JAPANESE CLIMBING CUCUMBER NEARLY SIX FEET FROM THE GROUND
JAPANESE CLIMBING CUCUMBER NEARLY SIX FEET FROM THE GROUND
WELL-GROWN CUCUMBERS
WELL-GROWN CUCUMBERS
Ventilation.—Besides the precautions to be observed in watering plants in cold frames, extreme care is necessary to give the plants sufficient air to keep them in a healthy condition. If the atmosphere is allowed to become close and very hot, the plants will be weakened and thus rendered more susceptible to the attacks of plant diseases.
Forcing Cucumbers Under Glass.—Forcing is a technical term used by gardeners to designate the growing of plants out of their normal season under an artificial environment. The cucumber is one of the few garden plants which lend themselves to this manner of cultivation in addition to their more extensive cultivation in the open ground. Under the stimulus of forcing work, two distinct types of cucumbers have been developed. These are recognized in the trade as the English type and the American type. The English type is purely a product of forcing-house conditions, as the climate of England is not congenial to the growth and development of the cucumber in the open. The American type of cucumber is primarily a product of field conditions, and the few varieties which have been developed to meet the requirements of the forcing house are simply modifications of the existing field or outdoor forms. The English type of cucumber is a long, cylindrical, uniformly green fruit, with few seeds and a very fleshy seed cavity; in fact, the normal seed cavity of the forced cucumber is almost entirely wanting. The triangular shape characteristic of the normal outdoor cucumber has been lost, and the cylindrical outline almost perfected. There is considerable difference in the size and length of the various English varieties of cucumbers. The American type of cucumber is primarily grown in the field, the product to be used either for pickling or for slicing. Forcing cucumbers in America is confined to those varieties which produce large fruits suitable for slicing. Only three or four of the better and larger field varieties are adapted to this purpose. Notable among these is the White Spine, the Arlington White Spine being the variety which has been especially developed for forcing. The Long Green, or a modification of it, is also sometimes used, but aside from these two varieties there are few that ever find their way into the forcing house. Such varieties as the Boston Pickling, Chicago Pickling, and the cluster varieties in general are not adapted to forcing purposes. The forcing of cucumbers presupposes that an adequate forcing house or greenhouse is at hand for such work. The chief desideratum in a forcing house for cucumbers is a maximum amount of light, sufficient headroom, and adequate radiation to maintain a temperaturevarying from 65° to 85° F. The amount of radiation will, of course, depend upon the style of heating employed, whether steam or hot water, and upon the location of the greenhouse, whether at the north or the south; the outside temperature determining to a considerable extent the amount of radiation required in the house to maintain a given degree of heat.
Propagation.—There are a number of methods of propagation followed by successful cucumber growers, all of which have some advantages. Three of the more common practices are as follows: (1) To plant the seeds of cucumbers in the soil of the bench where the plants are to grow and mature; (2) to plant the seeds of the cucumbers in 3-inch or 4-inch pots filled about half full of soil and after the seeds have germinated and the hypocotyl or stem of the seedling has elongated to fill the pots well up to the seed leaves with soil; and (3) to plant the seeds in cups similar to those used for harvesting strawberries, except that the cups for this purpose are usually made of Georgia pine. In the first case, where the seeds are planted directly in the soil on the benches, cucumbers are usually employed as a crop to follow lettuce, seeds being planted in the lettuce benches before the crop is entirely removed, heads of lettuce being taken out at proper distances to allow for the correct spacing of the cucumber plants, and the seeds of cucumbers planted in the areas so left. In the other two cases the rearing of the plants for forcing purposes can be carried on in a small house especially designed for this purpose or in a general propagating house, thus obviating the necessity of heating and maintaining normal conditions in the growing house during the period previous to which the plants begin to run.
Planting on the Benches.—As soon as the plants show well-developed runners and are 10 to 12 inches long they should be placed in their permanent position upon the greenhouse benches. Plants grown in pots must be carefully removed from these receptacles to the bench, but those grown in the wooden cups above referred to can be planted, cup and all, in the soil of the bench. The utmost care should be exercised to keep the plants of the cucumber growing rapidly at all times. If cucumbers receive a severe check or are placed under conditions which are not entirely congenial to them, they are liable to become dwarfed and stunted, and as soon as vigorous growth ceases they become the prey of the melon aphis, mildew, and other pests and diseases which are so annoying to growers of cucumbers under artificial conditions.
Distance to Plant.—After the plants have attained a height of 10 or 12 inches and are in a vigorous growing condition they should be placed about 15 or 18 inches apart in single rows upon the side benches of the greenhouse, which are normally 3½ feet wide, or if planted on 8-foot benches they should be planted about 10 or 12 inches from the edge of the bench and 15 to 18 inches apart and parallel with the edge of the bench. In the broad benches, where more than a double row can be carried, plants can be set about 18 inches apart and in rows about 2 feet apart. A satisfactory plan for an 8-foot bench will be a row parallel with and 10 inches from each edgeof the bench and a double row 18 inches apart through the middle of the bench. It is well, however, to allow as much space as possible. The cucumber is a rank-growing plant and many side branches will develop if sufficient space is allowed.
Training the Plants.—As soon as the plants show a tendency to run they should be trained so as to keep them from becoming unduly tangled and in order to fill all the space upon the trellis. Galvanized wires No. 16 can be run lengthwise of the house and stapled to the supports, which should be placed about 6 feet apart. Upon side benches which are elevated it will be necessary to train the cucumbers to the framework of the greenhouse. For this purpose screw eyes about 8 inches in length can be placed in the sash bars at intervals of 4 or 5 feet and the parallel wires to which the vines are to be tied stretched 12 inches apart lengthwise of the house through these screw eyes and firmly fastened at the ends. The vines should then be loosely tied to the supporting wires with raffia or soft cotton yarn. When the fruits become heavy, as in the case of the English varieties, it will become necessary to truss them to prevent their weight breaking the vines. Heavy fruits will cause the supporting wires or bands of raffia to break or girdle the vines unless they are supported independently. The American varieties seldom attain sufficient size to require this precaution. Fruits of these varieties as soon as they are 8 to 10 inches in length and 2 inches in diameter are harvested for market. The vines are usually sufficiently strong to withstand the weight of fruit of this size.
Pollination.—The cucumber, like the other members of the gourd family to which it belongs, bears two kinds of blossoms on widely separated parts of the plant. The staminate or nonfruit-bearing flower is the first to appear and is in general borne near the base of the plant. The pistillate blossom with the embryo cucumbers at its base appears later and is borne near the extremity of the newly forming and rapidly growing shoots. Since these flowers are normally produced in this way, it is necessary that a transfer of pollen be made from the staminate to the pistillate flowers throughout the agency of insects or by other artificial means. Under greenhouse conditions and at the time of year that the cucumber is forced it is necessary to provide for pollination. In small establishments this work can be done by hand. The staminate blossoms are removed, the petals turned back so as to allow the anthers to project, and the pencil thus produced is then thrust into the cup of the pistillate flower in such a way as to distribute pollen upon the stigma of the pistillate flower. In large establishments where hand pollination is out of the question a colony of honey bees is placed in each house to accomplish the work.—(F. B. 254, 255; Mass. Ag. Col. E. S. 87; Iowa Ag. Col. E. S. 47.)
