EXERCISE THE FOURTEENTH.

The principal difference between eggs, however, is their fecundity or barrenness—the distinction of fruitful eggs from hypenemic, adventitious, or wind eggs. Those eggs are called hypenemic, (as if the progeny of the wind,) that are produced without the concourse of the male, and are unfit for setting; although Varro[161]declares that the mares, in Lusitania, conceive by the wind. For zephyrus was held a fertilizing wind, whence its name, as if it were ζωηφερὀς, or life bringing. So that Virgil says:

And Zephyrus, with warming breath resolvesThe bosom of the ground, and melting rainsAre poured o’er all, and every field brings forth.

And Zephyrus, with warming breath resolvesThe bosom of the ground, and melting rainsAre poured o’er all, and every field brings forth.

And Zephyrus, with warming breath resolvesThe bosom of the ground, and melting rainsAre poured o’er all, and every field brings forth.

Hence the ancients, when with this wind blowing in the spring season, they saw their hens begin laying, without the concurrence of the cock, conceived that zephyrus, or the west wind, was the author of their fecundity. There are also what are called addle, and dog-day eggs, produced by interrupted incubation, and so called because eggs often rot in the dog-days, being deserted by the hens in consequence of the excessive heat; and also because at this season of the year thunder is frequent; and Aristotle[162]asserts that eggs die if it thunders whilst the hen is sitting.

Those eggs are regarded as prolific, which, no unfavorable circumstances intervening, under the influence of a gentle heat, produce chicks. And this they will do, not merely through the incubation of the mother, but of any other bird, if it be but of sufficient size to cherish and cover them, or by a gentle temperature obtained in any way whatever. “Eggs are hatched with the same celerity,” says Aristotle,[163]“spontaneously in the ground, as by incubation. Wherefore in Egypt, it is the customto bury them in dung, covered with earth. And there was a tale in Syracuse, of a drunken fellow, who was accustomed to continue his potations until a number of eggs, placed under a mat bestrewed with earth, were hatched.” The empress Livia, is also said to have carried an egg in her bosom until a chick was produced from it. And in Egypt, and other countries, at the present time, chickens are reared from eggs placed in ovens. “The egg, therefore,” as Fabricius[164]truly says, “is not only the uterus, and place where the generation of the chick proceeds, but it is that upon which its whole formation depends; and this the egg accomplishes as agent, as matter, as instrument, as place, and as all else that concurs.”

For it is certain that the chick is formed by a principle inherent in the egg, and that nothing accrues to a perfect egg from incubation, beyond the warmth and protection; in the same way as to the chick when disclosed, the hen gives nothing more than her warmth and her care, by which she defends it from the cold and from injury, and directs it to its proper food. The grand desideratum, therefore, once the chickens are hatched, is that the hen lead them about, seek for and supply them with proper food, and cherish them under her wings. And this you will not easily supply by any kind of artifice.

Capons, and hybrids between the common fowl and the pheasant, produced in our aviaries, will incubate and hatch a set of eggs; but they never know how to take care of the brood—to lead them about properly, and to provide with adequate care for their nurture.

And here I would pause for a moment, (for I mean to treat of the matter more fully by and by,) to express my admiration of the perseverance and patience with which the females of almost every species of bird, sit upon the nest for so many days and nights incessantly, macerating their bodies, and almost destroying themselves from want of food; what dangers they will face in defence of their eggs, and when compelled to quit them for ever so short a time, through necessity, with what eagerness and haste they return to them again, and brood over them! Ducks and geese, when they quit the nest for a few minutes, cover and conceal it with straw. With what truemagnanimity do these ill-furnished mothers defend their eggs! which, after all, perhaps, are mere wind or addle eggs, or not their own, or artificial eggs of chalk or ivory;—it is still the same, they defend all with equal courage. It is truly a remarkable love which birds display for inert and lifeless eggs; and their solicitude is repaid by no kind of advantage or enjoyment. Who does not wonder at the affection, or passion rather, of the clucking hen, which can only be extinguished by a drenching with cold water. In this state of her feeling she neglects everything,—her wings droop, her feathers are unpruned and ruffled, she wanders about restless and dissatisfied, disturbing other hens on their nests, seeking eggs everywhere, which she commences forthwith to incubate; nor will she be at peace until her desire has been gratified, until she has a brood to lead about with her, upon which she may expend her fervour, which she may cherish, feed, and defend. How pleasantly are we moved to laughter when we see the poor hen following to the water the supposititious brood of ducklings she has hatched, wandering restlessly round the pool, attempting to wade after them to her own imminent peril, and by her noises and various artifices striving to entice them back to the shore!

