Chapter 95

Quia est in eoVirtus saccharitiva.

Just what becomes of the sugar beyond the fact of its disappearance before it can get into the general circulation and sweeten our tempers, it is hard to say.

The pancreatic fluid makes an emulsion of the fat contained in our food, but just how the fatty particles get into the villi we must leave Brucke and Kolliker to settle if they can.

No one has shown satisfactorily the process by which the blood-corpuscles are formed out of the lymph-corpuscles, nor what becomes of them. These two questions are like those famous household puzzles,—Where do the flies come from? and, Where do the pins go to?

There is a series of organs in the body which has long puzzled physiologists,—organs of glandular aspect, but having no ducts,—the spleen, the thyroid and thymus bodies, and the suprarenal capsules. We call them vascular glands, and we believe that they elaborate colored and uncolored blood-cells; but just what changes they effect, and just how they effect them, it has proved a very difficult matter to determine. So of the noted glandules which form Peyer's patches, their precise office, though seemingly like those of the lymphatic glands, cannot be positively assigned, so far as I know, at the present time. It is of obvious interest to learn it with reference to the pathology of typhoid fever. It will be remarked that the coincidence of their changes in this disease with enlargement of the spleen suggests the idea of a similarity of function in these two organs.

The theories of the production of animal heat, from the times of Black, Lavoisier, and Crawford to those of Liebig, are familiar to all who have paid any attention to physiological studies. The simplicity of Liebig's views, and the popular form in which they have been presented, have given them wide currency, and incorporated them in the common belief and language of our text-books. Direct oxidation or combustion of the carbon and hydrogen contained in the food, or in the tissues themselves; the division of alimentary substances into respiratory, or non-azotized, and azotized,—these doctrines are familiar even to the classes in our high-schools. But this simple statement is boldly questioned. Nothing proves that oxygen combines (in the system) with hydrogen and carbon in particular, rather than with sulphur and azote. Such is the well-grounded statement of Robin and Verdeil. “It is very probable that animal heat is entirely produced by the chemical actions which take place in the organism, but the phenomenon is too complex to admit of our calculating it according to the quality of oxygen consumed.” These last are the words of Regnault, as cited by Mr. Lewes, whose intelligent discussion of this and many of the most interesting physiological problems I strongly recommend to your attention.

This single illustration covers a wider ground than the special function to which it belongs. We are learning that the chemistry of the body must be studied, not simply by its ingesta and egesta, but that there is a long intermediate series of changes which must be investigated in their own light, under their own special conditions. The expression “sum of vital unities” applies to the chemical actions, as well as to other actions localized in special parts; and when the distinguished chemists whom I have just cited entitle their work a treatise on the immediate principles of the body, they only indicate the nature of that profound and subtile analysis which must take the place of all hasty generalizations founded on a comparison of the food with residual products.

I will only call your attention to the fact, that the exceptional phenomenon of the laboratory is the prevailing law of the organism. Nutrition itself is but one great catalytic process. As the blood travels its rounds, each part selects its appropriate element and transforms it to its own likeness. Whether the appropriating agent be cell or nucleus, or a structureless solid like the intercellular substance of cartilage, the fact of its presence determines the separation of its proper constituents from the circulating fluid, so that even when we are wounded bone is replaced by bone, skin by skin, and nerve by nerve.

It is hardly without a smile that we resuscitate the old question of the 'vis insita' of the muscular fibre, so famous in the discussions of Haller and his contemporaries. Speaking generally, I think we may say that Haller's doctrine is the one now commonly received; namely, that the muscles contract in virtue of their own inherent endowments. It is true that Kolliker says no perfectly decisive fact has been brought forward to prove that the striated muscles contract without having been acted on by nerves. Yet Mr. Bowman's observations on the contraction of isolated fibres appear decisive enough (unless we consider them invalidated by Dr. Lionel Beale's recent researches), tending to show that each elementary fibre is supplied with nerves; and as to the smooth muscular fibres, we have Virchow's statement respecting the contractility of those of the umbilical cord, where there is not a trace of any nerves.

In the investigation of the nervous system, anatomy and physiology have gone hand in hand. It is very singular that so important, and seemingly simple, a fact as the connection of the nerve-tubes, at their origin or in their course, with the nerve-cells, should have so long remained open to doubt, as you may see that it did by referring to the very complete work of Sharpey and Quain (edition of 1849), the histological portion of which is cordially approved by Kolliker himself.

