HANDLING OF PLANTS.

Successful transplanting of indoor-grown plants to the garden or field depends largely upon their proper treatment during the two weeks preceding the time of their removal. Spindling and tender plants will not withstand the exposure of the open ground so well as sturdy, well-grown plants, such as may be secured by proper handling.

Plants grown in a house, hotbed, or cold frame will require tobe hardened off before planting in the garden. By the process of hardening off, the plants are gradually acclimated to the effects of the sun and wind so that they will stand transplanting to the open ground. Hardening off is usually accomplished by ventilating freely and by reducing the amount of water applied to the plant bed. The plant bed should not become so dry that the plants will wilt or be seriously checked in their growth. After a few days it will be possible to leave the plants uncovered during the entire day and on mild nights. By the time the plants are required for setting in the garden they should be thoroughly acclimated to outdoor conditions and can be transplanted with but few losses.—(F. B. 255; U. Mo. Col. Ag. & Mech. Arts 33; N. La. 81; Kan. St. Ag. Col. 70; S. Dak. 47; U. Idaho 17.)

TEMPORARY HOTBEDS IN A CITY BACK YARD

TEMPORARY HOTBEDS IN A CITY BACK YARD

Intensive gardening under sash or cloth covers has become one of the most popular and, in certain localities where the conditions are suitable, one of the most profitable lines of outdoor work. The trucker and the market gardener of the present day have been compelled by keen competition and a constantly increasing demand for high-grade products out of season to provide special facilities for increasing and improving the product, as well as to take advantage of every favorable natural condition. Many localities are especially favored with an abundance of sunshine at all seasons of the year, and at the same time their climate, due to the influence of large streams or near-by bodies of water, is mild and free from extremes of temperature. In such localities it would be possible to grow lettuce, radishes, and similar crops during the entire winter without protection were it not for a few cold days and nights. A very slight covering or the application of a small amount of heat will, as a rule, carry the plants through in good condition. This industry may readily be combined with regular truck farming, as it furnishes remunerative employment during the winter months. A comparatively small area is necessary for the frames, but several times that acreage of land should be available, so that the site of the frames may be changed every few years to safeguard against diseases and insect injuries.

Cloth-Covered Frames.—The type of frame or bed varies with the different localities and is ordinarily no more elaborate or expensive than is necessary to protect the crops. In North Carolina and South Carolina the type of frame generally used is that having for the sides two lines of 12-inch boards set on edge and held in place by means of stakes driven into the ground. The covering of cheap unbleached muslin is supported on strips of wood 1 inch thick and 2½ or 3 inches wide, which are raised in the center by being carried over the top of a stake; the ends are held down by nailing to the sides of the bed. Most of these frames are temporary and are taken apart and stored during the summer months. Before placing the frames in position in the autumn the soil is plowed, thoroughly fitted, and given a liberal dressing of well-rotted stable manure and commercial fertilizers. The placing of the boards will cause some trampling of the bed, and before putting in the ends and nailing onthe rafters or strips to support the cloth it is desirable to loosen the soil again by means of a harrow or cultivator. The stakes for supporting the cross strips or rafters are then driven through the center and the strips nailed in place at intervals of 4 feet. The ends are inclosed by means of 12-inch boards, and the bed is then ready for the cloth cover. The cloth is first stitched, with the strips running lengthwise of the bed, into one great sheet large enough to cover the entire bed. This sheet is fastened on the north side of the frame by nailing over it plastering laths or similar strips of wood. The cloth should not be fastened to the top edge of the board but on the side, 1 or 2 inches below the top. For fastening the sheet on the south side of the frame short loops of string or cloth are attached to its edge and these are looped over nails driven into the side of the bed.

Sash-Covered Frames.—In the tidewater region of Virginia the frames are covered with hotbed sash. The climate of Norfolk is a little too severe for the use of cloth except for early autumn and spring crops. A number of growers in the vicinity of Norfolk handle sash-covered frames occupying as much as 3, 4, or 5 acres each season. For the sides and ends of these frames the same class of cheap lumber as for the cloth-covered frames is used.

Heated Frames.—Farther north, near Chicago, St. Louis, Cleveland, Detroit, Baltimore, Philadelphia, Cincinnati, New York, and Boston, sash-covered frames are extensively used for growing early vegetables. This work is practically the same as that found at Norfolk, except that the frames are constructed over an excavation which is filled with fermenting manure to provide heat. Where manure-heated beds are extensively used for growing early vegetables a long, shallow pit is opened, the manure is trodden in, and 12-inch boards are fastened to stakes to form the sides. The board on the north side is raised a little higher than the one on the south side in order to form a slope for the glass. A few strips are nailed across the bed to prevent the sides from coming in by the pressure of the manure or soil that is banked on the outside, and the sash simply rest on the sides without any guide or supporting strips between them. Straw mats and board shutters are employed as a protection for the sash during cold weather.

Temperature of Frames.—The temperature at which the air of the beds should be carried will depend entirely upon the crop being grown. Thermometers should be placed at intervals in the beds, as it is not safe to judge the temperature by personal sensation. If lettuce, parsley, or radishes are growing in the beds, the temperature should not go above 70° F. before ventilation is given; on the other hand, if the frames are filled with cucumbers, eggplant, or peppers, the temperature may run 8 or 10 degrees higher. It should be borne in mind that any covering, whether cloth or sash, will exclude a part of the light, and every precaution is necessary to prevent the plants becoming "drawn." The safest plan is to keep the temperature a trifle low and thus retain the plants in a strong, thrifty condition. Where tender plants are being grown under cloth there isgreater danger of injury from keeping them covered too tightly than from exposure to moderate cold.

SHOWING VEGETABLES GROWING IN HOTBED

SHOWING VEGETABLES GROWING IN HOTBED

Open-Air.—In the care of cloth-covered frames the covers are left off during bright weather and the plants subjected to open-air conditions. When there is danger of cold the covers are put on at night, and during unfavorable weather they are frequently left on during the day. While the cloth covers conserve the heat, they at the same time exclude the sunlight, and if they are kept on too great a portion of the time the crops will become drawn and spindling. With sash-covered frames the matter of ventilation is of prime importance. The glass admits and holds the heat of the sun's rays, and during bright weather it is necessary to open the frames quite early in the morning. Ventilation is accomplished by propping up one end or one side of the sash on a notched stick. The rule to be followed is to ventilate on the side away from the wind, so that the wind will blow over the opening and not into the bed.