According to Aristotle,[165]barren eggs do not produce chicks because their fluids do not thicken under incubation, nor is the yelk or the white altered from its original constitution. But we shall revert to this subject in our general survey of generation.

Our housewives, that they may distinguish the eggs that are addled from those that will produce chicks, take them from the fourteenth to the sixteenth day of the incubation, and drop them softly into tepid water, when the spoilt ones sink, whilst the fruitful ones swim. If the included chick be well forward, and moves about with alacrity, the egg not only rolls over but even dances in the water. And if you apply the egg to your ear for several days before the hatching, you may hear the chick within kicking, scratching, and even chirping. When the hen that is sitting hears these noises, she turns the eggs and lays them otherwise than they were, until the chicks, getting into a comfortable position, become quiet; even as watchfulmothers are wont to treat their infants when they are restless and cry in their cradles.

Hens lay eggs in variable numbers: “Some hens,” says the philosopher,[166]“except the two winter months, lay through the whole year; some of the better breeds will lay as many as sixty eggs before they show a disposition to sit; though these eggs are not so prolific as those of the commoner kinds. The Adrianic hens are small, and lay every day, but they are ill-tempered, and often kill their young ones; they are particoloured in their plumage. Some domestic fowls will even lay twice a day; and some, by reason of their great fecundity, die young.”

In England some of the hens lay every day; but the more prolific commonly lay two days continuously and then miss a day: the first day the egg is laid in the morning, next day in the afternoon, and the third day there is a pause. Some hens have a habit of breaking their eggs and deserting their nests; whether this be from disease or vice is not known.

Certain differences may also be observed in the incubation: some fowls only sit once, others twice, or thrice, or repeatedly. Florentius says, that in Alexandria, in Egypt, there are fowls called monosires, from which the fighting cocks are descended, which go on sitting for two or three periods, each successive brood being removed as it is hatched, and brought up apart. In this way the same hen will hatch forty, sixty, and even a greater number of chickens, at a single sitting.

Some eggs too, are larger, others smaller; a few extremely small; these, in Italy, are commonly called centenina; and our country folks still believe that such eggs are laid by the cock, and that were they set they would produce basilisks. “The vulgar,” says Fabricius,[167]“think that this small egg is the last that will be laid, and that it comes as the hundredth in number, whence the name; that it has no yelk, though all the other parts are present—the chalazæ, the albumen, the membranes, and the shell. And it seems probable that it is produced when all the other yelks have been fashioned into eggs, and no more remain in the vitellary; on the other hand, however, a modicum of albumen remains, and out of this, it may be inferred, is the small egg in question produced.” Tome, nevertheless, this does not appear likely; because it is certain that the whole ovary being removed, the uterus secundus also diminishes in size in the same proportion, and shrinks into a mere membrane, which contains neither any fluid nor any albumen. Fabricius proceeds: “The ova centenina are met with of two kinds: one of them being without a yelk, and this is the true centenine egg, because it is the last which the hen will lay at that particular season—she will now cease from laying for a time. The other is also a small egg, but it has a yelk, and will not prove the last which the hen will then lay, but is intermediate between those of the usual size that have preceded, and others that will follow. It is of small size because there has been a failure of the vegetative function, as happens to the peach, and other fruit, of which we see many of adequate size, but a few that are very diminutive.” This may be in consequence of the inclemency of the weather, or the want of sun, or from defective nutriment in point either of quantity or quality. I should not readily allow, however, that the eggs last laid are always small.

Monstrous eggs are not wanting; “for the augurs,” says Aristotle,[168]“held it portentous when eggs were laid that were all yellow; or when, on a fowl being laid open, eggs were found under the septum transversum, where the rudimentary eggs of the female usually appear, of the magnitude of perfect eggs.”