Sow the seed of dandelion in spring in drills 18 inches apart, covering it one-half inch deep. Thin the plants to about 12 inches apart and give good clean cultivation throughout the summer. In the colder parts of the country it may be desirable to mulch slightlyduring the winter to prevent the plants heaving out of the soil. Early the following spring the plants will be ready for use as greens, but they are greatly improved if blanched by setting two boards in the forms of an inverted letter V over the row. The blanching not only makes the leaves more tender but destroys a part of the bitter taste. Dandelion greens should be boiled in two waters to remove the bitterness.—(F. B. 255-68; S. Dak. 68; U. Id. E. S. 10.)
Grown as fennel which it greatly resembles, both being well known herbs used for flavoring pickles, and both being of unsurpassed hardiness.—(Mich. E. S. 20.)
This delicious vegetable is not so much cultivated in our gardens as it should be. This has arisen largely from the difficulty of getting the plants from seed in the open ground. If you have no greenhouse, hotbed, nor frame, it will be best to buy the plants at setting-time from some one who grows them early in pots. Plants pulled from a bed are seldom worth planting, as the egg plant is slow to recover from a serious check.
Kind of Soil.—A sandy loam will be found excellent soil; this should be well drained and have a moist subsoil. Land that has been drained, if all other conditions are proper, will make an excellent field. This plant is a deep feeder, so that the land should be plowed as deeply as possible. A new field should not be taken, while one might succeed, the chances are not so good as on an old and well-tried piece of land. Be sure that all rubbish and matter that could interfere with cultivation has been removed. Fertilize the field broadcast; there is little or no danger of the plants failing to get the food if it is in the soil. The best way is to apply the fertilizer just before plowing the field, and then apply a smaller amount where the plants are to stand; work the fertilizer in well a week or two before setting out. Lay the land off into rows four feet apart, and set the plants three or four feet apart in the row. At convenient distances a row may be skipped to make a road to gather the crop. After the crop has been planted there is little or no use for a hoe; the plow can and ought to do the work. No weeds should be allowed to show more than the seed leaves, and the ground should be kept mellow enough to let a person sink nearly to the ankles in dry times. When the fertilizer has been applied properly the roots will seek the deeper soil, and the ordinary horse cultivator will not reach them at all. Eggplant raising pays best under high cultivation. By replenishing the fertilizer, plants may be kept in bearing until frost kills them in the fall, but it will be found more profitable to renew the field, if a summer or fall crop is desired.—(U. Id. E. S. 10; N. C. E. S. 132; Fla. E. S. 31; F. B. 255; Iowa E. S. 47.)
The endive is a form of chicory. Sow the seeds thinly in drills, and when the plants are well established thin to 8 inches. Water and cultivate thoroughly in order that a good growth of leaves may be made. When the leaves are 6 to 8 inches in length draw themtogether and tie them so the heart will blanch. The leaves should not be tied up while wet or decay will follow. The heads should be used as soon as blanched. For winter use sow the seeds rather late and remove the plants, with a ball of earth adhering to the roots, to a cellar or cold frame, and blanch during the winter as required for use. Endive is used as a salad at times of the year when lettuce and similar crops are out of season.—(F. B. 255; U. Id. E. S. 10; S. Dak. E. S. 68.)
Cultivated for the sweet aromatic foliage and fruit is an herb used for flavoring pickles.—(Mich. E. S. 20.)
Garlic is closely allied to the onion, but will remain in the ground from one year to another if undisturbed. Garlic is planted by setting the small bulbs, or cloves, either in the autumn or early spring. The culture is practically the same as for the onion. The bulbs are used for flavoring purposes.—(F. B. 255.)
Ginger, the underground root stock ofZingiber officinale, is perhaps most commonly used dry as a spice, though the fresh root or green ginger is common in autumn, being used in pickle making, preserving, and in other ways. The young and tender ends of the branching root or rhizome, called ginger buds, are the most delicate portion as regards both texture and flavor. Large quantities of ginger root are preserved in rich sugar syrup, the round stone jars of "Canton ginger" being an old-fashioned confection which is still much prized. The crystallized or candied ginger is even more common and is frequently served as a sweetmeat, and is also used in making deserts of various sorts.—(F. B. 295.)
To this group belong a number of plants hardly recognized as vegetables in the common use of the term, yet of sufficient importance to entitle them to a corner in the family garden. The herb garden or "patch" is too often considered a worthless gift or fashion handed down from grandmother's day. In every well ordered garden there should be a few of the common herbs. The same conditions concerning care, cultivation, etc., will answer for all. The site selected should be out of the way so that it may not be disturbed. As the bed is to be permanent it should be made fertile and cultivated deeply. In sowing classify according to whether they are annuals or perennials. The plants may be grown from seed but whenever possible, propagation by root division is much more easy and certain. In autumn before frost the leaves and stems of those desired for winter use should be gathered, tied in small bunches and hung up to dry in an airy room. Where the seed is desired, it should be allowed to ripen and harvested.—(U. Id. E. S. 10; S. Dak. E. S. 68; N. C. E. S. 132.)
This plant (Mesembryanthemum cristallinum) gets its name from the crystalline ice-like covering of the leaves. In hot countriesthe leaves are used as a salad or boiled the same as spinach.—(S. Dak. E. S. 68.)
This plant will thrive best in a deep, rich soil, where there is plenty of moisture. The rows should be 3 feet apart and the plants 12 to 18 inches apart in the row. Tops cut from large roots or pieces of small roots are used for planting. A comparatively few hills of horse-radish will be sufficient for family use, and the roots required for starting can be secured of seedsmen for 25 or 30 cents a dozen. This crop will require no particular cultivation except to keep down the weeds, and is inclined to become a weed itself if not controlled. The large fleshy roots are prepared for use by peeling and grating. The grated root is treated with a little salt and vinegar and served as a relish with meats, oysters, etc. The roots should be dug during the winter or early spring before the leaves start. After being treated with salt and vinegar the grated root may be bottled for summer use. As this has always been considered strictly a cold-weather plant, is would seem useless to try to grow it in Porto Rico, but, as it gave very favorable results at this station, it can no doubt be produced for local consumption. It is practically unknown in Porto Rico, but most people acquire a taste for it, and foreigners, who are used to it in their native country, will find it very gratifying that they can grow it here. In the North it thrives in any soil from a light sand to a heavy clay, but prefers a medium heavy loam. Here it grows luxuriantly in heavy clay but may not do so well in sand. It is planted from cuttings of the lateral roots, which should be from 4 to 6 inches long and planted at a distance of 12 to 15 inches in rows 24 to 30 inches apart. Root cuttings can be obtained either in spring or fall from any seed firm, and these should be planted when received. The roots can be dug when large enough for use or can be left in the ground until wanted.—(F. B. 255: U. Id. E. S. 10; P. Rico E. S. 7.)