Protection of Frames.—The area occupied by the frames is often surrounded by a high board fence or a hedge of evergreens to break the force of the wind. If a large area is devoted to frames it is sometimes subdivided by numerous cross fences to break up air currents and lessen the force of storms. Where no heat is applied to the frames the control over temperature will not be great except in the prevention of too high temperature by means of ventilation during bright weather. In many instances straw and burlap mats are kept ready at hand for throwing over sash-covered frames to prevent loss from freezing, but this would not be practicable on a large scale. Sometimes the glass is covered by shoveling one-half or three-fourths of an inch of soil over it, but this involves considerable labor and frequently results in the breakage of a great deal of glass. It is possible to ward off frost by the use of a number of orchard heaters in the frame yard. These heaters burn kerosene or crude oil and give off both heat and a smudge which will prevent injury from a reasonable degree of cold.

Crops Grown in Frames.—The crops most commonly grown in frames are lettuce, radishes, cucumbers, garden beets, parsley, eggplant, peppers, and snap beans. The crops grown in the sash-covered frames do not differ materially from those grown under cloth. In the spring, however, many growers devote their beds almost entirely to cucumbers and eggplant instead of to lettuce and radishes. To the southward the cloth covers are sufficient to protect the more hardy crops throughout the winter. To the northward the hardy crops may be grown under sash in midwinter, and those requiring more heat are grown in the spring.

Marketing Crops Grown in Frames.—Crops grown in frames are usually superior in quality and appearance to those grown in the open and should be given more care in handling and marketing. The cost of production is somewhat higher than for outdoor crops, and it is essential that they be put up in neat packages in order to bring the highest market price. The more successful growers givethe work of gathering, grading, and packing the crop their closest personal attention and use only clean, attractive packages for handling and shipping.

The packages employed for handling the frame products are generally the same as those used for marketing outdoor vegetables, of the same kinds. In a few instances a distinctive package has been employed. The use of special shipping packages that would give the frame-grown produce special recognition on the markets would be a decided advantage to the grower.—(F. B. 460.)

The greater portion of the work with frames is conducted on light or sandy loam soils which are naturally well drained and adapted to intensive trucking. The original soil is usually employed, but when necessary rich soil is hauled and placed in the beds. The first essential is good drainage, and if the land is not naturally well drained it should be tiled or provided with numerous open ditches to carry off the water. The surface of the soil should be graded and all depressions filled in and leveled. For best results the land should be subjected to two or three years of preparation by manuring and planting to leguminous crops.

The presence of plenty of organic matter in the soil is very important, especially where large quantities of commercial fertilizers are to be used. This organic matter may be added in the form of stable manure, but more satisfactory results will be obtained where leguminous crops are included in the preparatory treatment. For green manure nothing is better than cowpeas as a summer crop and crimson clover as a winter crop. The crimson clover should be turned under about the time it comes into full bloom in the spring, the land planted to cowpeas, and the resulting crop plowed under or mowed for hay during the month of August in ample time to prepare the land for frame work during the autumn. When heavy crops of green manure are turned under it is essential that lime be used to improve the mechanical condition and to sweeten the soil; a dressing of 1,000 pounds to the acre should be sufficient.

Large quantities of stable manure are used in growing crops in frames, sometimes as much as 30 to 60 cartloads to the acre. The manure is generally spread in a broad, flat pile to compost before it is applied to the soil on which frames are to be located. Where manure is employed for heating the beds it may afterwards be mixed with the soil for the growing of subsequent crops. Poultry and sheep manure is excellent fertilizer for frame work, but the quantity obtainable is very small. In the application of natural manures of all kinds it is essential that the manure should be fine; that it be what is termed "short" manure.

To insure success in the cultivation of plants in frames it is necessary to provide some means of applying water to the soil. Occasionally the supply of water can be obtained from the system of some city, but more often it must be pumped from a well or stream and stored for use in an elevated tank. Watering is generally done during the late afternoon, but should be completed early enough to permit the foliage to become reasonably dry before closing the frames for the night. If the plants are young and very tender it will be important to avoid too great a degree of moisture. Serious losses from "damping-off" often result from excessive moisture, especially at night, when evaporation is not so rapid as during the day. Many gardeners make the mistake of watering too often and not doing the work thoroughly. Under ordinary conditions twice a week will be often enough to apply water, and in winter, when evaporation is at its lowest point, once a week will be sufficient. In watering the sash-covered frames it is necessary either to remove the sash or to prop them up high enough to permit working under them. As a rule the sash are taken off early in the morning of a bright day, the soil is stirred, sometimes a little fertilizer is added, later in the day the bed is watered, and toward night the sash are replaced.

This is an annual. Leaves used as a garnish. The seeds are the source of Anise oil. This plant grows well and gives a good yield of seed. Seeds should be soaked over night in warm water and sown thickly.—(U. Idaho 10.)

This plant requires a deep, rich sandy loam, with a liberal supply of well-rotted manure, is best suited for growing artichokes. Plant the seeds as soon as the soil is warm in the spring, and when the plants have formed three or four leaves they may be transplanted to rows 3 feet apart and 2 feet apart in the row. The plants do not produce until the second season, and in cold localities some form of covering will be necessary during the winter. This crop is not suited for cultivation north of the line of zero temperature. After the bed is once established the plants may be reset each year by using the side shoots from the base of the old plants. If not reset the bed will continue to produce for several years, but the burs will not be so large as from new plants. The bur, or flower bud, is the part used, and the burs should be gathered before the blossom part appears. If they are removed and no seed is allowed to form, the plants will continue to produce until the end of the season.

This useful and productive plant will grow in any good garden soil, and should be planted three to four feet apart each way, with three or four small tubers in a hill. If large tubers are used for planting they should be cut the same as Irish potatoes. Plant as soon as the ground becomes warm in the spring and cultivate as for corn. A pint of tubers cut to eyes will plant about thirty hills. The tubers will be ready for use in October, but may remain in the ground and be dug at any time during the winter.—(F. B. 255; U. Idaho 10.)

This valuable plant was formerly a luxury on the tables of the rich, but is now during the season a vegetable seen daily upon thetables of people of moderate or even small incomes. It is also frequently recommended as an article of diet for the sick and convalescent. To the asparagus grower there are two methods by which plants can be secured, (1) by purchasing or saving the seed from which to raise them, and (2) by purchasing the plants from either a seedsman or some grower. Taking the second method, as being the quickest way to start a bed as well as the most easily disposed of, it is suggested that roots over two years old be rejected, and only one-year-old roots selected if a sufficient number can be secured, as the latter are much better and will in the course of a few years produce more and larger spears to the plant and yield profitable crops for a longer period. It is best to deal with reliable firms; they will be more likely to supply plants of both the kind and age desired.