To this head may be referred those eggs that produce twins, that have two yelks. Such an egg I lately found in the uterus of a fowl, perfect in all respects, and covered with a shell; the yelks, cicatriculæ, and thicker albuminous portions being all double, and the chalazæ present in two pairs: a single thinner albumen, however, surrounded all these, and this in its turn was included within the usual double common membrane, and single shell. For, indeed, although Aristotle says that fowls always lay some eggs of this kind, I shall hardly be induced to believe that this does not occur against the ordinary course of nature. And although twin chicks are produced from such eggs as I have ascertained in opposition to the opinion of Fabricius, who says that they produce chicks having four legs, or four wings and two heads, which, however, are notcapable of living, but for the most part speedily die, either by reason of want of room or of air in the shell, or because the one proves a hinderance to the other and blights it; nor can it happen that both should be equally prepared for exclusion—that one should not prove an abortion.

Briefly and summarily the differences among eggs are principally of three kinds: some are prolific, some unprolific; some will produce males and some females; some are the produce of the two sexes of the same species, others of allied species and will produce hybrids, such as we see between the common hen and the pheasant, the progeny being referrible either to the first or to the last male that had connexion with the hen. Because, according to Aristotle,[169]“the egg, which receives its constitution by intercourse, passes from its own into another genus, if the hen be trodden when she carries either an adventitious egg or one that was conceived under the influence of another male, and this renewed intercourse take place before the yellow is changed into the white. So that hypenemic or wind eggs are made fruitful, and fruitful eggs receive the form of the male which has connexion last. But if the change has taken place into the white, it cannot happen either that the wind egg is turned into a fertile one, or that the egg which is contained in the uterus in virtue of a previous intercourse, shall be altered into the genus of the male which has the second communication.” For the seminal fluid of the cock, as Scaliger wittily remarks, is like a testament, the last will or disposition in which is that which stands in force.

To these particulars it might perhaps be added, that some eggs are more strong and lusty than others, more full of life, if the expression may be used; though as there is a vital principle in the egg, so must there inhere the corresponding virtue that flows from it. For, as in other kinds of animals, some of the females are so replete with desire, so full of Venus, that they conceive from any and every intercourse, even once submitted to, and from a weakly male, and produce several young from the same embrace; others, on the contrary, are so torpid and sluggish, that unless they are assailed by a vigorous male, under the influence of strong desire, and that not once, but repeatedly, and fora certain time, they continue barren. This is also the case with eggs, some of which, though they may have been conceived in consequence of intercourse, still remain unprolific unless perfected by repeated and continued connections. Whence it happens that some eggs are more speedily changed by incubation than others, exhibiting traces of the fœtus from the third day; others again, either become spoiled, or suffer transformation into the fœtus more slowly, exhibiting no indications of the future chick even up to the seventh day, as shall be made to appear by and by, in speaking of the generation of the chick from the egg.

Thus far have we discoursed of the uterus of the fowl, and its function; of the production of the hen’s egg, and of its differences and peculiarities, from immediate observation; and from the instances quoted, conclusions may be drawn with reference to other oviparous animals.

We have now to pursue the history of the generation and formation of the fœtus from the egg. For indeed, as I have said above, the entire contemplation of the family of birds is comprehended in these two propositions: how is an egg engendered of a male and female; and by what process do males and females proceed from eggs?—the circle by which, under favour of nature, their kinds are continued to eternity.

Of the production of the chick from the egg of the hen.

Of the growth and generation of the hen’s egg enough has already been said; and we have now to lay before the reader our observations on the procreation of the chick from the egg,—a duty which is equally difficult, and profitable, and pleasant. For in general the first processes of nature lie hid, as it were, in the depths of night, and by reason of their subtlety escape the keenest reason no less than the most piercing eye.

Nor in truth is it a much less arduous business to investigate the intimate mysteries and obscure beginnings of generation than to seek to discover the frame of the world at large, and the manner of its creation. The eternity of things is connectedwith the reciprocal interchange of generation and decay; and as the sun, now in the east and then in the west, completes the measure of time by his ceaseless revolutions, so are the fleeting things of mortal existence made eternal through incessant change, and kinds and species are perpetuated though individuals die.