There are a large number of forms of kale, and these are thought by some to be the original type of the cabbage. Kale does not form a head and has convoluted leaves and thick leaf stems. It is cultivated the same as cabbage, but may be set somewhat closer. This crop is very hardy and will live through the winter in the open ground in localities where freezing it not too severe. The flavor of kale is improved by frost. Kale is used for greens during the winter, and as a substitute for cabbage.—(F. B. 255; N. Car. E. S. 132; U. Id. E. S. 10.)
Kohl-rabi belongs to the same class as cabbage and cauliflower, but presents a marked variation from either. It is, perhaps, half-way between the cabbage and turnip, in that its edible part consists of the swollen stem of the plant. For an early crop, plant and cultivate the same as for early cabbage. For a late crop or for all seasons in the South the seed may be sown in drills where the crop is to be grown and thinned to about 8 inches apart in the row. The rowsshould be from 18 to 36 inches apart, according to the kind of cultivation employed. The fleshy stems should be used while they are young and quite tender. Prepare kohl-rabi for the table in the same manner as turnips, which it very much resembles when cooked.—(F. B. 255; U. Id. E. S. 10; Mich. E. S. 20; N. C. E. S. 132; La. E. S. 90.)
This plant belongs to the same class as does the onion, but requires somewhat different treatment. Leeks can be grown on any good garden soil and are usually sown in a shallow trench. The plants should be thinned to stand about 4 inches apart in the row and the cultivation should be similar to that for onions. After the plants have attained almost full size the earth is drawn around them to the height of 6 or 8 inches to blanch the fleshy stem. The leek does not form a true bulb like the onion, but the stem is uniformly thick throughout. Leeks are marketed in bunches like young onions, and they may be stored the same as celery for winter. Leeks are used for flavoring purposes and are boiled and served with a cream dressing the same as young onions.—(N. Car. E. S. 132; La. E. S. 90; F. B. 255.)
This crop attains its best development in a rich sandy loam in which there is plenty of organic matter. Lettuce thrives best during the early spring or late autumn and will not withstand the heat of summer. In order that the leaves may be crisp and tender, it is necessary to force the growth. The usual method of growing lettuce for home use is to sow the seeds broadcast in a bed and remove the leaves from the plants as rapidly as they become large enough for use. A much better method is either to thin or transplant the seedlings and allow the plants to form rather compact heads and then cut the entire plant for use. In the Southern States the seeds may be sown during the autumn and the plants allowed to remain in the ground over winter. At the North the seeds may be sown in a hotbed or cold frame and the seedlings transplanted to the open ground, or the seeding may be in rows in the garden and the plants thinned to 5 or 6 inches in the row. Lettuce may be grown in rows about 12 inches apart. In order to produce crisp and tender lettuce during the summer months, it may be necessary to provide some form of partial shading.—(F. B. 255; N. Y. E. S. 208; N. Car. E. S. 147; Tenn. E. S. 2; Purdue Ind. E. S. 66 and 84; Kas. E. S. 70.)
This vegetable, although cultivated in Porto Rico for a long time, is not extensively known. The plant at a cursory glance resembles a canna. The edible tubers, which are formed in great profusion, can be eaten boiled like potatoes; but, unlike potatoes, they do not become soft, but appear hard and crisp after prolonged boiling. Lleren somewhat resembles boiled sweet corn in taste, and most people pronounce it delicious without needing to acquire a taste for it. The best soil for lleren is a rich, moist, well-drained loam, which is usually benefited by an application of wood ashes or sulphateof potash; an excess of nitrogen causes the production of large tops and few tubers. The stools or roots immediately adhering to stalks are the parts used for propagating; the tubers will not germinate. Lleren should be planted at intervals of 2 feet in rows 4 feet apart, and cultivated like any other vegetable. It requires ten to fifteen months to mature tubers, which are ¾ to 1 inch in diameter, and may be harvested at any time when large enough, but can be left in the ground for a long time without spoiling. It is a good shipper and if introduced into the northern market it would soon create a demand.—(P. Rico E. S. 7.)
The curious, long beaked fruit is used for pickles. The plants are quite hardy and ornamental, the fruit being no less conspicuous for its odd shape than the large wax-like flowers of whitish color with purple and yellow spots.—(Mich. E. S. 20.)
Soil and Location.—The soil for muskmelons must be well drained and contain an abundance of humus and readily available plant food. If these conditions are met, it matters little what the particular type of soil may be. A knoll or ridge sloping gently to the south and protected by timber on the north and west furnishes an ideal site for melons. Such a location will usually produce earlier melons than a north or west slope and is better than a level area because the soil dries out more quickly after a rain, thus permitting more timely tillage in a wet season, and resulting in the production of melons of better flavor. It is only in dry seasons that low, flat land, unless thoroughly tile-drained, produces good melons. The condition of the soil in reference to its supply of humus has a marked influence upon the welfare of the melon crop. Because of its abundance of humus, newly cleared timber land is well adapted to melon culture, but is difficult to work on account of the stumps and roots. Land slightly deficient in humus can be put in condition for growing melons by plowing under a clover sod, or a crop of cowpeas or rye, or a coat of manure applied broadcast. If melons are to be grown as one of the crops in a regular rotation, they should constitute the crop immediately following the leguminous crop designed to add humus and nitrogen to the soil. In regions where winter wheat and clover are grown, a rotation of wheat, clover and melons is highly satisfactory. Another good rotation would be: oats, clover, melons, corn. In regions where clover does not thrive and wheat and oats are not grown, a rotation of corn, cowpeas, and melons may be employed, or the rotation extended by seeding to grass after the melons are harvested. Even with careful attention to rotation and the incorporation of humus by plowing under catch crops or manure, ordinary farm land—including good corn land—is not sufficiently rich to produce a satisfactory crop of melons without the use of fertilizing material in the hills. It is only on garden soil that has been made exceedingly rich by repeated applications of manure, that it is wise to attempt to grow melons without special treatment of the hills.
Manure for the Hills.—The manure for use in the melon hillsis ricked up in the fall in long low piles, about eight feet wide and two or three feet deep. The sides of the pile are made as nearly perpendicular as possible and the top is flattened so that rains will soak in instead of running off. Sometimes a layer of dirt about three inches deep is placed on top of the manure to help retain the moisture. Early in the spring, work is commenced on the manure to put it in condition for use. The pile must be cut down and the manure turned and mixed until it is thoroughly decomposed and of fine texture. Formerly this work was done by hand with a fork, and entailed a large amount of labor. Now some of the large growers do all this turning of the manure with a disk and plow. The pile is worked three or four times at intervals of one or two weeks.
Time of Planting.—The melon is a warm season crop, and unless the soil is warm and the weather favorable the seeds will not germinate nor the plants grow. It is therefore usually unwise to plant in advance of the normal season in the hope of securing an early crop. Occasionally, such plantings do well, but usually the stand is poor, necessitating much replanting, and the early plants which do survive are likely to be so badly stunted by reason of the cool weather that they do not mature their crop much in advance of the later plantings which have had the benefit of warm weather from the start.