Seed.—Only reliable seedsmen should be trusted, or the seed should be procured from some neighbor who has the desired variety and has taken proper care in producing and saving the seed, if the first plan is to be followed. If one already has an asparagus bed of the desired sort, producing fine spears, and of the proper age (8 to 12 years old) for seed production, it is always best to save seed from it for new plantings. The growing of one's own plants is preferable, both because of the extra year intervening between the determination to plant and the actual setting out of the bed, thereby permitting the soil of the proposed bed to be put in a better and more friable condition, and because, good seed having been secured and proper care given to the young plants, a more satisfactory supply of the young roots is obtained. That there are objections to growing one's own seed is undoubtedly true, but there are also compensating advantages, and if proper care is exercised it will pay the grower to raise his own seed (from beds which are satisfactory) even if seed can be bought in the open market for much less than the trouble of attending to the home grown may cost. If, however, a grower is unwilling or unable to exercise the necessary care in the production of seed, he would do much better not to attempt it, but depend upon some reliable dealer, studiously avoiding those whose claims to patronage are based upon cheapness of stock. Good seed are worth good money; poor seed should not be accepted under any conditions.

Soil.—Asparagus will grow on most soils, and will yield large crops upon stiff soils; but for the purpose of the grower for market, a light sandy soil of fair fertility is much to be preferred, both because of the earliness with which it produces marketable spears and the ease with which it is cultivated. A soil on which water stands after rain, or under which the standing subsurface water is near the surface, into which the roots are liable to penetrate, is to be avoided. Of course, such a soil, if otherwise suitable, can be made fit by a thorough system of under drainage, since an occasional overflow, or even a submergence of the beds for several days, is not necessarily injurious if the drainage, either natural or artificial, is good. The soil should be free of roots, stones, or any trash that will not readily disintegrate or that will interfere with the growth of the spears. A rather stiff but naturally well-drained soil which produces early andfine asparagus, notwithstanding the fact that it is full of large gravel, some of the stones being twice the size of a man's fist.

Shade.—Fruit or other trees or high shrubs must not be allowed in the asparagus bed, because of the shade they throw over the beds and because their roots make heavy drafts upon the soil. Nor should high trees, hedges, hills, or buildings be so near as to throw a shadow upon the beds, because all the sunshine obtainable is needed to bring the spears quickly to the surface. The land should be protected from the north or east (or from the direction of the prevalent winds) and so slope that the full benefit of the sunshine will be obtained during the whole day. Freedom from weeds is very desirable, even more so than great fertility, for the latter can be produced by the heavy manuring which the future cultivation will require; and to the end that weeds may be few, it is well that for a year or two previous to planting the land should have been occupied by some hoed crop, such as potatoes, beets, cabbages, etc.

Cultivation.—In the late fall or early winter the selected area, should be a light sandy loam as described above, needs to be deeply plowed, and if the subsoil is not already of an open and porous nature, through which surface water will readily drain and the roots easily penetrate, a subsoil plow should follow, breaking the soil to the depth of at least 15 inches. After harrowing the field, a good compost of well-rotted horse, cow, sheep, or other manure should be spread broadcast and left to the action of the weather until as early in the spring as the ground is in condition to be worked, when the manure should be plowed in, the surface carefully harrowed, and the soil put in a light and friable condition.

As early in the spring as the condition of the ground will permit work to be done—when it is dry enough to bear plowing and the soil will break up fine—rows should be marked off 4 to 6 feet apart and opened up with a large plow, going a sufficient number of times to make a furrow from 8 to 12 inches deep. Loose soil that the plow does not throw up should be taken up with a shovel or wide-bladed hoe. It is in these furrows that the crowns are to be set, the distance to be left between plants varying, according to the opinion of the grower, from 18 inches to 5 feet.

Planting.—Rows should be run north and south, so that the full benefit of the sunshine will be secured. If the rows run east and west, they will be shaded by the ridges in early spring, when the sun is low in the south, and later in the season they will be completely shaded on one side by the tall foliage. This delays sprouting in the spring, and prevents the best development of the plants at all times. Of course, any conditions, such as the slope of the land, etc., which make it inadvisable to run the rows north and south must be considered, but southeast to northwest or northeast to southwest is better than due east or west, or, in short, the natural conditions permitting, the course should be as far from east and west as possible. This is especially important to those who ridge the rows to produce white asparagus. Early in the spring of each year, after the plants are old enough to cut, there must be a ridge made over the rows to blanch theshoots, if white asparagus is to be cut; and once ridging is not sufficient, but after the spears begin to appear the ridges will need renewing every week or ten days during the cutting season, as the rains beat them down and the sun bakes a crust upon the top. The grower of green asparagus has about the same work, less the ridging and plowing down. As it is necessary to keep down all weeds, some hoeing may be necessary as supplementary to a free use of the 1-horse cultivator. After the cutting season, a cutaway harrow run twice diagonally across the rows loosens up the soil and destroys a vast number of weeds without injury to the crowns, although some spears may be broken off.

Brush.—The bushes should be cut as soon as the berries are fully colored, as the growth will be sufficiently matured so that no injury will be done the roots by removing the tops, thus avoiding a further drain upon the roots to mature the seed, and preventing the dropping of seed, followed by the springing up of innumerable young asparagus plants.

All brush should be promptly collected and burned, that there may be no lodging places for insects and diseases. In case the fields were not leveled, harrowed, and manured at the close of the cutting season, now is a convenient time to perform this work, although if the soil is rather too moist it is well to leave the surface firm, that the winter rains may run off rather than penetrate to the already too damp subsoil around the roots.

Manuring.—In nothing relating to asparagus has there been a greater change than in the practice of manuring. Formerly it was thought necessary to place large quantities of manure in the bottom of the deep trenches in which the young plants were set out in order that sufficient fertility might be present for several years for the roots, as after the plants were once planted there would be no further opportunity to apply the manure in such an advantageous place; it was also considered necessary to use much manure every autumn to bank the beds in order that the crowns should not be injured by the winter's frost. These applications, especially that given prior to planting the young crowns, made the outlay so great, and that for so many years before any return would be received from the bed, that only small plantings were possible to those who were without considerable capital.