Several most interesting points of the minute anatomy of the nervous centres have been laboriously and skilfully worked out by a recent graduate of this Medical School, in a monograph worthy to stand in line with those of Lockhart Clarke, Stilling, and Schroder van der Kolk. I have had the privilege of examining and of showing some of you a number of Dr. Dean's skilful preparations. I have no space to give even an abstract of his conclusions. I can only refer to his proof of the fact, that a single cell may send its processes into several different bundles of nerve-roots, and to his demonstration of the curved ascending and descending fibres from the posterior nerveroots, to reach what he has called the longitudinal columns of the cornea. I must also mention Dr. Dean's exquisite microscopic photographs from sections of the medulla oblongata, which appear to me to promise a new development, if not a new epoch, in anatomical art.

It having been settled that the nerve-tubes can very commonly be traced directly to the nerve-cells, the object of all the observers in this department of anatomy is to follow these tubes to their origin. We have an infinite snarl of telegraph wires, and we may be reasonably sure, that, if we can follow them up, we shall find each of them ends in a battery somewhere. One of the most interesting problems is to find the ganglionic origin of the great nerves of the medulla oblongata, and this is the end to which, by the aid of the most delicate sections, colored so as to bring out their details, mounted so as to be imperishable, magnified by the best instruments, and now self-recorded in the light of the truth-telling sunbeam, our fellow-student is making a steady progress in a labor which I think bids fair to rank with the most valuable contributions to histology that we have had from this side of the Atlantic.

It is interesting to see how old questions are incidentally settled in the course of these new investigations. Thus, Mr. Clarke's dissections, confirmed by preparations of Mr. Dean's which I have myself examined, placed the fact of the decussation of the pyramids—denied by Haller, by Morgagni, and even by Stilling—beyond doubt. So the spinal canal, the existence of which, at least in the adult, has been so often disputed, appears as a coarse and unequivocal anatomical fact in many of the preparations referred to.

While these studies of the structure of the cord have been going on, the ingenious and indefatigable Brown-Sequard has been investigating the functions of its different parts with equal diligence. The microscopic anatomists had shown that the ganglionic corpuscles of the gray matter of the cord are connected with each other by their processes, as well as with the nerve-roots. M. Brown-Sequard has proved by numerous experiments that the gray substance transmits sensitive impressions and muscular stimulation. The oblique ascending and descending fibres from the posterior nerve-roots, joining the “longitudinal columns of the cornua,” account for the results of Brown-Sequard's sections of the posterior columns. The physiological experimenter has also made it evident that the decussation of the conductors of sensitive impressions has its seat in the spinal core, and not in the encephalon, as had been supposed. Not less remarkable than these results are the facts, which I with others of my audience have had the opportunity of observing, as shown by M. Brown-Sequard, of the artificial production of epilepsy in animals by injuring the spinal cord, and the induction of the paroxysm by pinching a certain portion of the skin. I would also call the student's attention to his account of the relations of the nervous centres to nutrition and secretion, the last of which relations has been made the subject of an extended essay by our fellow countryman, Dr. H. F. Campbell of Georgia.

The physiology of the spinal cord seems a simple matter as you study it in Longet. The experiments of Brown-Sequard have shown the problem to be a complex one, and raised almost as many doubts as they have solved questions; at any rate, I believe all lecturers on physiology agree that there is no part of their task they dread so much as the analysis of the evidence relating to the special offices of the different portions of the medulla spinalis. In the brain we are sure that we do not know how to localize functions; in the spinal cord, we think we do know something; but there are so many anomalies, and seeming contradictions, and sources of fallacy, that beyond the facts of crossed paralysis of sensation, and the conducting agency of the gray substance, I am afraid we retain no cardinal principles discovered since the development of the reflex function took its place by Sir Charles Bell's great discovery.

By the manner in which I spoke of the brain, you will see that I am obliged to leave phrenology sub Jove,—out in the cold,—as not one of the household of science. I am not one of its haters; on the contrary, I am grateful for the incidental good it has done. I love to amuse myself in its plaster Golgothas, and listen to the glib professor, as he discovers by his manipulations

“All that disgraced my betters met in me.”

I loved of old to see square-headed, heavy-jawed Spurzheim make a brain flower out into a corolla of marrowy filaments, as Vieussens had done before him, and to hear the dry-fibred but human-hearted George Combe teach good sense under the disguise of his equivocal system. But the pseudo-sciences, phrenology and the rest, seem to me only appeals to weak minds and the weak points of strong ones. There is a pica or false appetite in many intelligences; they take to odd fancies in place of wholesome truth, as girls gnaw at chalk and charcoal. Phrenology juggles with nature. It is so adjusted as to soak up all evidence that helps it, and shed all that harms it. It crawls forward in all weathers, like Richard Edgeworth's hygrometer. It does not stand at the boundary of our ignorance, it seems to me, but is one of the will-o'-the-wisps of its undisputed central domain of bog and quicksand. Yet I should not have devoted so many words to it, did I not recognize the light it has thrown on human actions by its study of congenital organic tendencies. Its maps of the surface of the head are, I feel sure, founded on a delusion, but its studies of individual character are always interesting and instructive.