Preparations for Planting.—Melon ground should be plowed early in the spring, or replowed if it was broken in the fall. After plowing, it should be thoroughly pulverized by the use of a disk or harrow, or both, and then kept in good, friable condition by occasional working until planting time arrives. Shortly before planting is to begin, the field should be furrowed out both ways with a single-shovel plow or a one-horse turning plow. The furrows should be about six inches deep, and as far apart as the hills are to be placed. On some soils melon vines make only a moderate growth and the hills may be planted as close as four feet apart each way; but on rich soil, where they make a stronger growth, they should be at least five by five, and in some cases six by six. After the land is furrowed out the rotted manure is applied at the intersections of the furrows. From a quart to a half-peck of manure is used for each hill, depending upon the quality of the manure and also the quantity available. The manure is dropped into the bottom of the furrow, and either mixed thoroughly with the soil there, and covered with a layer of pure soil in which to plant the seed, or is merely covered with the soil without any mixing. The latter method seems to give fully as good results as the former, especially when a small quantity of manure is used, and is a great saving of labor. In either case, especial care should be taken to compact the soil over the manure so that when the seed is planted it will not suffer from lack of moisture by reason of any vacant air space in or about the mass of manure. Sometimes the manure is covered with soil by merely plowing a furrow on each side of the furrow containing the manure, but unless the soil is in exceedingly fine condition, this method is not as satisfactory as using a hoe and giving each hill individual attention. In making the hill, someplanters compact the soil with the hoe, while others use the feet. When ready for planting, the hill should be practically level with the general surface of the field. If too low, the hill will become water-soaked in case of rain and the seeds or plants injured; if too high, there is likely to be insufficient moisture to insure proper germination and growth.
Planting the Seed.—If the hills have been made more than a few minutes before the seed is dropped, the top layer of dry soil should be scraped aside with a hoe so that the seed may be placed in immediate contact with moist soil. The area thus prepared for planting the seed should be at least six inches across, and should be smooth and level. From ten to fifteen seeds should be scattered uniformly over this area, and covered with about half an inch of fine, moist soil. This should be firmed with the back of the hoe and then covered with a sprinkle of loose dirt to serve as a mulch. If a heavy rain packs the top of soil and a crust is formed before the plant appears, it is wise to go over the field and carefully break the crust over each hill by means of a garden rake. The method of preparing the hills and planting the seed described above applies to field rather than garden conditions and to soils of medium rather than excessive fertility. In a market garden where the soil is exceedingly rich as a result of repeated manuring for onions or cabbage, and is in fine tilth, it is a common practice to sow the melon seed in drills six to eight feet apart, by means of a garden seed drill. This is done without any special preparation of the soil where the plants are to stand, or application of fertilizing material other than manure applied broadcast before plowing.
Thinning.—While ten to fifteen seeds are planted per hill for the sake of insuring a full stand, only two, or at most three, plants are left to make the crop. Thinning is usually deferred until the plants have become fully established, and the struggle against the striped beetle is nearly over. However, the plants must be thinned before they begin to crowd badly, or those which are to remain will be stunted in growth. Usually the thinning is completed by the time the plants have four rough leaves. If the seed has been well scattered in planting, so that each plant stands apart by itself, the superfluous plants may be pulled with the fingers, but extreme care must be taken to avoid disturbing the roots of the remaining plants. Sometimes the plants are cut off with a knife or shears, instead of being pulled, and thus all danger of disturbing the roots is avoided. If the seeds have been sown with a drill as in market gardening practice, the plants are usually thinned to one in a place at distances of two to two and one-half feet in the row.
Transplanting.—Since it is impossible to increase the earliness of the crop to any great extent by early planting in the field, growers have adopted the transplanting method. This makes it possible to plant the seed three or four weeks earlier than would otherwise be feasible, and to grow the plants under controlled conditions of temperature and moisture during their most critical period. It also simplifies the matter of protection from striped beetles. The main objections to this method are the expense for sash, and the difficulties attending the transplanting. A melon plant will not survive transplanting if the root system is disturbed. For this reason the seed is sown on inverted sod, in pots or in dirt bands. The dirt bands are used almost exclusively by commercial growers. These are thin strips of wood veneer, three inches wide and eighteen inches long, scored at intervals of four inches so that they can be bent without breaking. When folded ready for use, each band resembles a small strawberry box without the bottom. These bands are placed close together in a hotbed and filled level full with fine, rich soil. With a block of wood shaped for the purpose, the soil within the bands is pressed until it is ½ to ¾ inch below the top of the band. If only part of the dirt is put in at first, and is pressed down firmly, then the rest of the dirt put on and pressed, the soil in the band will be more compact throughout and will hold together better in the transplanting than if the dirt were pressed only once. Unless the soil used was very moist, the bed is then thoroughly watered. Next, three seeds are placed in each band. These are covered with fine, loose soil deep enough to fill the band. This soil is not firmed. The hotbed for melon plants should have full exposure to light and be maintained at a high temperature—about 85 degrees F. during the day and 65 to 70 degrees at night. As much ventilation should be given as the weather will permit, and care exercised to avoid overwatering. As soon as the plants are well started, they are thinned to two in a band by cutting off the extra plant with a sharp knife. When the plants are about four weeks old from the planting of seed they will be in the right condition for transplanting to the field. They are then compact, stocky plants with about four rough leaves. If allowed to remain longer in the bed they begin to stretch for light and are of little value for planting, for the long naked stems, unable to support themselves and unaccustomed to direct sunlight, would easily be sun-burned, and the plants seriously checked if not killed outright.
Cultivation.—Whether the melons are transplanted from a hotbed or grown from seed planted in the field, the tillage of the crop should begin as soon as the plants can be seen. In the case of transplanted plants, this will be the same day that they are set in the field. The early tillage should be deep, and as close to the plant as it is feasible to run the cultivator. The object of this deep tillage is to establish a deep root system so that the plants will not suffer so severely from dry weather later in the season. In the case of a field planted crop it is not feasible to cultivate so close to the plants early in the season because of the danger of tearing out the little plants. For this deep tillage a one-horse five-shovel cultivator, often weighted with a rock, is the tool most commonly used. It is customary to follow this with a "boat" or a 14-tooth cultivator to more fully pulverize the soil. Tillage is usually given after each rain or at least once each week so that the soil is maintained in a loose friable condition. In addition to the cultivation with a horse, much hand hoeing is required close about the plants. Any crust forming after a rain, is broken, and fresh, moist soil drawn up about the plant. Crab grassand weeds appearing in the hill are removed by hand. Most growers cease tillage and lay-by the crop as soon as the vines have run enough to interfere with the cultivator. The experience of a few growers who have turned the vines and kept them in windows so that tillage could be continued until the picking season opened, indicates that a departure from the old method is likely to insure better development of the melons and a longer picking season, though the first fruits may not ripen so early. There is another distinct advantage in this turning of the vines, in that the gathering of the crop is greatly facilitated and there is no injury to the vines from tramping.