Although asparagus is still heavily manured, the amount now used is much less than was formerly supposed to be necessary, only about double the quantity ordinarily used upon root crops, such as potatoes, beets, etc. It is not a good practice to put manure in the bottom of the trenches or furrows when setting out the crowns, because it is demonstrated to be rather a waste of manure than otherwise, and besides the roots of asparagus thrive better when resting upon a more compact soil; nor is it necessary that the soil should contain great amounts of humus or be in an extremely fertile condition when the plants are first put out, since by the present system of top dressing a moderately fertile soil soon becomes exceedingly rich and equal to the demands which the plants make upon it. Considerable improvement isproduced in the mechanical condition of the soil by the use of stable manure upon beds. By the addition of humus, porous sandy soil is made somewhat more binding and its ability to take up and retain moisture thereby increased; while, on the other hand, cold, heavy soils are made warmer and more porous.

All organic manures are suitable for use on the beds; but care must be exercised in the use of any of these lest they be too hot and injure the plants, especially if applied directly to the roots and immediately over the crowns. Where the young shoots come up through it, fresh, hot manure is likely to produce rust or to render the shoots unsightly and thus injure their sale. Especially is this true in light, sandy soils.

The time of applying manure on beds, and the position where it should be placed, are of some importance. In the use of stable manure, both writers upon the subject and growers actually engaged in producing asparagus for the market almost unanimously state that "in the autumn, after the stalks have matured and have been cut, manure should be applied on top of the rows." Some give the caution not to put it just over the crowns, lest the shoots next spring be injured by contact with it. This plan of top dressing beds during the autumn or early winter is gradually giving way to the more rational mode of top dressing in the spring and summer. It was believed that autumn dressing strengthened the roots and enabled them to throw up stronger shoots during the following spring. This is a mistake.

It is during the growth of the stalks after the cutting season is over that the crowns form the buds from which the spears of next season spring, and it is probable that it is principally during this period that the roots assimilate and store up the material which produce these spears. This being true, the plant food added to the soil and becoming available after the cessation of vegetation in the autumn can have little, if any, effect upon the spears which are cut for market the following spring; it first becomes of use to the plant after the crop has been cut and the stalks are allowed to grow. In the use of hot, or fresh, manure it may be that the winter season is none too long to permit the fertilizing elements to become available and well distributed throughout the soil, but if well-rotted manure is used there is danger of the fertility being leached out of the soils by the rains and melted snows of winter.

Those growers who apply a liberal dressing of stable manure or fertilizer immediately after the cutting season supply the required nourishment to the plants at the time they most need it and can most profitably utilize it in the production of spears. Manure thus applied will also act as a mulch, preventing the growth of weeds, keeping the soil light and cool, and preserving the moisture intact. It should not be made on top of the row. This suggestion the writer wishes to emphasize.

Manuring in November in many cases does more harm than good, as the mass of manure causes many roots to decay, and those which do survive are weak and only produce small spears. It would be much better to rely upon liberal supplies of food through the growing season than to give manure when the bushes are cut, as at the former period the roots can more readily absorb the food given. By feeding in spring and summer the crowns are built up for the next season's supply of grass. The roots of the asparagus are perhaps always active, but much less so in winter than at any other season, and they will obtain as much nutriment from the soil as they can then use. If heavily covered with manure sunshine is excluded, growth is checked, and the roots have to fight hard for existence at a time when they are none too strong.

In the culture of green spears the manure is best utilized by broadcasting, this application to be followed by a thorough harrowing of the field. When white asparagus has been cut, either manuring in the trench between the ridges before disturbing them or harrowing down the ridges and then manuring broadcast is perhaps the most rational way. As between manuring in the row and between the rows, the latter should be selected as the evidently advisable one by which the feeding roots of the plants are most easily reached. Placing the manure in the row only reaches those feeding roots which are to be found about midway between the crowns, as just around the crowns are nothing but storage roots, besides it is not desirable to place manure too close to the crowns, but manuring between the rows puts the manure right where the summer rains can carry the fertility directly down into the (as it were) open mouths of the feeding roots.

Green Crop.—If green asparagus is desired, the stalks need be cut only so far beneath the surface as to furnish a 9 or 10 inch spear, the major part of which, say 6 inches or more, will be green, and of course above ground. If white asparagus is sought for, the rows will have been ridged from 10 to 15 inches above the crowns, and the spears must be cut as soon as they show at, and before they peep above, the surface. This means cutting 9 or 10 inches below the surface. To accomplish this, long chisel-like knives of various shapes are used.

Cutting should be done at least every day, and when vegetation is rapid twice each day will be necessary for white asparagus, and is often desirable when the green sort is being cut.

Harvesting and Marketing.—Asparagus is one of the earliest vegetables, especially if the roots are near to the surface or the soil above them has been temporarily removed so that the rays of the sun can easily penetrate to them. Some varieties are earlier than others, and this difference in time of appearance varies from a day or two to several weeks. For instance, the Early Argenteuil is about ten days earlier than the ordinary asparagus grown in the same locality, and the Late Argenteuil at least ten days later; so that there would be nearly three weeks between the Early and Late Argenteuil. Among the ordinary varieties, however, there is only a short period between the earliest and the latest.—(F. B. 61, 255; U. Cal. 165; U. Mo. 43; U. Kans. 70; U. Miss. 1905.)

Kinds.—For convenience in reference and for discussion, beans may be divided into two general groups—"field" and "garden" beans—which are by no means distinctly separate either in appearance orin characteristics. Each of these groups can again be divided into bush and pole beans. Bush beans of the field type are recognized, for commercial purposes, under three well-marked types, known as Kidney, Marrow, and Pea beans, each of which may be subdivided into two groups, colored and white. The garden beans, like the field beans, may be divided into bush and pole types; these again into Kidneys and Limas, the term "Kidney" in this case including all of the common garden beans whether of one type or another, and this group may again be divided into wax and green pod. The same subdivision may also be recorded under pole beans, as is suggested in the following classification:

{{Kidney ..............................Colored.White{{Marrow..............................Colored.Bush ................White.{Field beans................Pea ....................................Colored.White.Pole or corn hill. White or colored.{{Kidney..............................{Green Pod.Bush................Lima..................................Wax.Garden beans................Pole................{Kidney..............................{Green Pod.Lima..................................Wax.Runner (Scarlet Runner).

Soil.—While clay loams or soils overlying limestone are most desirable, sandy and even gravelly loams may be used, but these latter soils should contain more or less humus and the gravelly soil should not be too coarse. Beans may be grown on heavy clay soils but the surface or underground drainage, or both, must be good and special attention must also be given cultural methods to produce a fine, mellow seed bed. Muck soils or those with a superabundance of humus are not suitable as they tend to produce vines at the expense of the seed. It is also true that this crop will not thrive on low, wet, poorly drained soils. Beans seem to produce good crops on soils somewhat deficient in nitrogen when well supplied with potash and phosphorus. Contrary to a somewhat prevalent notion, beans will not produce well on very poor soils, but require a fair degree of fertility.