The “snapping-turtle” strikes after its natural fashion when it first comes out of the egg. Children betray their tendencies in their way of dealing with the breasts that nourish them; nay, lean venture to affirm, that long before they are born they teach their mothers something of their turbulent or quiet tempers.

“Castor gaudet equis, ovo proanatus eodemPugnis.”

Strike out the false pretensions of phrenology; call it anthropology; let it study man the individual in distinction from man the abstraction, the metaphysical or theological lay-figure; and it becomes “the proper study of mankind,” one of the noblest and most interesting of pursuits.

The whole physiology of the nervous system, from the simplest manifestation of its power in an insect up to the supreme act of the human intelligence working through the brain, is full of the most difficult yet profoundly interesting questions. The singular relations between electricity and nerve-force, relations which it has been attempted to interpret as meaning identity, in the face of palpable differences, require still more extended studies. You may be interested by Professor Faraday's statement of his opinion on the matter. “Though I am not satisfied that the nervous fluid is only electricity, still I think that the agent in the nervous system maybe an inorganic force; and if there be reason for supposing that magnetism is a higher relation of force than electricity, so it may well be imagined that the nervous power may be of a still more exalted character, and yet within the reach of experiment.”

In connection with this statement, it is interesting to refer to the experiments of Helmholtz on the rapidity of transmission of the nervous actions. The rate is given differently in Valentin's report of these experiments and in that found in the “Scientific Annual” for 1858. One hundred and eighty to three hundred feet per second is the rate of movement assigned for sensation, but all such results must be very vaguely approximative. Boxers, fencers, players at the Italian game of morn, “prestidigitators,” and all who depend for their success on rapidity of motion, know what differences there are in the personal equation of movement.

Reflex action, the mechanical sympathy, if I may so call it, of distant parts; Instinct, which is crystallized intelligence,—an absolute law with its invariable planes and angles introduced into the sphere of consciousness, as raphides are inclosed in the living cells of plants; Intellect,—the operation of the thinking principle through material organs, with an appreciable waste of tissue in every act of thought, so that our clergymen's blood has more phosphates to get rid of on Monday than on any other day of the week; Will,—theoretically the absolute determining power, practically limited in different degrees by the varying organization of races and individuals, annulled or perverted by different ill-understood organic changes; on all these subjects our knowledge is in its infancy, and from the study of some of them the interdict of the Vatican is hardly yet removed.

I must allude to one or two points in the histology and physiology of the organs of sense. The anterior continuation of the retina beyond the ora serrata has been a subject of much discussion. If H. Muller and Kolliker can be relied upon, this question is settled by recognizing that a layer of cells, continued from the retina, passes over the surface of the zonula Zinnii, but that no proper nervous element is so prolonged forward.

I observe that Kolliker calls the true nervous elements of the retina “the layer of gray cerebral substance.” In fact, the ganglionic corpuscles of each eye may be considered as constituting a little brain, connected with the masses behind by the commissure, commonly called the optic nerve. We are prepared, therefore, to find these two little brains in the most intimate relations with each other, as we find the cerebral hemispheres. We know that they are directly connected by fibres that arch round through the chiasma.

I mention these anatomical facts to introduce a physiological observation of my own, first announced in one of the lectures before the Medical Class, subsequently communicated to the American Academy of Arts and Sciences, and printed in its “Transactions” for February 14, 1860. I refer to the apparent transfer of impressions from one retina to the other, to which I have given the name reflex vision. The idea was suggested to me in consequence of certain effects noticed in employing the stereoscope. Professor William B. Rodgers has since called the attention of the American Scientific Association to some facts bearing on the subject, and to a very curious experiment of Leonardo da Vinci's, which enables the observer to look through the palm of his hand (or seem to), as if it had a hole bored through it. As he and others hesitated to accept my explanation, I was not sorry to find recently the following words in the “Observations on Man” of that acute observer and thinker, David Hartley. “An impression made on the right eye alone by a single object may propagate itself into the left, and there raise up an image almost equal in vividness to itself; and consequently when we see with one eye only, we may, however, have pictures in both eyes.” Hartley, in 1784, had anticipated many of the doctrines which have since been systematized into the theory of reflex actions, and with which I have attempted to associate this act of reflex vision. My sixth experiment, however, in the communication referred to, appears to me to be a crucial one, proving the correctness of my explanation, and I am not aware that it has been before instituted.

