pollen did not produce a single capsule, though the stigmas were penetrated by the pollen-tubes. Mr. Robinson Munro, of the Royal Botanic Gardens of Edinburgh, also informs me (1864) that a hundred and twenty flowers of this same species were fertilised by him with their own pollen, and did not produce a capsule, but eight flowers fertilised by the pollen ofO. divaricatumproduced four fine capsules: again, between two and three hundred flowers ofO. divaricatum, fertilised by their own pollen, did not set a capsule, but twelve flowers fertilised byO. flexuosumproduced eight fine capsules: so that here we have three utterly self-impotent species, with their male and female organs perfect, as shown by their mutual fertilisation. In these cases fertilisation was effected only by the aid of a distinct species. But, as we shall presently see, distinct plants, raised from seed, ofOncidium flexuosum, and probably of the other species, would have been perfectly capable of fertilising each other, for this is the natural process. Again, Mr. Scott found that the pollen of a plant ofO. microchilumwas good, for with it he fertilised two distinct species; he found its ovules good, for they could be fertilised by the pollen of one of these species, and by the pollen of a distinct plant ofO. microchilum; but they could not be fertilised by pollen of the same plant, though the pollen-tubes penetrated the stigma. An analogous case has been recorded by M. Rivière,[307]with two plants ofO. Cavendishianum, which were both self-sterile, but reciprocally fertilised each other. All these cases refer to the genus Oncidium, but Mr. Scott found thatMaxillaria atro-rubenswas "totally insusceptible of fertilisation with its own pollen," but fertilised, and was fertilised by, a widely distinct species, viz.M. squalens.

As these orchids had grown under unnatural conditions, inhot-houses, I concluded without hesitation that their self-sterility was due to this cause. But Fritz Müller informs me that at Desterro, in Brazil, he fertilised above one hundred flowers of the above-mentionedOncidium flexuosum, which is there endemic, with its own pollen, and with that taken from distinct plants; all the former were sterile, whilst those fertilised by pollen from anyother plantof the same species were fertile. During the first three days there was no difference in the action of the two kinds of pollen: that placed on the stigma of the same plant separated in the usual manner into grains, and emitted tubes which penetrated the column, and the stigmatic chamber shut itself; but the flowers alone which had been fertilised by pollen taken from a distinct plant produced seed-capsules. On a subsequent occasion these experiments were repeated on a large scale with the same result. Fritz Müller found that four other endemic species of Oncidium were in like manner utterly sterile with their own pollen, but fertile with that from any other plant: some of them likewise produced seed-capsules when impregnated with pollen of widely distinct genera, such as Leptotes, Cyrtopodium, and Rodriguezia!Oncidium crispum, however, differs from the foregoing species in varying much in its self-sterility; some plants producing fine pods with their own pollen, others failing to do so; in two or three instances, Fritz Müller observed that the pods produced by pollen taken from a distinct flower on the same plant, were larger than those produced by the flower's own pollen. InEpidendrum cinnabarinum, an orchid belonging to another division of the family, fine pods were produced by the plant's own pollen, but they contained by weight only about half as much seed as the capsules which had been fertilized by pollen from a distinct plant, and in one instance from a distinct species; moreover, a very large proportion, and in some cases nearly all the seed produced by the plant's own pollen, was embryonless and worthless. Some self-fertilized capsules of a Maxillaria were in a similar state.

Another observation made by Fritz Müller is highly remarkable, namely, that with various orchids the plant's own pollen not only fails to impregnate the flower, but acts on the stigma, and is acted on, in an injurious or poisonous manner. This is shown by the surface of the stigma in contact with the pollen, and by the pollen itself, becoming in from three to five days dark brown, and then decaying. The discolouration and decay are not caused by parasitic cryptogams, which were observed by Fritz Müller in only a single instance. These changes are well shown by placing on the same stigma, at the same time, the plant's own pollen and that from a distinct plant of the same species, or of another species, or even of another and widely remote genus. Thus, on the stigma ofOncidium flexuosum, the plant's own pollen and that from a distinct plant were placed side by side, and in five days' time the latter was perfectly fresh, whilst the plant's own pollen was brown. On the other hand, when the pollen of a distinct plant of theOncidium flexuosum, and of theEpidendrum zebra(nov. spec.?), were placed together on the same stigma, they behaved in exactly the same manner, the grains separating, emitting tubes, and penetrating the stigma, so that the twopollen-masses, after an interval of eleven days, could not be distinguished except by the difference of their caudicles, which, of course, undergo no change. Fritz Müller has, moreover, made a large number of crosses between orchids belonging to distinct species and genera, and he finds that in all cases when the flowers are not fertilised their footstalks first begin to wither; and the withering slowly spreads upwards until the germens fall off, after an interval of one or two weeks, and in one instance of between six and seven weeks; but even in this latter case, and in most other cases, the pollen and stigma remained in appearance fresh. Occasionally, however, the pollen becomes brownish, generally on the external surface, and not in contact with the stigma, as is invariably the case when the plant's own pollen is applied.

Fritz Müller observed the poisonous action of the plant's own pollen in the above-mentionedOncidium flexuosum,O. unicorne, pubes(?), and in two other unnamed species. Also in two species of Rodriguezia, in two of Notylia, in one of Burlingtonia, and of a fourth genus in the same group. In all these cases, except the last, it was proved that the flowers were, as might have been expected, fertile with pollen from a distinct plant of the same species. Numerous flowers of one species of Notylia were fertilized with pollen from the same raceme; in two days' time they all withered, the germens began to shrink, the pollen-masses became dark brown, and not one pollen-grain emitted a tube. So that in this orchid the injurious action of the plant's own pollen is more rapid than withOncidium flexuosum. Eight other flowers on the same raceme were fertilized with pollen from a distinct plant of the same species: two of these were dissected, and their stigmas were found to be penetrated by numberless pollen-tubes; and the germens of the other six flowers became well developed. On a subsequent occasion many other flowers were fertilized with their own pollen, and all fell off dead in a few days; whilst some flowers on the same raceme which had been left simply unfertilised adhered and long remained fresh. We have seen that in cross-unions between extremely distinct orchids the pollen long remains undecayed; but Notylia behaved in this respect differently; for when its pollen was placed on the stigma ofOncidium flexuosum, both the stigma and pollen quickly became dark brown, in the same manner as if the plant's own pollen had been applied.

Fritz Müller suggests that, as in all these cases the plant's own pollen is not only impotent (thus effectually preventing self-fertilization), but likewise prevents, as was ascertained in the case of the Notylia andOncidium flexuosum, the action of subsequently applied pollen from a distinct individual, it would be an advantage to the plant to have its own pollen rendered more and more deleterious; for the germens would thus quickly be killed, and, dropping off, there would be no further waste in nourishing a part which ultimately could be of no avail. Fritz Müller's discovery that a plant's own pollen and stigma in some cases act on each other as if mutually poisonous, is certainly most remarkable.


Back to IndexNext