The writers who have treated of this subject have almost all taken different paths; but having their minds preoccupied, they have hitherto gone to work to frame conclusions in consonance with the particular views they had adopted.

Aristotle,[170]among the ancients, and Hieron. Fabricius of Aquapendente, among the moderns, have written with so much accuracy on the generation and formation of the chick from the egg that little seems left for others to do. Ulyssus Aldrovandus,[171]nevertheless, described the formation of the chick in ovo; but he appears rather to have gone by the guidance of Aristotle than to have relied on his own experience. For Volcherus Coiter, living at this time in Bologna, and encouraged, as he tells us, by Aldrovandus, his master, opened incubated eggs every day, and illustrated many points besides those noted by Aldrovandus;[172]these discoveries, however, could scarcely have remained unknown to Aldrovandus. Æmilius Parisanus, a Venetian physician, having discarded the opinions of others, has also given a new account of the formation of the chick from the egg.

But since our observations lead us to conclude that many things of great consequence are very different from what they have hitherto been held to be, I shall myself give an account of what goes on in the egg from day to day, and what parts are there transmuted, directing my attention to the first days especially, when all is most obscure and confused, and difficult of observation, and in reference to which writers have more particularly drawn the sword against one another in defence of their several discordant observations, which, in sooth, they accommodate rather to their preconceived opinions respecting the material and efficient cause of animal generation than to simple truth.

What Aristotle says on the subject of the reproduction ofthe chick in ovo is perfectly correct. Nevertheless, as if he had not himself seen the things he describes, but received them at second hand from another expert observer, he does not give the periods rightly; and then he is grievously mistaken in respect of the place in which the first rudiments of the egg are fashioned, stating this to be the sharp end, for which he is fairly challenged by Fabricius. Neither does he appear to have observed the commencement of the chick in the egg; nor could he have found the things which he says are necessary to all generation in the place which he assigns them. He will, for instance, have it that the white is the constituent matter (since nothing naturally can by possibility be produced from nothing.) And he did not sufficiently understand how the efficient cause (the seminal fluid of the cock,) acted without contact; nor how the egg could, of its own accord, without any inherent generative matter of the male, produce a chick.

Aldrovandus, adopting an error akin to that of Aristotle, says besides, that the yelk rises during the first days of the incubation into the sharp end of the egg, a proposition which no eyes but those of the blind would assent to; he thinks also that the chalazæ are the semen of the cock, and that the chick arises from them, though it is nourished both by the yelk and the white. In this he is obviously in opposition to Aristotle, who held that the chalazæ contributed nothing to the reproductive powers of the egg.

Volcherus Coiter is, on the whole, much more correct; and his statements are far more consonant with what the eye perceives. But his tale of the three globules is a fable. Neither did he rightly perceive the true commencement of the chick in ovo.

Hieronymus Fabricius contends that the chalazæ are not the sperma of the cock; but then he will have it that “from these, fecundated by the seminal fluid of the cock, as from the appropriate matter, the chick is incorporated.” Fabricius observed the point of origin of the chick, the spot or cicatricula, namely, which presents itself upon the tunica propria of the yelk; but he regarded it as a cicatrice or scar left on the place where the peduncle had been attached; he viewed it as a blemish in the egg, not as any important part.

Parisanus completely refutes Fabricius’s ideas of the chalazæ; but he himself obviously raves when he speaks of certaincircles, and principal parts of the fœtus, viz., the liver and heart. He appears to have observed the commencement of the fœtus in ovo; but what it was he obviously did not know, when he says, “that the white point in the middle of the circles is the semen of the cock, from which the chick is produced.”

Thus it comes to pass that every one, in adducing reasons for the formation of the chick in ovo, in accordance with preconceived opinions, has wandered from the truth. Some will have it that the semen or the blood is the matter whence the chick is engendered; others, that the semen is the agent or efficient cause of its formation. Yet to him who dispassionately views the question is it quite certain that there is no prepared matter present, nor any menstruous blood to be coagulated at the time of intercourse by the semen masculinum, as Aristotle will have it; neither does the chick originate in the egg from the seed of the male, nor from that of the female, nor from the two commingled.