Another point of great interest connected with the physiology of vision, and involved for a long time in great obscurity, is that of the adjustment of the eye to different distances. Dr. Clay Wallace of New York, who published a very ingenious little book on the eye about twenty years ago, with vignettes reminding one of Bewick, was among the first, if not the first, to describe the ciliary muscle, to which the power of adjustment is generally ascribed. It is ascertained, by exact experiment with the phacueidoscope, that accommodation depends on change of form of the crystalline lens. Where the crystalline is wanting, as Mr. Ware long ago taught, no power of accommodation remains. The ciliary muscle is generally thought to effect the change of form of the crystalline. The power of accommodation is lost after the application of atropine, in consequence, as is supposed, of the paralysis of this muscle. This, I believe, is the nearest approach to a demonstration we have on this point.

I have only time briefly to refer to Professor Draper's most ingenious theory as to the photographic nature of vision, for an account of which I must refer to his original and interesting Treatise on Physiology.

It were to be wished that the elaborate and very interesting researches of the Marquis Corti, which have revealed such singular complexity of structure in the cochlea of the ear, had done more to clear up its doubtful physiology; but I am afraid we have nothing but hypotheses for the special part it plays in the act of hearing, and that we must say the same respecting the office of the semicircular canals.

The microscope has achieved some of its greatest triumphs in teaching us the changes which occur in the development of the embryo. No more interesting discovery stands recorded in the voluminous literature of this subject than the one originally announced by Martin Barry, afterwards discredited, and still later confirmed by Mr. Newport and others; namely the fact that the fertilizing filament reaches the interior of the ovum in various animals;—a striking parallel to the action of the pollen-tube in the vegetable. But beyond the mechanical facts all is mystery in the movements of organization, as profound as in the fall of a stone or the formation of a crystal.

To the chemist and the microscopist the living body presents the same difficulties, arising from the fact that everything is in perpetual change in the organism. The fibrine of the blood puzzles the one as much as its globules puzzle the other. The difference between the branches of science which deal with space only, and those which deal with space and time, is this: we have no glasses that can magnify time. The figure I here show you a was photographed from an object (pleurosigma angulatum) magnified a thousand diameters, or presenting a million times its natural surface. This other figure of the same object, enlarged from the one just shown, is magnified seven thousand diameters, or forty-nine million times in surface. When we can make the forty-nine millionth of a second as long as its integer, physiology and chemistry will approach nearer the completeness of anatomy.

Our reverence becomes more worthy, or, if you will, less unworthy of its Infinite Object in proportion as our intelligence is lifted and expanded to a higher and broader understanding of the Divine methods of action. If Galen called his heathen readers to admire, the power, the wisdom, the providence, the goodness of the “Framer of the animal body,”—if Mr. Boyle, the student of nature, as Addison and that friend of his who had known him for forty years tell us, never uttered the name of the Supreme Being without making a distinct pause in his speech, in token of his devout recognition of its awful meaning,—surely we, who inherit the accumulated wisdom of nearly two hundred years since the time of the British philosopher, and of almost two thousand since the Greek physician, may well lift our thoughts from the works we study to their great Artificer. These wonderful discoveries which we owe to that mighty little instrument, the telescope of the inner firmament with all its included worlds; these simple formulae by which we condense the observations of a generation in a single axiom; these logical analyses by which we fence out the ignorance we cannot reclaim, and fix the limits of our knowledge,—all lead us up to the inspiration of the Almighty, which gives understanding to the world's great teachers. To fear science or knowledge, lest it disturb our old beliefs, is to fear the influx of the Divine wisdom into the souls of our fellow-men; for what is science but the piecemeal revelation,—uncovering,—of the plan of creation, by the agency of those chosen prophets of nature whom God has illuminated from the central light of truth for that single purpose?

The studies which we have glanced at are preliminary in your education to the practical arts which make use of them,—the arts of healing,—surgery and medicine. The more you examine the structure of the organs and the laws of life, the more you will find how resolutely each of the cell-republics which make up the E pluribus unum of the body maintains its independence. Guard it, feed it, air it, warm it, exercise or rest it properly, and the working elements will do their best to keep well or to get well. What do we do with ailing vegetables? Dr. Warren, my honored predecessor in this chair, bought a country-place, including half of an old orchard. A few years afterwards I saw the trees on his side of the fence looking in good health, while those on the other side were scraggy and miserable. How do you suppose this change was brought about? By watering them with Fowler's solution? By digging in calomel freely about their roots? Not at all; but by loosening the soil round them, and supplying them with the right kind of food in fitting quantities.