Seed.—Care should be exercised in the selection of beans for seed. None but the best hand-picked beans should be used for planting, as the success of the crop is quite largely dependent on the vitality of the seed.

Tilth.—Since the bean is a warm-season crop and can not safely be planted until after danger from killing frost has passed, the preparation of the soil for field beans should be deferred until the vegetation covering the area has made considerable growth, so that it may be as completely destroyed as possible during the operations of plowing, harrowing, and fitting the land for the reception of the seed. The short-season character of the bean crop enables the land to beoccupied during the winter months by some cover crop, such as wheat or rye, and if the same land is used year after year for the production of beans, the turning under of winter cover crops furnishes an important means by which the store of organic matter in the soil can be maintained, a consideration of great moment in sections chiefly dependent upon commercial fertilizers as a source for available plant food.

After the land has attained proper dryness in the spring it should be plowed from 6 to 8 inches in depth, and immediately compacted and harrowed, so as to prevent the loss of moisture. The surface of the seed bed should be made smooth and fine, so that the drill or planter can be economically used upon it. If dry weather follows at this season of the year, a good practice is, immediately preceding the planting of the crop, to run a heavy land roller over the area, particularly if the planting is done with an ordinary grain drill. If the planting is done with a planter similar to the ordinary corn planter and the land has been rolled previously, it is advisable to go over it with a spike-tooth harrow or some other type of smoothing harrow after the crop has been planted, in order that the land may not possess a compacted condition from the substratum to the surface.

Planting.—Growers have found that it is better to postpone planting the crop until as late in the season as is practicable and yet be able to safely harvest the crop before the vines are injured by fall frost. The late planted crop has the advantage of escaping the most serious attacks of the bean rust. While there are undoubtedly varieties which are more or less resistant to this trouble, yet the general practice of late planting has been found to be of decided advantage. In planting the field crop the distance between the rows varies from 28 to 36 inches, according to the implements used in harvesting the crop, 30 inches being a very satisfactory and not an unusual distance for placing the rows. The seeds are so scattered as to fall from 2 to 4 inches apart in the row. The ideal distance would be undoubtedly 6 inches, if it were possible to obtain a perfect stand of plants at this distance. For distributing the seed in the row at these distances a bean planter or a check row corn planter may be set to drop the seeds in drills. A common practice is to use an ordinary grain drill and stop a sufficient number of tubes to enable two or three rows of beans to be planted at the proper distance apart without the necessity of purchasing a special implement.

Quantity of Seed.—The quantity required to plant an acre of beans varies with the size of the beans; that is, a half-bushel of small Pea beans is sufficient to plant an acre of ground, while a bushel of Red Kidney beans is hardly sufficient to plant an acre when the seed is distributed in the ordinary fashion in drills rather than in hills. In planting beans of the Pea and Marrow types the quantity of seed varies from one-half to a bushel per acre, depending upon the quality of the beans and upon the preferences of the planter. For Kidney beans the quantity varies from a bushel to as much as six pecks per acre. Ordinarily, with rows 30 inches apart, a bushel is a sufficient quantity for seeding an acre.

Depth of Planting.—The depth at which beans should be planted is determined by the character of the soil and the season of the year at which they are planted. In heavy, retentive soils planting should be made comparatively shallow, as the peculiar habit of growth of the bean is such that it can not readily reach the surface if planted deep in such soils. Upon light soils and early in the season, planting can be made quite deep. Three inches is not too deep upon such soils, but an inch and a half or 2 inches is the maximum depth for planting upon retentive soils. All things considered, a satisfactory depth for planting beans is about 1½ inches.

Cultivation.—Like all other hoe crops field beans require frequent, shallow cultivation. The stirring of the soil for the purpose of holding the weeds in check and preserving a soil mulch over the area occupied by the growing crop, is the important factor to be considered in culture. At the last cultivation the plants may be slightly hilled; that is, the soil may be thrown toward the plants with small wings. This has the advantage of leaving the plants on a slight ridge, which facilitates the work of harvesting when such work is done by mechanical means. In the cultivation of beans it is traditional that they should not be cultivated when the dew is on the vines. This undoubtedly has a slight foundation for the reason that moisture is a conveyor of spores of disease and might have a tendency to distribute them more widely than would be the case if moisture were allowed to dry off the leaves without being disturbed.

Harvesting.—For many years the handling of hoe crops, such as field beans, upon an extensive scale was impossible because of the great amount of hand labor necessary to gather the crop. Within recent years, however, labor-saving devices have been invented so that now the once laborious practice of hand-pulling individual plants can be done away with by the use of a bean harvester. After the plants are thrown together by the harvester it is customary for men with ordinary pitchforks, either 2 or 3 tined, to follow the harvester and place the beans in small heaps to cure for several days before storing them in barns or sheds for thrashing. In some instances, where the work is done upon a very extensive scale and where the loss from shelling is not considered sufficient to justify the employment of hand labor for bunching the beans with forks, an ordinary horserake is employed for the purpose. Where the beans are to remain for a longer period and to become more thoroughly cured in the field and where the work of harvesting is done entirely by hand, the crop is frequently placed in shocks which are built about a pole 4 or 5 feet in height, both ends of which have been sharpened and one end firmly placed in the ground. A small quantity of straw, grass, or other material is placed around the base of the stake, and the beans as they are pulled are piled around the pole until a compact miniature stack about 4 or 5 feet high is formed. The curing process in any case is carried far enough to prevent the vines molding after storing them in the barn prior to thrashing. If the vines are thoroughly ripened in the field before harvesting, they can be stored in from two to three days if theweather is satisfactory. If, however, the vines have some green leaves upon them and the pods are not thoroughly dry, the period for curing in the field is of necessity much longer than with thoroughly ripened plants.

Storage.—After the crop has been properly cured in the field it is customary to store the beans in barn lofts or in sheds until the weather has become quite cool before the work of thrashing is done. In some instances, however, if the beans are thoroughly field cured they may be thrashed in the field; but ordinarily, in those regions where beans are extensively grown, weather conditions will not permit of their being cured and left in the field a sufficient period to enable the entire work of harvesting and thrashing to be carried on in the open.