Seed.—No matter what variety of melon is grown, it is extremely important that pure seed be planted if good melons are to be produced. The melon deteriorates very rapidly under careless methods of seed selection. None but the very choicest specimens of the desired type, from productive vines, should be selected for seed. It is unsafe to cut seed from a field in which more than one variety of melon is grown; for seed from such a field would likely be very badly mixed, and the product undesirable for market. If a grower has sale for all his good melons, it may be cheaper for him to purchase his seed than to save it. But here again there is danger of procuring inferior seed, for much of the melon seed on the market is cut without careful selection, in order to meet the demand for cheap seed. Even cull melons are used to supply this demand. Such seed is expensive at any price. The difference in the cost of good seed and poor seed is insignificant when compared with the advantages to be derived from the use of seed which can be depended upon to produce melons of a given type.
Picking.—There is considerable difference of opinion as to the exact stage of maturity at which melons should be picked for shipment. If allowed to become too ripe before picking, they become soft by the time they reach the market, and often must be sacrificed in order to effect an immediate sale. If picked too green, the melons reach market in firm condition, but are lacking in flavor, and are not desired by the best trade. It is a nice point to pick melons at such a degree of ripeness that they will reach the market in firm condition, and yet possess the requisite flavor. The farther from market the melons are produced, the less mature they must be when picked. Furthermore, the rapidity of softening after picking varies with the temperature to which the melons are subjected. The cooler they can be kept after picking, the longer they can be allowed to remain on the vines and the better flavor they will have. It is, therefore, essential that the melons be placed in the shade as soon as possible after picking, and be kept shaded until they are loaded into the car. For the same reason, riper melons can be shipped under the refrigeration than in ventilated cars. It is also true that melons shipped during excessively hot weather, unless under refrigeration, will soften more rapidly than those shipped during cooler weather. The condition of the vines and the rapidity of ripening of the melons in the field will also have a bearing upon the stage of maturity at which they should be picked. Early in the shipping season, when the vines are in fullvigor and the melons ripening slowly, the fruits may safely be left upon the vines until more mature than would be safe later in the season when the plants have become somewhat weakened, or, by reason of excessive heat, the melons are ripening very rapidly. Melons should not be picked at the same degree of maturity under different conditions of ripening, methods of transportation, and distances from market.
While it is true that no rule can be given for picking melons that will apply under all conditions, and that the grower must exercise judgment in reference to each day's picking, the ideal will be attained when the conditions are such that the melons will reach the market in the best condition if picked as soon as the fruit will part readily from the stem when the latter is pressed with the thumb or finger. There is a tendency among some growers to pick considerably before this point has been reached, in order to run no risk of the melons becoming soft in transit. In fact, some growers make a practice of picking the melons before a crack appears about the stem or any change of color takes place, even on the under side of the fruit.
Market Demands.—While various types of muskmelon may be disposed of upon a local market, there are certain types which are recognized as standards in the large city markets; and it is seldom wise to attempt to force upon a general market a variety not recognized as a standard in that particular market. In the Chicago market the sorts most in demand are the Netted Gem, or Rocky Ford type, and the Osage.—(Ill. E. S. 124, 139; F. B. 255; S. Dak. E. S. 67; N. Hamp. E. S. 70, 96; N. Y. E. S. 200; N. Mex. E. S. 63.)
The cultivation of the watermelon is practically the same as for the muskmelon, except that the plants grow larger and require more room for development than those of the muskmelon. Watermelons require that the soil should contain a larger percentage of sand than muskmelons, and that the land should be quite rich. Watermelons should be planted 10 feet each way between the hills, or in drills 10 feet apart and thinned to 3 feet apart in the drills. The watermelon seedlings must be protected from the cucumber beetle until the foliage becomes toughened. Watermelons readily group themselves into six classes based upon the color or characteristics of the skin or external appearance. It does not necessarily follow that in the proposed classification the fruit of each variety will all be of the same form to which it is referred; for, as every melon grower knows, the fruits in each hill vary more or less; but if everything is normal and favorable for their development the characteristic form or that typifying the variety will predominate. The larger the experience of the grower, the easier it is for him to understand these various types. In order to get the true type of each variety, it is important that the seeds be secured directly from the seedsman who first introduced them thus avoiding complications or errors.—(F. B. 255; N. H. E. S. 86; Ind. E. S. 123; N. Mex. E. S. 63; S. Dak. E. S. 67.)
{Sweet Heart Type(oval shape)I. Light Green————Class(medium shape)Monarch Type,(Long shape){Icing Type,(oval shape)II. Medium Green————Class(medium shape)Jackson Type,(long shape){Black Spanish Type(oval shape)III. Dark Green————Class(medium shape)Boss Type,(long shape){Kolb's Gem Type,(oval shape)IV. Light StripedCuban Queen Type,Class(medium shape)Rattlesnake Type,(long shape){Pride of Georgia Type,(oval shape)V. Dull StripedChristmas Type,Class(medium shape)Favorite Type,(long shape){Nabob Type,VI. Mottled Green(oval shape)ClassPhinney Type,(medium long shape)
Almost any good soil will produce a crop of mustard. The basal leaves of mustard are used for greens, and as the plants require but a short time to reach the proper stage for use frequent sowings should be made. Sow the seeds thickly in drills as early as possible in the spring, or for late use sow the seeds in September or October. The forms of white mustard, of which the leaves are often curled and frilled, are generally used. Mustard greens are cooked like spinach.—(F. B. 255; Mich. E. S. 20; La. E. S. 90.)
The hardiness and unsurpassed beauty of this plant should make it a favorite near every home. The seed pods just before beginning to ripen make a delicious flavoring for pickles.—(Mich. E. S. 20; S. Dak. E. S. 68.)
The plant known as New Zealand spinach is not a true spinach, but grows much larger and should be planted in rows 3 feet apart, with the plants 12 to 18 inches apart in the row. Some difficulty may be experienced in getting the seeds to germinate, and they should be soaked one or two hours in hot water before planting. New Zealand spinach is satisfactory for growing in warm climates, as it withstands heat better than the ordinary spinach. The fleshy leaves and tender stems are cooked the same as spinach.
This plant may be grown throughout the greater portion of the United States, but only one crop can be produced during a season in the northern part of the country. In the region around New Orleans successive plantings are made and a constant supply is maintained. The plant is of a tropical nature and will not endure frost, but the pods begin to be produced very soon after the plants start into rapid growth and continue to form for several weeks, especially if all pods are removed while young and no seeds allowed to ripen upon the plants.
Soil and Its Preparation.—The soil upon which okra can be most successfully grown is a rich mellow loam, plowed rather deeply and well worked over with pulverizing tools. After the seedlings become established and the roots get a firm hold of the soil, the growth is very rapid and a large amount of available plant food, especially of a nitrogenous nature, is required. Quick-acting commercial fertilizers may be applied in moderate quantities, but these should be well mixed with the soil. The same conditions that will produce good cotton or corn will be found suitable for the production of okra.