Now a man is not a plant, or, at least, he is a very curious one, for he carries his soil in his stomach, which is a kind—of portable flower-pot, and he grows round it, instead of out of it. He has, besides, a singularly complex nutritive apparatus and a nervous system. But recollect the doctrine already enunciated in the language of Virchow, that an animal, like a tree, is a sum of vital unities, of which the cell is the ultimate element. Every healthy cell, whether in a vegetable or an animal, necessarily performs its function properly so long as it is supplied with its proper materials and stimuli. A cell may, it is true, be congenitally defective, in which case disease is, so to speak, its normal state. But if originally sound and subsequently diseased, there has certainly been some excess, deficiency, or wrong quality in the materials or stimuli applied to it. You remove this injurious influence and substitute a normal one; remove the baked coal-ashes, for instance, from the roots of a tree, and replace them with loam; take away the salt meat from the patient's table, and replace it with fresh meat and vegetables, and the cells of the tree or the man return to their duty.

I do not know that we ever apply to a plant any element which is not a natural constituent of the vegetable structure, except perhaps externally, for the accidental purpose of killing parasites. The whole art of cultivation consists in learning the proper food and conditions of plants, and supplying them. We give them water, earths, salts of various kinds such as they are made of, with a chance to help themselves to air and light. The farmer would be laughed at who undertook to manure his fields or his trees with a salt of lead or of arsenic. These elements are not constituents of healthy plants. The gardener uses the waste of the arsenic furnaces to kill the weeds in his walks.

If the law of the animal cell, and of the animal organism, which is built up of such cells, is like that of the vegetable, we might expect that we should treat all morbid conditions of any of the vital unities belonging to an animal in the same way, by increasing, diminishing, or changing its natural food or stimuli.

That is an aliment which nourishes; whatever we find in the organism, as a constant and integral element, either forming part of its structure, or one of the conditions of vital processes, that and that only deserves the name of aliment. I see no reason, therefore, why iron, phosphate of lime, sulphur, should not be considered food for man, as much as guano or poudrette for vegetables. Whether one or another of them is best in any given case,—whether they shall be taken alone or in combination, in large or small quantities, are separate questions. But they are elements belonging to the body, and even in moderate excess will produce little disturbance. There is no presumption against any of this class of substances, any more than against water or salt, provided they are used in fitting combinations, proportions, and forms.

But when it comes to substances alien to the healthy system, which never belong to it as normal constituents, the case is very different. There is a presumption against putting lead or arsenic into the human body, as against putting them into plants, because they do not belong there, any more than pounded glass, which, it is said, used to be given as a poison. The same thing is true of mercury and silver. What becomes of these alien substances after they get into the system we cannot always tell. But in the case of silver, from the accident of its changing color under the influence of light, we do know what happens. It is thrown out, in part at least, under the epidermis, and there it remains to the patient's dying day. This is a striking illustration of the difficulty which the system finds in dealing with non-assimilable elements, and justifies in some measure the vulgar prejudice against mineral poisons.

I trust the youngest student on these benches will not commit the childish error of confounding a presumption against a particular class of agents with a condemnation of them. Mercury, for instance, is alien to the system, and eminently disturbing in its influence. Yet its efficacy in certain forms of specific disease is acknowledged by all but the most sceptical theorists. Even the esprit moqueur of Ricord, the Voltaire of pelvic literature, submits to the time-honored constitutional authority of this great panacea in the class of cases to which he has devoted his brilliant intelligence. Still, there is no telling what evils have arisen from the abuse of this mineral. Dr. Armstrong long ago pointed out some of them, and they have become matters of common notoriety. I am pleased, therefore, when I find so able and experienced a practitioner as Dr. Williams of this city proving that iritis is best treated without mercury, and Dr. Vanderpoel showing the same thing to be true for pericarditis.

Whatever elements nature does not introduce into vegetables, the natural food of all animal life,—directly of herbivorous, indirectly of carnivorous animals,—are to be regarded with suspicion. Arsenic-eating may seem to improve the condition of horses for a time,—and even of human beings, if Tschudi's stories can be trusted,—but it soon appears that its alien qualities are at war with the animal organization. So of copper, antimony, and other non-alimentary simple substances; everyone of them is an intruder in the living system, as much as a constable would be, quartered in our household. This does not mean that they may not, any of them, be called in for a special need, as we send for the constable when we have good reason to think we have a thief under our roof; but a man's body is his castle, as well as his house, and the presumption is that we are to keep our alimentary doors bolted against these perturbing agents.