Care Necessary.—All operations connected with the harvesting and field management of beans should be done as carefully as possible, in order to avoid injury to the plants while in the growing condition and to prevent shelling the beans after they have ripened. Most varieties of beans shell more or less easily after the pods have become thoroughly matured. Most extensive growers of beans consider the loss by shelling resulting from the use of labor-saving machinery of less money value than the added cost of carrying on all operations by hand in the most careful way. In other words, the loss from the use of labor-saving machinery is not sufficient to justify the return to hand labor in the care and management of the crop.

Threshing.—Beans are now threshed by a special machine or beaner which has been instrumental in materially increasing the acreage of beans grown. These machines are usually introduced into localities where beans are grown commercially and offered for hire on a plan similar to that used by grain threshers.

Cleaning and Grading.—While the farm operations in connection with the preparation of field beans for market usually cease with the thrashing of the crop, the cleaning and grading of the product is a very important item and requires much hand work. Besides the removal of sticks and straws from the grain by the use of the fan, the beans are passed through a machine which is provided with a broad, slow-moving belt placed at such an angle that split beans and peas, dirt, and stones which are not removed by the fan adhere to the belt and are thrown out, while the smooth, perfect seeds fall back into another receptacle and are thus separated from the dirt and broken seeds. After this the beans are usually subjected to a third operation, which consists in removing by hand all broken and discolored seeds, as well as foreign matter, which were not removed in the other operations.

Garden Beans.—The type as well as the variety of garden bean to be grown is determined by the purpose for which it is to be used. If it is to be used as a snap or string bean for early market, quick-maturing green or wax-podded varieties are selected. If for canning purposes, a different variety is selected, which may have either green or wax pods, while as a rule green beans which are required latein the season for table use belong to the pole type. For early beans, however, the bush type is the one most commonly used.

Fertilizers.—While beans are quick-growing and early-maturing plants requiring an abundance of available plant food in the soil, yet, because of their family relations, being legumes, they make the soil better for having been grown upon it. They are nitrogen-gathering plants, and for this reason require only a small percentage of this element in any fertilizer used upon them. While heavy applications of fertilizers containing nitrogen, phosphoric acid, and potash are used by truck growers in the production of beans, as a rule such fertilizers should be relatively richer in phosphoric acid and potash than in nitrogen. The production of garden beans for snap or string beans, however, demands a larger percentage of immediately available nitrogen than does the production of field beans for the dry grain, as in the former case the crop occupies the land a shorter time and therefore gives it less opportunity to provide itself with a supply of nitrogen from the atmosphere. The fertilizer, if used in the form of commercial fertilizer, may be distributed broadcast over the area occupied by the crop with a grain drill or a fertilizer distributer, or it may be scattered along the row at the time the seeds are sown by one of the many types of seed drill having a fertilizer attachment.

Planting.—Garden beans, like field beans, may be planted either in hills or in drills. The customary practice, however, is to plant the seeds in drills so that they shall fall 2 or 4 inches apart in rows far enough apart to admit of cultivation with either one or two horse implements. Because of their peculiar habit of germination—the elongation of the part between the root and the seed leaves, called the hypocotyl—the seed leaves or cotyledons are lifted out of the soil. A large expenditure of energy on the part of the plant is necessary to accomplish this, and the more compacted the soil and the deeper the seed is planted the more time and energy are required in accomplishing this result. It is evident, therefore, that the shallower the beans can be planted without retarding satisfactory germination, the better. Upon thoroughly fine and compacted soils the seeds are planted from 1½ to 2 inches deep. Shallower planting does not as a rule give as satisfactory germination as planting within the range above mentioned. While garden beans are planted in extensive areas, they are, nevertheless, frequently used as a catch crop between other plants, such as squashes and cucumbers. The bean, being a quick-growing plant, matures its crop and is out of the way before the entire area is demanded by the companion crop.

Harvesting.—From the nature of the product the harvesting of garden beans for use as string or snap beans must necessarily be done by hand. Their extensive culture is therefore restricted to areas in which an abundant labor supply which can be commanded at short notice is available. After the beans are picked they are carried to a convenient sorting table, either in the open or under shelter, where they are looked over, all diseased and broken beans rejected, and the baskets uniformly filled and shaken down preparatory to covering them for shipment.

Under the name of Lima beans two distinct types are now recognized: Pole Limas and dwarf, or bush, Limas. Lima beans are of very great commercial value, but are not sufficiently appreciated as a table food because it is not generally known that in a dry state they can be used in practically the same manner as are the common beans. In reality they are richer and more delicate in flavor than the common beans, and can be used in as many different ways. The virtues of these types as green beans need only a passing mention, and their value as an accompaniment of corn in succotash is well known to every consumer of canned goods.

Planting.—The common method of handling the Lima bean in the climate of the northern tier of States, outside of the irrigated belt, is to plant from three to five beans in hills 18 to 36 inches apart, with the rows 3½ to 4 feet apart, and after all danger from cold and from insect enemies is past the beans are thinned to about three plants to the hill. As the beans are exceedingly tender, it is necessary to delay planting in the open until about a week or ten days after the time for planting the common garden beans. After the second cultivation, when the tendency to climb has manifested itself, the plantation is supplied with poles from 5 to 6 feet high, or with a trellis running from end to end of the row, which may be made by stretching two or three wires lengthwise of the row and weaving between them strands of ordinary wool twine. If the trellis is employed the beans can be planted in practically continuous rows, so that they stand about a foot apart. Toward the northern limit for cultivating this crop, one is fortunate if one-half to two-thirds of the pods which set upon the plants mature the seed. Farther south the crop is proportionally heavier.

In California and in other irrigated regions where there are well-marked wet and dry seasons, the dry season, accompanied by heavy fogs, occurring during the summer months, it is possible to cultivate Lima beans somewhat as follows: Upon moderately rich, somewhat sandy valley land, cultivation can be carried out by planting the beans as soon as all danger from rains has ceased and the plantation will remain dry except for irrigation. If there has not been sufficient winter rain to thoroughly moisten the land it should be well watered and allowed to dry to a good cultural condition before planting. Seed can then be planted in hills about 3½ or 4 feet apart each way, or in drills, the beans scattered about a foot apart in rows 4 feet apart. After the beans have germinated it may be necessary to cultivate them once or twice with a sweep of some type, to destroy any weeds which may have sprung up from the moist ground. All moisture should be withheld and a dust mulch over the surface preserved by running a sweep over the plantation once or twice more, and then the vines should be allowed to take possession of the territory. This obviates the necessity of using poles, and the crop can grow to maturity under these conditions without irrigation, without cultivation, and without poles.