Planting the Seed.—Throughout the Northern States planting should be done as early as possible in spring, or as soon as the soil is warm enough for the planting of general garden seeds. In the Southern States, where a continuous supply is desired, successive seedings of four or five weeks apart should be made. Plant in rows 3½ feet apart for the dwarf types, and 4½ feet for the larger-growing varieties. Scatter the seeds in drills, or plant loosely in hills, as with corn, and cover to a depth of 1 or 2 inches, according to the compactness and moisture content of the soil. The seeds may be planted with any good seed drill, but when placed in hills they should be separated 3 or 4 inches to allow space for the development of the stems. If the soil is reasonably warm, germination will take place within a few days, but should there be a heavy rainfall in the mean time the soil should be lightly cultivated between the rows and the crust broken over the seed by means of an iron rake.
Cultivation.—As soon as the plants are well established they may be thinned to three or four in a hill, or, if grown in drills, to 12 or 14 inches for the dwarf and 18 to 24 inches for the larger growing varieties. Where vacant places occur from failure in germination they may be filled in by transplanting. Cultivate as in the case ofcorn or cotton, keeping the ground well stirred and the surface soil loose, especially while the plants are small. After the leaves begin to shade the ground, very little cultivation is necessary except to keep the land free from weeds. A poor soil and insufficient moisture will yield pods of inferior size and quality, and irrigation may often be desirable in order to produce a marketable crop. Okra is sometimes grown as a mixed crop with cotton, the okra being removed before the cotton begins to mature; but this practice is not to be recommended, as both crops draw heavily upon the nitrogenous matter of the soil. The okra plants will usually continue to grow until late in the season, but after a time the pods are not so large or tender as those produced earlier in the season. As the pod is the only part of the plant ordinarily used for food, it is desirable to secure a rapid and continuous growth in order to produce the greatest quantity of marketable pods.
Gathering and Marketing.—As soon as the plants begin to set fruit the pods should be gathered each day, preferably in the evening. The flower opens during the night or early morning and fades after a few hours. The pollen must be transferred during the early morning, and the pod thus formed will usually be ready for gathering during the latter part of the following day, although the time required to produce a marketable pod varies according to the age of the plant and the conditions under which it is grown. The pods should always be gathered, irrespective of size, while they are still soft and before the seeds are half grown.—(F. B. 232.)
Cultivation for Seed.—If okra is to be grown for seed alone, only one variety should be planted, or if more than one variety is grown each should be separated from the other by at least one-fourth mile to prevent mixing. When several varieties of okra are grown near each other no seed should be saved except that produced by the method of bagging and hand pollination. To secure seed in this way is a rather simple matter when only a small quantity is required, as the pods formed on a single day when the plants are at their best will produce enough seed. The bags should be tied over the flower buds in the evening and the pollen transferred early the following day. Replace the bags immediately, as an insect or the wind may at any moment bring to the flower the pollen of another variety. After going over all the flowers of a variety it is well to return to the first three or four and repollinate them in order that they may receive pollen from different individual flowers of the same variety and to insure perfect fertilization. Before beginning upon another variety the brush used for transferring the pollen should be thoroughly cleaned. If a brush is not available, use a portion of a young leaf, folded together between the thumb and finger, to convey the pollen. This improvised brush should be discarded and a new one adopted for each variety. The bags need remain only during the day on which the pollen is transferred and may be replaced by a tag to mark the pod. The seed should remain on the plant until fully ripe.
The common bumblebee is a frequent visitor to the flowers of the okra, and a single bee was on one morning observed to pollinate over500 flowers, comprising more than 50 separate samples. In this instance practically every flower in the field was visited and pollinated, although no pollen had previously been transferred. This observation demonstrated the necessity of great care to prevent cross-pollination. Our variety tests with okra have shown that seed growers have not always succeeded in keeping the varieties separate, and as a result there has been a gradual blending together of all the sorts. In many of the samples all the sorts usually grown are represented.
Uses.—The principal use of okra is in soups and various culinary preparations in which meats form an important factor, as in the so-called gumbo soups, to which the young pods impart an excellent flavor, besides giving a pleasant mucilaginous consistency. The young seeds are occasionally cooked in the same way as green peas, and the very young and tender pods are boiled and served as a salad with French dressing. Both the stem and the mature pod contain a fibre which is employed in the manufacture of paper. No copper, brass, or iron cooking vessels should be employed in preparing okra, as the metal will be absorbed and the pods discolored or even rendered poisonous. The cooking should be done in agate, porcelain, or earthen ware.—(F. B. 232.)
Varieties.—There are three general types of okra, viz., tall green, dwarf green, and lady finger. Each of these is again divided according to the length and color of the pods, making in all six classes or varieties, namely, tall green, long pod; tall green, short pod; dwarf green, long pod; dwarf green, short pod; lady finger, white pod; and lady finger, green pod. All variations from these are merely the results of mixtures, no true crosses or hybrids being formed. These mixtures are easily separated and referred to the parent type, and a little attention to roguing and selection is necessary in order to keep the varieties pure. It is essential that the parietal strain should be pure in order that a uniform and marketable lot of pods may be produced.—(F. B. 232, 255; U. Id. E. S. 10.)
The onion is exceptional in that it will thrive under a very wide range of climatic and soil conditions. There is perhaps no extended area in the United States, except the mountainous regions, where the onion can not be successfully grown. For best results a temperate climate without great extremes of heat and cold should be selected. Onion culture is rarely profitable in regions where the climate does not change or has no definite seasons of heat and cold or wet and dry. Naturally the onion does best under rather cool conditions, with plenty of moisture during its early stages, but requires a reasonable degree of heat, together with dryness of both soil and atmosphere, for its proper ripening.
Soils.—The essential requirements of a soil upon which to grow onions profitably are a high state of fertility, good mechanical condition in order that the crop may be easily worked, sufficient drainage, and freedom from weeds. If a soil has the proper mechanical properties—that is, if it contains sufficient sand and humus to be easily worked, is retentive of moisture and fertilizers, and is capable ofdrainage—all other requirements can be met. As a general rule new land is not adapted to onion growing until it has been worked one or two years with other crops. Onions should follow some crop that has been kept under the hoe and free from weeds the previous season. Corn, beans, and potatoes are suitable crops with which to precede onions. Muck and sandy soils may in some cases be brought to a suitable condition for onions the first season, but the fitting will have to be very thoroughly performed. The land should be plowed in the autumn, then replowed in the spring, after which numerous harrowings and doubtless some hand work will be required to get the soil in suitable shape. If necessary to manure the land heavily before planting to onions, it will be desirable to plant to some farm crop one season, then apply the manure during the autumn in order to give it time to become incorporated with the soil. Owing to the value of good onion land it would not be advisable to devote it to general farm crops for any extended period, although corn is frequently planted and oats or rye are sometimes used in the North. Cowpeas may be of great service in bringing new land into shape for planting to onions.
Preparation of the Soil.—Assuming that the land intended for planting to onions is capable of being brought to a good mechanical condition, fertile, well drained, and reasonably free from weed seeds, the first step in the production of the crop will be to plow moderately deep, then harrow, disk, roll, and drag until the soil is smooth and mellow to a depth of 4 or 5 inches. On soils that are naturally well drained and where surface water can not accumulate, the plowing may be done in large blocks, but where the opposite conditions are found or irrigation is practiced it may be necessary to plow the land in narrow beds. In the case of insufficient drainage it will be desirable to throw the soil together into beds, leaving a double furrow between each bed to carry off surplus water. Where the flooding system of irrigation is practiced the beds must be leveled and a system of ditches and ridges provided for distributing and controlling the water.