The first examination of the egg; or of the effect of the first day’s incubation upon the egg.

That we may be the more clearly informed of the effect which the first day’s incubation produces upon the egg, we must set out by ascertaining what changes take place in an egg spontaneously, changes that distinguish a stale egg from one that is new-laid, when what is due to the incubationper sewill first be clearly apprehended.

The space or cavity in the blunt end is present, as we have said, in every egg; but the staler the egg the larger does this hollow continually grow; and this is more especially the case when eggs are kept in a warm place, or when the weather is hot; the effect being due to the exhalation of a certain portion of the thinner albumen, as has been stated in the history of the egg. This cavity, as it increases, extends rather in the line of the length than of the breadth of the egg, and comes finally to be no longer orbicular.

The shell, already less transparent, becomes dingy.

The albumen grows thicker and more viscid, and acquires a straw or yellow colour.

The tunica propria of the vitellus becomes more lax, and appears wrinkled, for it seems that some even of this fluid is dissipated in the course of time.

The chalazæ are found in either end of every egg, in the same situation, and having the same consistence—whether the egg be recent or stale, fruitful or barren, it does not signify; by their means a firm connexion is established between the yelk and the white, and the two fluids preserve their relative positions. The chalazæ, indeed, are two mutually opposed supports or poles, and hinges of this microcosm; and are constructed as if made up of numerous coats of the albumen, twisted together at either end into a knotted rope, by which they are attached to the vitellus. And hence it happens that the yelk is separated from the white with difficulty, unless the chalazæ are either first divided with a knife or torn with the fingers; this done, the white immediately falls away from the yelk. It is by means of these hinges that the vitellus is both retained in the centre of the egg and preserved of its proper consistence. And they are so connected that the principal part, the cicatricula, to wit, always regards the same region of the egg, or its upper part, and is preserved equidistant from either end. For this spot or cicatricula is observed to be of the same consistence, dimensions, and colour, and in the same situation in the stale as in the new-laid egg. But as soon as the egg, under the influence of the gentle warmth of the incubating hen, or of warmth derived from another source, begins to pullulate, this spot forthwith dilates, and expands like the pupil of the eye, and from thence, as the grand centre of the egg, the latent plastic force breaks forth and germinates. This first commencement of the chick, however, so far as I am aware, has not yet been observed by any one.

On the second day of the incubation, after the egg has been exposed to warmth for twenty-four hours, under the hen, as the cavity in the blunt end has enlarged greatly and descended, so has the internal constitution of the egg also begun to be changed. The yelk, which had hitherto lain in the middle of the albumen, rises towards the blunt end, and its middle, where the cicatricula is situated, is lifted up and applied to the membrane that bounds the empty space, so that the yelk now appears to be connected with the cavity by means of the cicatricula; and in the same measure as the yelk rises does the thicker portion of the albumen sink into the sharp or lower end of the egg. Whence it appears, as Fabricius rightly remarks, that Aristotle[173]was either in error, or that there is a mistake in the codex, when it is said, “In this time” (viz., between three and four days, and as many nights,) “the yelk is brought to the summit, where the commencement of the egg is, and the egg is exposed in this part,” i. e. under the enlarged empty space. Now Aristotle[174]calls the principium ovi, or commencement of the egg, its smaller end, which is last extruded. But it is certain that the yelk ascends towards the blunt end of the egg, and that the cavity there enlarges. And Aldrovandus is undoubtedly in error when he speaks as if he had experience of the fact, and says that the yelk rises to the sharp end. I will confess, nevertheless, that on the second or third day I have occasionally observed the cicatricula expanded and the beginning of the chick already laid, the yelk not having yet risen; this, however, happens rarely, and I am inclined to ascribe it to some weakness in the egg.