Now the feeling is very apt to be just contrary to this. The habit has been very general with well-taught practitioners, to have recourse to the introduction of these alien elements into the system on the occasion of any slight disturbance. The tongue was a little coated, and mercury must be given; the skin was a little dry, and the patient must take antimony. It was like sending for the constable and the posse comitatus when there is only a carpet to shake or a refuse-barrel to empty. [Dr. James Johnson advises persons not ailing to take five grains of blue pill with one or two of aloes twice a week for three or four months in the year, with half a pint of compound decoction of sarsaparilla every day for the same period, to preserve health and prolong life. Pract. Treatise on Dis. of Liver, etc. p. 272.] The constitution bears slow poisoning a great deal better than might be expected; yet the most intelligent men in the profession have gradually got out of the habit of prescribing these powerful alien substances in the old routine way. Mr. Metcalf will tell you how much more sparingly they are given by our practitioners at the present time, than when he first inaugurated the new era of pharmacy among us. Still, the presumption in favor of poisoning out every spontaneous reaction of outraged nature is not extinct in those who are trusted with the lives of their fellow-citizens. “On examining the file of prescriptions at the hospital, I discovered that they were rudely written, and indicated a treatment, as they consisted chiefly of tartar emetic, ipecacuanha, and epsom salts, hardly favorable to the cure of the prevailing diarrhoea and dysenteries.” In a report of a poisoning case now on trial, where we are told that arsenic enough was found in the stomach to produce death in twenty-four hours, the patient is said to have been treated by arsenic, phosphorus, bryonia, aconite, nux vomica, and muriatic acid,—by a practitioner of what school it may be imagined.

The traditional idea of always poisoning out disease, as we smoke out vermin, is now seeking its last refuge behind the wooden cannon and painted port-holes of that unblushing system of false scientific pretences which I do not care to name in a discourse addressed to an audience devoted to the study of the laws of nature in the light of the laws of evidence. It is extraordinary to observe that the system which, by its reducing medicine to a name and a farce, has accustomed all who have sense enough to see through its thin artifices to the idea that diseases get well without being “cured,” should now be the main support of the tottering poison-cure doctrine. It has unquestionably helped to teach wise people that nature heals most diseases without help from pharmaceutic art, but it continues to persuade fools that art can arrest them all with its specifics.

It is worse than useless to attempt in any way to check the freest expression of opinion as to the efficacy of any or all of the “heroic” means of treatment employed by practitioners of different schools and periods. Medical experience is a great thing, but we must not forget that there is a higher experience, which tries its results in a court of a still larger jurisdiction; that, namely, in which the laws of human belief are summoned to the witness-box, and obliged to testify to the sources of error which beset the medical practitioner. The verdict is as old as the father of medicine, who announces it in the words, “judgment is difficult.” Physicians differed so in his time, that some denied that there was any such thing as an art of medicine.

One man's best remedies were held as mischievous by another. The art of healing was like soothsaying, so the common people said; “the same bird was lucky or unlucky, according as he flew to the right or left.”

The practice of medicine has undergone great changes within the period of my own observation. Venesection, for instance, has so far gone out of fashion, that, as I am told by residents of the New York Bellevue and the Massachusetts General Hospitals, it is almost obsolete in these institutions, at least in medical practice. The old Brunonian stimulating treatment has come into vogue again in the practice of Dr. Todd and his followers. The compounds of mercury have yielded their place as drugs of all work, and specifics for that very frequent subjective complaint, nescio quid faciam,—to compounds of iodine. [Sir Astley Cooper has the boldness,—or honesty,—to speak of medicines which “are given as much to assist the medical man as his patient.” Lectures (London, 1832), p. 14.] Opium is believed in, and quinine, and “rum,” using that expressive monosyllable to mean all alcoholic cordials. If Moliere were writing now, instead of saignare, purgare, and the other, he would be more like to say, Stimulare, opium dare et potassio-iodizare.