Crop Rotation.—Onions should not be planted on the same piece of land year after year, and some system of crop rotation should be maintained. Care should be taken, however, to use crops in the rotation that will not be exhaustive of the high fertility necessary in the onion land. During the years when the land is not devoted to onions it can be planted to some truck crop that will give a return that will justify the application of large quantities of fertilizers, or, better to a leguminous crop to be turned under as green manure. Continuous cropping with onions will cause the land to become infested with both disease and insect enemies that will sooner or later injure the crop to such an extent as to render it unprofitable.
Fertilizers.—As the onion is an intensive crop and yields great quantities of marketable bulbs for the area planted, the grower is justified in manuring heavily. It would be difficult indeed to make the soil too rich for onions, provided the manures are thoroughly incorporated with the soil. A heavy application of fresh raw manurejust before planting would have an injurious effect, but where the manure is well rotted and uniformly applied there is nothing to be feared.
Animal Manures.—There is perhaps no fertilizer so well adapted to the production of onions as plenty of clean, well-composted stable manure, and the quantity and frequency of application will depend upon the nature of the land under cultivation. All stable manure used on onion land should be well composted before use and then spread upon the land several months before planting to onions. In the Northern States the manure may be applied during the autumn and well disked into the soil. The land can then be allowed to lie in the rough state and exposed to the action of frost during the winter, or it can be smoothed and seeded to rye, in which case it will be necessary to replow during the early springtime. Large quantities of fresh manure applied to onion land just before planting will have a tendency to produce an overgrowth of tops at the expense of the bulbs. This is especially true on irrigated lands and soils that are naturally moist.
Commercial Fertilizers.—Where there is an abundance of humus matter in the soil the onion crop will be greatly benefited by moderate applications of high-grade commercial fertilizers. Many growers follow the practice of applying only a part of the fertilizer at planting time, reserving the balance to be put on as a top-dressing at some time during the period of cultivation. This plan is especially desirable where onions are grown during the winter, as the application of highly nitrogenous fertilizers in the autumn is liable to promote a soft growth that will be injured by cold. If the fertilizer is not put on until cold weather is over, the crop may be forced without danger of injury. For this purpose only those fertilizers of a very available form will answer.
Planting and Thinning.—Experienced growers are frequently able by using extreme care in regulating the drills to distribute onion seed in rows where the crop is to mature so that little thinning will be necessary. Thinning is generally left until the time of the first hand weeding, when all thick bunches along the rows are thinned to a uniform stand of eight or ten plants to the foot. It is always well, however, to allow for considerable loss of plants, and unless the plants are so thick as to actually crowd, thinning will not be necessary.
Transplanting.—The transplanting process, often spoken of as the "new onion culture," is merely a modification of the regular seeding method. The objects gained by transplanting are an earlier crop, a uniform stand, and bulbs of more regular size. Where a small area is to be grown, the transplanting process is the ideal method, but for large acreages and where labor is difficult to obtain, this would not be practical. After transplanting, the seedlings will require rain or watering in order that they may start, and for this reason the transplanting process is practically limited to areas where some form of irrigation is available. In growing onions by the transplanting method the seed is sown in greenhouses, hotbeds, cold frames, or specially prepared beds at the rate of 3½ or 4 pounds foreach acre to be planted. When the seedlings are grown under cover, they are given the necessary attention regarding watering and ventilation and kept growing quite rapidly until near the time for setting them in the open ground. As planting time approaches, the seedlings are "hardened" or prepared for transplanting by increased ventilation and exposure and by withholding water. When ready to transplant, the seedlings should be somewhat smaller than a lead pencil and rather stocky. The plants are lifted from the seed bed and the roots and tops both trimmed somewhat.
Methods of Tillage.—The cultural requirements of the onion are frequent shallow stirring of the soil and freedom from weeds. The feeding roots of the onion run close to the surface of the soil and should not be disturbed by deep cultivation. Sometimes a heavy rain immediately after seeding will so pack the surface that the seedlings can not break through. Under such circumstances it will be necessary to slightly break the surface by means of a steel rake or a rake-like attachment on a cultivator. As soon as the plants are up and the rows can be followed the cultivator should be started to loosen the soil, which is always more or less compacted during seeding. It is well-nigh impossible to produce a crop of onions without some hand weeding. During favorable seasons the strictly hand work may be reduced to but one or two weedings, but a greater number will be necessary during rainy seasons. The work of hand weeding may be facilitated by the use of some of the small hand tools designed for the purpose. Among these tools might be mentioned the onion hoe, the hand weeder, and the thinning or weeding hook.
Irrigation.—Outside of the areas where irrigation methods are depended upon for the production of general crops it is not customary to use artificial watering in the growing of onions.
Harvesting.—In the North the bulbs are allowed to become as ripe as possible before removing them from the soil. Growers prefer that the tops ripen down and shrivel and that the outer skin of the bulbs be dry before they are pulled. To the southward, where the onions are not cured so thoroughly, they are often pulled about the time that the tops begin to break and fall. The ripening process may often be hastened by rolling a very light roller or a barrel over the tops to break them down. This process is frequently spoken of as "barreling." Where the bulbs are practically upon the surface they may be pulled by hand and thrown in windrows consisting of eight or ten onion rows. If the onion bulbs are considerably covered with soil it will be necessary to employ a one-horse plow or a cultivator with a sweep attached for lifting them. In any case it will be necessary to gather them from the soil by hand. After lying in the windrows for several days and being stirred occasionally with wooden rakes they are gone over and the tops removed either by twisting or cutting with ordinary sheep shears. In cases where very bright color is important as with fancy White Globe onions, and this would be injured by exposure to the sun and rain, the bulbs are cured in long, narrow, low ricks formed by two rows of onions laid with the bulbsregularly to the center, tops to the outside, the rows a few inches apart at the bottom of the rick but coming together at the top, and the top of the rick covered by straw or boards to shed the rain. As the tops are removed the bulbs are generally placed in crates for drying. In some sections onion-topping machines are employed, the bulbs being hauled from the field to a central location and run through the topper. These machines remove the tops, grade the bulbs, and deliver them into the crates or bags. If crates are not employed for curing, the bulbs are allowed to lie in the windrows for some time, and are then either put into sacks or hauled to slat cribs, where they complete the curing process. Too long exposure to hot sunshine will injure the bulbs. Where the bulbs are extremely dry at the time of their removal from the soil, they may be allowed to lie in the windrows for a few days only, and then sorted and cleaned in the field ready for packing and marketing.