On the second day of the incubation, or first day of inspection, the cicatricula in question is found to have enlarged to the dimensions of a pea or lentil, and is divided into circles, such as might be drawn with a pair of compasses, having an extremely minute point for their centre. It is very probable that Aldrovandus observed this spot, for he says: “In the midst of the yellow a certain whitish something makes its appearance, which was not noticed by Aristotle;” and also by Coiter, when he expresses himself thus: “On the second day there is in the middle of the yelk a part whiter than the rest;” Parisanus, too, may have seen it; he observes: “In the course of the second day I observe a white body of the size and form of a middling lentil; and this is the semen of the cock covered over with a white and most delicate tunic, which underlies the two common membranes of the entire egg, but overlies the tunica propria of the yelk.” I believe, however, that no one has yet said that this cicatricula occurs in every egg, or has acknowledged it to be the origin of the chick.

Meantime the chalazæ or treadles will be seen to decline from either end of the egg towards its sides, this being occasioned by that alteration which we have noticed in the relative situations of the two fluids. The treadle from the blunt end descends somewhat; the one from the sharp end rises in the same proportion: as in a globe whose axis is set obliquely, one pole is as much depressed below the horizon as the other is raised above it.

The vitellus, too, particularly in the situation of the cicatricula, begins to grow a little more diffluent than it was, and raises its tunica propria, (which we have found in stale eggs before incubation to be somewhat lax and wrinkled,) into a tumour; and it now appears to have recovered the same colour, consistency, and sweetness of taste that it had in the egg just laid.

Such is the process in the course of the first day that leads to the production of a new being, such the earliest trace of the future chick. Aldrovandus adds: “the albumen suffers no change,” which is correct; but when he asserts that “the semen of the cock can be seen in it,” he as manifestly errs. Resting on a most insufficient reason, he thought that the chalazæ were the semen of the cock, “because,” forsooth, “the eggs that are without chalazæ are unfruitful.” This I can very well believe; for these were then no proper eggs; for all eggs, wind eggs as well as those that are prolific, have chalazæ. But he, misled perhaps by the country women, who in Italian call the chalazægalladura, fell into the vulgar error. Nor is Hieronymus Fabricius guilty of a less grave mistake when he exhibits the formation of the chick in a series of engravings, and contends that it is produced from the chalazæ; overlooking the fact that the chalazæ are present the whole of the time, and unchanged, though they have shifted their places; and that the commencement of the chick is to be sought for at a distance from them.

Second inspection of the egg.

The second day gone by, the circles of the cicatricula that have been mentioned, have become larger and more conspicuous, and may now be of the size of the nail of the ring-finger, sometimes even of that of the middle finger. By these rings the whole cicatricula is indistinctly divided into two, occasionally into three regions, which are frequently of different colours, and bear a strong resemblance to the cornea of the eye, both as respects dimensions, a certain degree of prominence, and the presence of a transparent and limpid fluid included within it. The centre of the cicatricula here stands for the pupil; but it is occupied with a certain white speck, and appears like the pupil of some small bird’s eye obscured by a suffusion or cataract, as it is called. On this account we have called the entire object the oculum ovi, the eye of the egg.

Within the circles of the cicatricula, I say, there is contained a quantity of perfectly bright and transparent fluid, even purer than any crystalline humour; which, if it be viewed transversely and against the light, the whole spot will rather appear to be situated in the albumen than sunk into the membrane of the yelk, as before: it presents itself as a portion of the albumen dissolved and clarified, and included within a most delicate tunica propria. Hence I entitle this fluid the oculum seu colliquamentum album; it is as if a portion of the albumen, liquefied by the heat, shone apart, (which it does, unless disturbed by being shaken,) and formed a more spirituous and better digested fluid, separated from the rest of the albumen by a tunica propria, and situated between the two masses of liquid, the yelk and the albumen. It differs from the rest of the albumen by its clearness and transparency, as the water of a pellucid spring differs from that of a stagnant pool. The tunic which surrounds this fluid is so fragile and delicate that, unless the egg be handled with great care, it is apt to give way, when the pure spring is rendered turbid by a mixture of fluids.

I was long in doubt what I should conclude as to thisclear diffluent fluid, whether I should regard it as the innate heat, or radical moisture; as a matter prepared for the future fœtus, or a perfectly-concocted nourishment, such as dew is held to be among the secondary humours. For it is certain, as shall be afterwards shown, that the earliest rudiments of the fœtus are cast in its middle, that from this the chick derives its first nutriment, and even when of larger size continues to live amidst it.