At harvest time a root cutter is passed under the lines of therows, severing the roots of the plants, and after the plants have dried and become somewhat cured they are thrown into convenient heaps for loading on wagons and are allowed to remain in these heaps until near the approach of the rainy season. Then they are carried to the thrashing floors, where they are beaten out by the tramping of animals or by driving over the heap a device somewhat similar to the ordinary cutaway harrow.

The dwarf Lima beans, because of their habit of growth, are planted and cultivated practically the same as are field beans. They are slightly hardier than pole Limas, and for that reason toward the northern limit of the range of this crop can be planted somewhat earlier in the season than the pole Limas.—(F. B. 289; U. Mich. 259; S. C. E. S. 10; S. Dak. E. S. 47, 91; Iowa E. S. 47; Miss. E. S. 131.)

The red garden beet may be grown in any good soil, but rich, sandy loam will give the best results. Sow the seeds in the spring as soon as danger of frost has passed. Beets should be planted in drills 12 to 18 inches apart, and when the plants are well up they should be thinned to 4 or 5 inches in the row. If desirable to plant in rows 3 feet apart for horse cultivation, the seeds may be sown in a double drill with 6 inches between, leaving 30 inches for cultivation. Two ounces of beet seed are required to plant 100 feet of row, or 5 pounds to the acre. As a rule each seed ball contains more than one seed, and this accounts for beets coming up very thickly. The seed should be covered to a depth of about 1 inch. For a succession of young beets during the summer, plantings should be made every four or five weeks during the spring months. Beets intended for winter storage should not be sown until late in the summer, the crop being harvested and stored in the same manner as turnips. Sugar beets are often substituted for the ordinary garden beet, especially for winter use.

A soil that is well adapted to growing the usual vegetables will be found good for this one. It may be slightly heavier than that for the crops that are grown for their foliage, as lettuce. A good cabbage soil will be found of about the right consistency. Wet or soggy land will not raise a crop. Plow deep and prepare the ground well; the seedlings are quite small and need considerable coaxing before they will make a good start. Use plenty of fertilizer of some well prepared kind. Rough or undecomposed material should not be used. A sprinkling of powdered nitrate soda as a top dressing when the plants are one-third grown will produce a rapid growth. In applying, be careful not to apply so as to touch the foliage, unless during a rain. It is not profitable to transplant beets; it may be done on a small scale, but it is too expensive to practice on a large scale.

Varieties.—According to shape of the root one may divide beets into two classes, viz., Long Rooted and Globular. If color is made the basis of classification you have red, white and yellow kinds. Extra Early Blood Turnip, Eclipse and Extra Early Egyptian are good varieties to grow for market. The first named is probably the best; the last named has the disadvantage of becoming stringy if it matures during a long, dry spell, or if allowed to stand too long. The deep red varieties are preferred in the markets, and those that are turnip shaped sell better than the long.

Marketing.—The usual method is to use barrels or large boxes; this is a clumsy way, and one not calculated to bring the best price. The usual vegetable crate will be found handy and desirable.

In districts where there are pickling factories, and near large cities, small beets, with greens, are raised with profit, but these can not be shipped to a distant market. For a distant market gather tops and all; carry to the packing-house; remove the tops with a sharp knife, leaving about an inch of the leaf-stalk on the beet. Remove the dirt, and pack in vegetable crates. The leaves put in a compost heap will pay for the trouble of hauling, or they can be fed to domestic animals with profit. The beet itself makes one of the best feeds for milch cows, and is excellent for other domestic animals.—(F. B. 225; N. C. A. E. S. 132; Fla. E. S. 31; U. Idaho 10; N. H. Col. 99, 125; N. J. A. Col. Rpt. 1900.)

The leaves are used for flavoring.

Broccoli is simply a variety of cauliflower that is more commonly grown for fall use, as it is rather more hardy than the true cauliflower. Lee's Sprouting Broccoli is a branching sort that is esteemed in some places. There is a great deal of misunderstanding regarding the Cauliflower and Broccoli. Both are the same in their general make up and growth, both producing heads in the same manner and to the casual observer are taken one for the other. The difference is that Cauliflower is a more tender variety and therefore will not stand a very low temperature. The seed is sown in early spring and will produce heads during the summer. The Broccoli will stand a temperature as low as 25 without much injury to the plant. The seed is sown in the spring, the plants set out in June or early part of July and continue to grow until the spring following, some varieties producing heads at intervals during winter and up to as late as May. Attention needs to be directed during the winter to such plants as are about to produce heads. These should have the outer leaves turned over the head to protect it from frost to which it is very susceptible. The seed may be sown and the plants treated in every way as for the cabbage. They thrive well in a deep, rich soil. Much better results would be had if more attention were given to the matter of deep cultivation, that is, in deep spading or plowing of the ground. Manure that has been well composted should be used plentifully and plowed in deep. By so doing the roots of the plants are encouraged to penetrate deep into the soil where they can find moisture as well as food. The shallow plowing in of manure has the tendency to keep the feeding roots of plants near the surface and will therefore soon dry out and turn blue, and when once the plants are stricken with the blues no further growth will be made and they might as well be discarded.—(Oreg. E. S. 74; N. C. E. S. 132.)

This crop is closely related to cabbage and cauliflower. Instead of a single head, Brussels sprouts form a large number of small heads in the axils of the leaves. As the heads begin to crowd, the leaves should be broken from the stem of the plant to give them more room. A few leaves should be left at the top of the stem where the new heads are being formed. Brussels sprouts are more hardy than cabbage, and in mild climates may remain in the open ground all winter, the heads being removed as desired. For winter use in cold localities, take up plants that are well laden with heads and set them close together in a pit, cold frame, or cellar, with a little soil around the roots. The uses of Brussels sprouts are similar to those of cabbage, but they are considered to be of a superior flavor. They require the same treatment as cabbage. The soil must be rich and requires considerable moisture. The small sprouts must grow rapidly or they will be tough. Sow the seed in hotbed and transplant, or scatter seed in hills and thin. The plants must have plenty of room. Rows should be thirty inches apart and the plants not closer than two feet.—(F. B. 255; U. Idaho E. S. 10; Cornell U. E. S. 292.)

Cabbage is one of the most universally cultivated of the garden plants. Although it is one of the coarser vegetables it finds a place in the home garden as well as in the market garden and truck farm. In some sections of the United States it is extensively grown as a farm crop. Early cabbage is practically all consumed as a green vegetable. The late crop, on the other hand, is handled as a fresh vegetable, as a storage crop, and for the manufacture of sauerkraut. It is always in demand, and under present conditions is always available, either as the product of a southern truck farm or a northern farm, garden, or storage house. The group of cultivated plants which has been derived from the wild cabbage presents a greater diversity of form than that derived from any other single ancestral type.