Storage.—In order that onions should keep well when stored they must be well ripened and thoroughly cured. Those that are immature, soft, or "thick necks" should never be placed in storage but sold as soon as gathered for whatever price they will bring. Good storage onions will rattle almost like blocks of wood when poured from one crate to another. In order that the bulbs may remain bright and of attractive appearance they should not be allowed to lie exposed to the weather, but should be hauled and stored in open sheds just as soon as they may safely be placed in one-bushel crates. After the bulbs have remained in drying sheds or cribs for several weeks they will be ready for screening and removal to the storehouse. In handling onions it is the rule to pass them over a screen each time they are moved, as in this way the loose skins are removed and any soft or decaying bulbs may be sorted out. The essentials for the successful storage of onions are plenty of ventilation, storing in small quantities, a comparatively low temperature, dryness, and safety from actual freezing. Any building wherein the above conditions may be secured will answer.
Marketing.—Large quantities of onions are sold and shipped direct from the fields where they are grown. A part of the crop is held in temporary storage until late autumn or early winter. During recent years the winter storage of onions has become of great importance and the finest stock is held for late winter deliveries. The Bermuda crop from the southwestern part of the country comes upon the market during April and May, so that most of the storage onions are disposed of before that time. In marketing onions the first essential is to properly grade and clean the bulbs, in order that they may present an attractive appearance when offered for sale. Ordinarily the bulbs are separated into three grades—primes, seconds, and picklers. The primes include all those of 1¼ inches, in diameter and larger, and the seconds consist of those from ¾ inch to 1¼ inches in diameter, while all those that will pass through a ¾-inch screen are sold for pickling purposes. The grading is generally done in the field during the cleaning process, but as onionsshrink considerably while in storage it is necessary to regrade before placing upon the market.
Weight of Onions.—The legal weight of onions per bushel varies somewhat in different States, but 56 pounds of dry onions are generally considered a standard bushel.
Important Commercial Varieties.—The varieties of onions that have distinctively yellow, white, and red skins and are of the globular type are of greatest commercial importance. Among the varieties that belong to the yellow globe class are the Prizetaker, Yellow Danvers, Yellow Globe, Danvers, Southport Yellow Globe, and Ohio Yellow Globe. The principal white varieties are Southport White Globe, New Queen, Italian Tripoli, Silver Skin, and White Silver King. Among the more important red sorts are Red Globe, Red Wethersfield, and Australian Brown. The principal Bermuda varieties are Red Bermuda, White Bermuda and Crystal Wax. The Bermuda onions are all of the more or less flat type. The red coloration of the Bermuda onion is not distinctive like that of the Red Wethersfield or Red Globe varieties, but is lighter in color. The famous Denia onion is somewhat of the Prizetaker type, is light yellow in color, grows to a large size, and is mild in flavor. In the selection of varieties for any particular locality the soil conditions and market requirements should both be considered. Those adapted to the muck soils are the yellow and red sorts. For alluvial and prairie soils the red and brown varieties are to be preferred, while all kinds do well on the sandy loams and light soils. A cleaner, better grade of white onions can generally be produced on light or sandy soils than on muck or clay loams. Those of the Bermuda, Spanish, and Egyptian types flourish on the deep, rich alluvial soils of the river bottoms and delta regions. Certain of our markets show a decided preference for onions belonging to a particular type. The red and brown varieties find ready sale on the markets of the Middle West, while onions of the yellow and white varieties are preferred in the eastern cities. Onions will withstand long-distance shipment, those of the Red Globe type being generally more subject to injury than the yellow and brown sorts. Some of the white varieties also have a thin skin and are easily injured. It should be the aim of every grower to employ varieties that will withstand handling and at the same time find ready sale on the market. Other types of onions are top onions, multipliers, garlic, and leeks, which are planted to some extent for marketing purposes.
Bermuda Onions.—The production of Bermuda onions in the United States is a comparatively new industry and has thus far been undertaken mainly in Texas and California. Soils of a silty or alluvial nature are suited to the production of Bermuda onions, and those containing considerable sand are most desirable. The Bermuda requires a very rich soil for the best results, and this can only be obtained by first selecting a good soil and then manuring heavily. The Bermuda onion as grown in this country is a winter crop; therefore, mild climatic conditions are required. While the plants would withstand considerable freezing, their growth is seriously checked bycold weather, and the crop will not mature in time for the early market if grown to the northward. The cultural methods employed in the growing of Bermuda onions are essentially the same as those for ordinary onions. As the greater portion of the crop is grown in a region which has no regular rainfall, irrigation methods are employed almost universally. The greater part of the crop is grown by the transplanting process and a great amount of hand labor is required. Bermuda onions are harvested as early as possible, generally before the tops have become fully ripened. Phenomenal yields of 34,000 and 35,000 pounds of Bermuda onions are frequently made on an acre of land, but this is far above the general average, which is in the neighborhood of 10,000 or 12,000 pounds to the acre. Many fields, especially when planted for the first time, do not yield as much as 10,000 pounds to the acre. On land that has been heavily manured and planted to onions for several years the yield averages about 16,000 pounds. The best Bermuda-onion farms are valued at $300 to $500 an acre. In order to prove profitable, the growing of Bermuda onions should be conducted on a comparatively large scale. The necessary land and irrigation facilities will require the initial outlay of from $10,000 to $30,000, and the running expenses are quite heavy. Labor can be secured at a low price, but is correspondingly inefficient and often not to be had in sufficient quantities. Furthermore, the markets are now pretty well supplied with Bermuda onions, and persons who desire to engage in their production are advised to investigate every phase of the industry before embarking too heavily in it. The expansion of the Bermuda-onion industry is limited by the facts that a large supply of bulbs can be grown on a comparatively small area, that the distance to market is great, that the product is perishable, and that the markets will consume only a limited quantity at the prices at which the crop can be sold with profit.
Green Onions for Bunching.—Another phase of onion culture that is of considerable importance in certain localities is the production of young bunching onions for the early spring trade. In several sections along the South Atlantic coast the growing of this class of onions is quite an enterprise. Many persons who are engaged in other lines of work follow the practice of growing a small area of bunching onions as a side issue. The varieties known as multipliers and top onions are generally employed for this purpose; however, bunching onions are sometimes grown from ordinary sets, from inferior and damaged large onions, and from seed. The multipliers and top onions are the only kinds adapted for this work on a large scale. For growing bunching onions the bulbs or sets are planted during the autumn either in beds or in rows 12 or 14 inches apart with the bulbs quite close in the rows. The bulbs will start growing within a short time and make more or less growth during the winter. As soon as the weather becomes warm during the first months of spring the onions make a rapid growth and are ready for marketing about the time peach trees begin to bloom. In marketing this class of onions the young shoots are pulled, the roots trimmed,and the outside peeled off, leaving the stem white and clean. The onions are then tied in small bunches by means of a soft white string, the tops trimmed slightly, and the bunches packed in crates or baskets for shipment or sale on the local market. This phase of the onion industry is limited to small plantings and is well suited to the needs of the general market garden. During the springtime and early summer large quantities of ordinary young onions are pulled when the bulb is about the size of a fifty-cent piece, the roots and tops are trimmed, and they are then bunched and sold for stewing purposes. So far as known, this class of onions is not shipped to any great extent, but is sold mainly on local markets.