This solution therefore increases rapidly in quantity, particularly in its internal region, which, as it expands, forces out and obliterates the external regions. This change is effected in the course of a single day, as is shown in the second figure of Fabricius. It is very much as it is with the eyes of those animals which have a very ample pupil, and see better by night than by day, such as owls, cats, and others, whose pupils expand very much in the dusk and dark, and, on the contrary, contract excessively in a brilliant light: one of these animals being taken quickly from a light into a shady place, the pupil is seen to enlarge in such wise that the coloured ring, called the iris, is very much diminished in size, and indeed almost entirely disappears.

Parisanus, falling upon these regions, is grossly mistaken when he speaks of “a honey-coloured, a white, a gray, and another white circle;” and says that “the fœtus is formed from the white middle point” (which, indeed, appears in these regions), and that “this is the semen of the cock.” That he may exalt himself on a more notable subtlety he continues: “Before any redness is apparent in the body of the fœtus, two minute vesicles present themselves in it; in the beginning, however, neither of them is tinged with red;” one of these he would have us receive as the heart, the other as the liver. But in truth there is neither any vesicle present sooner than the redness of the blood is disclosed; nor does the embryo ever suddenly become red in the course of the first days of its existence; nor yet does any of these vesicles present us with a trace of the liver. Both of them belong, in fact, to the heart, prefiguring its ventricles and auricles, and palpitating, as we shall afterwards show, they respond reciprocally by their systoles and diastoles.

Aristotle[175]appears to have known this dissolved fluid, when he says: “A membrane, too, marked with sanguineous fibres, surrounds the white fluid at this time (the third day), arising from those orifices of the veins.” Now the philosopher can neither be supposed by the words “white fluid,” to refer to the albumen at large, because at this period the membrane of the white is not yet covered with veins; it is only the membrane of the dissolved fluid which appears with a few branches of veins distributed over it here and there. And because he says: “this membrane, too,” as if he understood another than those which he had spoken of as investing the albumen and the yelk before incubation, and designated this one as first arising after the third day, and from the orifices of the veins.

Coiter seems also to have known of this dissolved fluid; he says: “A certain portion of the albumen acquiring a white colour, another becoming thicker.” The fluid in question is surrounded with its proper membrane, and is distinct and separate from the rest of the albumen before there is any appearance of blood. We shall have occasion, by and by, to speak of the singular importance of this fluid to the fœtuses of every animal. Whilst they float in it they are safe from succussion and contusion, and other external injury of every kind; and they moreover are nourished by it. I once showed to their serene majesties the king and queen, an embryo, the size of a French-bean, which had been taken from the uterus of a doe; all its membranes were entire, and from its genital organs we could readily tell that it was a male. It was, in truth, a most agreeable natural spectacle; the embryo perfect and elegant, floating in this pure, transparent, and crystalline fluid, invested with its pellucid tunica propria, as if in a glass vessel of the greatest purity, of the size of a pigeon’s egg.

The third inspection of the egg.

Having seen the second process or preparation of the egg, towards the production of the embryo which presents itself inthe course of the third day, we proceed to the Third Stage, which falls to be considered after the lapse of three days and as many nights. Aristotle[176]says: “Traces of generation commence in the egg of the hen after three days and three nights [of incubation];” for example, on Monday morning, if in the morning of the preceding Friday the egg has been put under the hen. This stage forms the subject of the third figure in Fabricius.

If the inspection of the egg be made on the fourth day, the metamorphosis is still greater, and the change likewise more wonderful and manifest with every hour in the course of the day. It is in this interval that the transition is made in the egg from the life of the plant to the life of the animal. For now the margin of the diffluent fluid looks red, and is purpurescent with a sanguineous line, and nearly in its centre there appears a leaping point, of the colour of blood, so small that at one moment, when it contracts, it almost entirely escapes the eye, and again, when it dilates, it shows like the smallest spark of fire. Such at the outset is animal life, which the plastic force of nature puts in motion from the most insignificant beginnings!