Wild cabbage is a robust-growing broad-leaved plant enjoying the low, moist areas near the seacoast of southern Europe. The most closely allied form now in cultivation is the collard. The wide variation in the group is illustrated by the diversity of form shown in collards, kale, tree cabbage, marrow kale, cauliflower, and Brussels sprouts. It is almost beyond the bounds of reason to believe that all these forms have been derived from a common parentage, yet such is the fact.

Seed.—In no truck crop does the character of the seed count for more than in cabbage. It is very essential that the crop come to marketable maturity early, that the heads be uniform in size and character, and that they mature so that the whole crop can be harvested at two cuttings. The small saving made by the purchase of cheap or inferior seed is usually paid for a hundred times over in the lessened value of the crop. A grower can not afford to risk his crop for so small a saving. The best seed that can be obtained is none too good, and anything short of this is not good business. Withouthighly viable seed of a good strain, true to type, the best results can not be expected. For early spring cabbage in the South, sow the seeds in an outdoor bed and transplant to the garden before January 1. In the North, plant the seeds in a hotbed during February and set the plants in the open ground as early as the soil can be worked. For a late crop in the North, plant the seeds in a bed in the open ground in May or June and transplant to the garden in July. Early cabbages require a rich, warm soil in order that they may mature early. For late cabbages the soil should be heavier and more retentive of moisture and not so rich as for the early crop, as the heads are liable to burst. Cabbages should be set in rows 30 to 36 inches apart and 14 to 18 inches apart in the row. Where the plants are set out in the autumn and allowed to remain in the ground over winter, they are usually placed on top of ridges.

Soil.—The soil for cabbage must necessarily vary in different localities. In one area it may be of an alluvial character, while in another it may be sedentary, and in still another it may be characteristic glacial drift. The fact that cabbage grows well in all these soils indicates its adaptation to a wide range of conditions. The main thing with cabbage is an abundant supply of immediately available plant food. Market gardeners rely chiefly upon stable manure for their supply of plant food.

Cultivation.—Among market gardeners it is a common expression that "cabbage should be hoed every day." Perhaps no other crop responds more quickly to good cultivation and an ample food supply. This is undoubtedly the explanation of the above quoted expression. In cultivating cabbage the work should be frequent and thorough, but the cultivation should not be deep. The aim should be to destroy all competing weeds and to maintain a loose, friable layer of soil about 2 inches deep over the surface of the area devoted to cabbage.

Storage.—Early cabbage must be used soon after it has formed solid heads, as it will not keep during hot weather. Late cabbage may be buried in pits or stored in cellars or specially constructed houses. The usual method of storing cabbage is to dig a trench about 18 inches deep and 3 feet wide and set the cabbage upright, with the heads close together and the roots bedded in soil. As cold weather comes on, the heads are covered slightly with straw and then 3 or 4 inches of earth put on. Slight freezing does not injure cabbage, but it should not be subjected to repeated freezing and thawing. If stored in a cellar or building, the heads are generally cut from the stems and stored on slatted shelves or in shallow bins. While in storage, cabbage should be well ventilated and kept as cool as possible without freezing.

Varieties.—The varieties of cabbage used in the trucking section are practically limited to the Wakefield type. There are two strains of this type of cabbage now extensively employed: The true Jersey Wakefield, with its small, acutely pointed tip and very firm, tender flesh of high quality, and the Charleston Wakefield, which is broader, somewhat flatter, more obtusely pointed, and slightly moreangular in cross section than the Jersey type. The varieties which may be used for field cultivation depend upon the purpose for which the cabbage is intended. If for sauerkraut or for immediate consumption, the Flat Dutch type from American-grown seed is extensively employed in the eastern part of the United States. In the irrigated section of Colorado, in the vicinity of Greeley, where cabbage is grown for sauerkraut, a variety known as Scotch Cross is almost universally grown. If the cabbage is intended for storage the Danish Ball Head from imported seed is almost exclusively used.—(F. B. 255, 433; Colo. E. S. 143; Md. Ag. Col. E. S. 133; Tex. E. S. 52, 69; Ga. E. S. 91; Kans. E. S. 70; S. Dak. E. S. 91.)

The increasing popularity of calabash pipes made from the fruits of a South African calabash, or gourd, has aroused a widespread interest in the growing of this vine.

Calabash pipes made from imported South African gourds have been the fashion in England for some time and are now coming into vogue in America. These pipes are formed from the crooked necks of a large gourd (Lagenaria vulgaris) belonging to the well-known group of plants which includes the cucumber, the melons, and the squashes. Pipes made from the imported gourds are expensive, American dealers usually charging $3 to $12 apiece for them. They are the lightest pipes made for their size, are graceful in shape, color like meerschaums, and are delightful smokers. Unlike the cheap pipes which are turned out by machinery, no two of these calabash pipes are alike. In this lies much of their charm. In this, likewise, lies their cost, for, unlike the great mass of pipes turned out by machinery, the crook of the calabash varies so that each mouthpiece must be made to fit it and each lining of meerschaum or plaster of Paris must be specially adapted. In our land of labor-saving machinery and expensive hand labor this is what makes the pipes costly.

The vine forms a very satisfactory cover for unsightly brush heaps or fences, though its rather rank odor might prove objectionable if used for an arbor too near the dwelling. To grow the vine for the sake of its gourds is where the chief interest lies, however, and to do this well it should not be trained on a trellis, but allowed to trail over the ground. If the fruits are allowed to lie on the ground they form their crooked necks quite naturally without assistance, and while not all of them by any means make suitable necks for pipes a good proportion do. It seems to induce a more perfect neck to stand the gourds up when half grown so that they rest on their big ends. Unless care is exercised in doing this the necks snap off, for they are extremely brittle even when fully grown. It is only when almost mature that they become hard and then they are indeed almost unbreakable.

Much could doubtless be done to perfect the methods of culture, insuring perhaps a greater percentage of properly crooked necks and more perfect surfaces. It could not be seen that inheritance plays any material part in this matter of percentage of crooks. If left tothemselves the majority will crook their necks, but some few will remain quite straight, and this on the same vine with perfectly formed crooks. The gourds should be left as long as possible on the vines to thoroughly thicken their shells. If picked green the shell will be no thicker than stiff cardboard and in drying it is very liable to crack. Frost will injure the gourds if they are left on the vines too long.—(B. P. I. Cir. 41.)


Back to IndexNext