I have been in relation successively with the English and American evacuant and alterative practice, in which calomel and antimony figured so largely that, as you may see in Dr. Jackson's last “Letter,” Dr. Holyoke, a good representative of sterling old-fashioned medical art, counted them with opium and Peruvian bark as his chief remedies; with the moderately expectant practice of Louis; the blood-letting “coup sur coup” of Bouillaud; the contra-stimulant method of Rasori and his followers; the anti-irritant system of Broussais, with its leeching and gum-water; I have heard from our own students of the simple opium practice of the renowned German teacher, Oppolzer; and now I find the medical community brought round by the revolving cycle of opinion to that same old plan of treatment which John Brown taught in Edinburgh in the last quarter of the last century, and Miner and Tully fiercely advocated among ourselves in the early years of the present. The worthy physicians last mentioned, and their antagonist Dr. Gallup, used stronger language than we of these degenerate days permit ourselves. “The lancet is a weapon which annually slays more than the sword,” says Dr. Tully. “It is probable that, for forty years past, opium and its preparations have done seven times the injury they have rendered benefit, on the great scale of the world,” says Dr. Gallup.

What is the meaning of these perpetual changes and conflicts of medical opinion and practice, from an early antiquity to our own time? Simply this: all “methods” of treatment end in disappointment of those extravagant expectations which men are wont to entertain of medical art. The bills of mortality are more obviously affected by drainage, than by this or that method of practice. The insurance companies do not commonly charge a different percentage on the lives of the patients of this or that physician. In the course of a generation, more or less, physicians themselves are liable to get tired of a practice which has so little effect upon the average movement of vital decomposition. Then they are ready for a change, even if it were back again to a method which has already been tried, and found wanting.

Our practitioners, or many of them, have got back to the ways of old Dr. Samuel Danforth, who, as it is well known, had strong objections to the use of the lancet. By and by a new reputation will be made by some discontented practitioner, who, tired of seeing patients die with their skins full of whiskey and their brains muddy with opium, returns to a bold antiphlogistic treatment, and has the luck to see a few patients of note get well under it. So of the remedies which have gone out of fashion and been superseded by others. It can hardly be doubted that they will come into vogue again, more or less extensively, under the influence of that irresistible demand for change just referred to.

Then will come the usual talk about a change in the character of disease, which has about as much meaning as that concerning “old-fashioned snow-storms.” “Epidemic constitutions” of disease mean something, no doubt; a great deal as applied to malarious affections; but that the whole type of diseases undergoes such changes that the practice must be reversed from depleting to stimulating, and vice versa, is much less likely than that methods of treatment go out of fashion and come in again. If there is any disease which claims its percentage with reasonable uniformity, it is phthisis. Yet I remember that the reverend and venerable Dr. Prince of Salem told me one Commencement day, as I was jogging along towards Cambridge with him, that he recollected the time when that disease was hardly known; and in confirmation of his statement mentioned a case in which it was told as a great event, that somebody down on “the Cape” had died of “a consumption.” This story does not sound probable to myself, as I repeat it, yet I assure you it is true, and it shows how cautiously we must receive all popular stories of great changes in the habits of disease.

Is there no progress, then, but do we return to the same beliefs and practices which our forefathers wore out and threw away? I trust and believe that there is a real progress. We may, for instance, return in a measure to the Brunonian stimulating system, but it must be in a modified way, for we cannot go back to the simple Brunonian pathology, since we have learned too much of diseased action to accept its convenient dualism. So of other doctrines, each new Avatar strips them of some of their old pretensions, until they take their fitting place at last, if they have any truth in them, or disappear, if they were mere phantasms of the imagination.

In the mean time, while medical theories are coming in and going out, there is a set of sensible men who are never run away with by them, but practise their art sagaciously and faithfully in much the same way from generation to generation. From the time of Hippocrates to that of our own medical patriarch, there has been an apostolic succession of wise and good practitioners. If you will look at the first aphorism of the ancient Master you will see that before all remedies he places the proper conduct of the patient and his attendants, and the fit ordering of all the conditions surrounding him. The class of practitioners I have referred to have always been the most faithful in attending to these points. No doubt they have sometimes prescribed unwisely, in compliance with the prejudices of their time, but they have grown wiser as they have grown older, and learned to trust more in nature and less in their plans of interference. I believe common opinion confirms Sir James Clark's observation to this effect.

The experience of the profession must, I think, run parallel with that of the wisest of its individual members. Each time a plan of treatment or a particular remedy comes up for trial, it is submitted to a sharper scrutiny. When Cullen wrote his Materia Medica, he had seriously to assail the practice of giving burnt toad, which was still countenanced by at least one medical authority of note. I have read recently in some medical journal, that an American practitioner, whose name is known to the country, is prescribing the hoof of a horse for epilepsy. It was doubtless suggested by that old fancy of wearing a portion of elk's hoof hung round the neck or in a ring, for this disease. But it is hard to persuade reasonable people to swallow the abominations of a former period. The evidence which satisfied Fernelius will not serve one of our hospital physicians.

In this way those articles of the Materia Medica which had nothing but loathsomeness to recommend them have been gradually dropped, and are not like to obtain any general favor again with civilized communities. The next culprits to be tried are the poisons. I have never been in the least sceptical as to the utility of some of them, when properly employed. Though I believe that at present, taking the world at large, and leaving out a few powerful agents of such immense value that they rank next to food in importance, the poisons prescribed for disease do more hurt than good, I have no doubt, and never professed to have any, that they do much good in prudent and instructed hands. But I am very willing to confess a great jealousy of many agents, and I could almost wish to see the Materia Medica so classed as to call suspicion upon certain ones among them.

Thus the alien elements, those which do not properly enter into the composition of any living tissue, are the most to be suspected, —mercury, lead, antimony, silver, and the rest, for the reasons I have before mentioned. Even iodine, which, as it is found in certain plants, seems less remote from the animal tissues, gives unequivocal proofs from time to time that it is hostile to some portions of the glandular system.

There is, of course, less prima facie objection to those agents which consist of assimilable elements, such as are found making a part of healthy tissues. These are divisible into three classes,—foods, poisons, and inert, mostly because insoluble, substances. The food of one animal or of one human being is sometimes poison to another, and vice versa; inert substances may act mechanically, so as to produce the effect of poisons; but this division holds exactly enough for our purpose.

Strictly speaking, every poison consisting of assimilable elements may be considered as unwholesome food. It is rejected by the stomach, or it produces diarrhoea, or it causes vertigo or disturbance of the heart's action, or some other symptom for which the subject of it would consult the physician, if it came on from any other cause than taking it under the name of medicine. Yet portions of this unwholesome food which we call medicine, we have reason to believe, are assimilated; thus, castor-oil appears to be partially digested by infants, so that they require large doses to affect them medicinally. Even that deadliest of poisons, hydrocyanic acid, is probably assimilated, and helps to make living tissue, if it do not kill the patient, for the assimilable elements which it contains, given in the separate forms of amygdalin and emulsin, produce no disturbance, unless, as in Bernard's experiments, they are suffered to meet in the digestive organs. A medicine consisting of assimilable substances being then simply unwholesome food, we understand what is meant by those cumulative effects of such remedies often observed, as in the case of digitalis and strychnia. They are precisely similar to the cumulative effects of a salt diet in producing scurvy, or of spurred rye in producing dry gangrene. As the effects of such substances are a violence to the organs, we should exercise the same caution with regard to their use that we would exercise about any other kind of poisonous food,—partridges at certain seasons, for instance. Even where these poisonous kinds of food seem to be useful, we should still regard them with great jealousy. Digitalis lowers the pulse in febrile conditions. Veratrum viride does the same thing. How do we know that a rapid pulse is not a normal adjustment of nature to the condition it accompanies? Digitalis has gone out of favor; how sure are we that Veratrum viride will not be found to do more harm than good in a case of internal inflammation, taking the whole course of the disease into consideration? Think of the change of opinion with regard to the use of opium in delirium tremens (which you remember is sometimes called delirium vigilans), where it seemed so obviously indicated, since the publication of Dr. Ware's admirable essay. I respect the evidence of my contemporaries, but I cannot forget the sayings of the Father of medicine,—Ars longa, judicium difficile.

I am not presuming to express an opinion concerning Veratrum viride, which was little heard of when I was still practising medicine. I am only appealing to that higher court of experience which sits in judgment on all decisions of the lower medical tribunals, and which requires more than one generation for its final verdict.

Once change the habit of mind so long prevalent among practitioners of medicine; once let it be everywhere understood that the presumption is in favor of food, and not of alien substances, of innocuous, and not of unwholesome food, for the sick; that this presumption requires very strong evidence in each particular case to overcome it; but that, when such evidence is afforded, the alien substance or the unwholesome food should be given boldly, in sufficient quantities, in the same spirit as that with which the surgeon lifts his knife against a patient,—that is, with the same reluctance and the same determination,—and I think we shall have and hear much less of charlatanism in and out of the profession. The disgrace of medicine has been that colossal system of self-deception, in obedience to which mines have been emptied of their cankering minerals, the vegetable kingdom robbed of all its noxious growths, the entrails of animals taxed for their impurities, the poison-bags of reptiles drained of their venom, and all the inconceivable abominations thus obtained thrust down the throats of human beings suffering from some fault of organization, nourishment, or vital stimulation.

Much as we have gained, we have not yet thoroughly shaken off the notion that poison is the natural food of disease, as wholesome aliment is the support of health. Cowper's lines, in “The Task,” show the matter-of-course practice of his time:


Back to IndexNext