The above particulars you may perceive towards the close of the third day, with very great attention, and under favour of a bright light (as of the sun), or with the assistance of a magnifying glass. Without these aids you would strain your eyes in vain, so slender is the purple line, so slight is the motion of the palpitating point. But at the beginning of the fourth day you may readily, and at its close most readily, perceive the “palpitating bloody point, which already moves,” says Aristotle, “like an animal, in the transparent liquid (which I call colliquamentum); and from this point two vascular branches proceed, full of blood, in a winding course” into the purpurescent circle and the investing membrane of the resolved liquid; distributing in their progress numerous fibrous offshoots, which all proceed from one original, like the branches and twigs of a tree from the same stem. Within the entering angle of this root, and in the middle of the resolved liquid, is placed the red palpitating point, which keeps order and rhythm in its pulsations, composed of [alternate] systoles and diastoles. In the diastole, when it hasimbibed a larger quantity of blood, it becomes enlarged, and starts into view; in the systole, however, subsiding instantaneously as if convulsed by the stroke, and expelling the blood, it vanishes from view.

Fabricius depicts this palpitating point in his third figure; and mistakes it—a thing which is extraordinary—for the body of the embryo; as if he had never seen it leaping or pulsating, or had not understood, or had entirely forgotten the passage in Aristotle. A still greater subject of amazement, however, is his total want of solicitude about his chalazæ all this while, although he had declared the rudiments of the embryo to be derived from them.

Ulyssus Aldrovandus,[177]writing from Bologna nearly at the same time, says: “There appears in the albumen, as it were, a minute palpitating point, which The Philosopher declares to be the heart. And I have unquestionably seen a venous trunk arising from this, from which two other branches proceeded; these are the blood-vessels, which he says extend to either investing membrane of the yelk and white. And I am myself entirely of his opinion, and believe these to be veins, and pulsatile, and to contain a purer kind of blood, adapted to the production of the principal parts of the body, the liver, to wit, the lungs, and others of the same description.” Both of the vessels in question, however, are not veins, neither do they both pulsate; but one of them is an artery, another a vein, as we shall see by and by, when we shall farther show that these passages constitute the umbilical vessels of the embryo.

Volcher Coiter has these words: “The sanguineous point or globule, which was formerly found in the yelk, is now observed more in the albumen, and pulsates distinctly.” He says, erroneously, “formerly found in the yelk;” for the point discovered in the vitellus is white, and does not pulsate; nor does the sanguineous point or globe appear to pulsate at the end of the second day of incubation. But the point which we have indicated in the middle of the circle, and as constituting its centre in connexion with the vitellus, disappears before that point which is characterized by Aristotle as palpitating, can be discerned; or, as I conceive, having turned red, begins to pulsate. Forboth points are situated in the centre of the resolved fluid, and near the root of the veins which thence arise; but they are never seen simultaneously: in the place of the white point there appears a red and palpitating point.

That portion of Coiter’s sentence, however, where he says: “the punctus saliens is now seen in the albumen rather than in the yelk,” is perfectly accurate. And, indeed, moved by these words, I have inquired whether the white point in question is turned into the blood-red point, inasmuch as both are nearly of the same size, and both make their appearance in the same situation. And I have, indeed, occasionally found an extremely delicate bright purple circle ending near the ruddy horizon surrounding the resolved liquid, in the centre of which there was the white point, but not the red and pulsating point apparent; for I have never observed these two points at one and the same time. It were certainly of great moment to determine: Whether or not the blood was extant before the pulse? and whether the pulsating point arose from the veins, or the veins from the pulsating point?

So far as my observations enable me to conclude, the blood has seemed to go before the pulse. This conclusion is supported by the following instance: on Wednesday evening I set three hen’s eggs, and on Saturday evening, somewhat before the same hour, I found these eggs cold, as if forsaken by the hen: having opened one of them, notwithstanding, I found the rudiments of an embryo, viz., a red and sanguinolent line in the circumference; and in the centre, instead of a pulsating point, a white and bloodless point. By this indication I saw that the hen had left her nest no long time before; wherefore, catching her, and shutting her up in a box, I kept her upon the two remaining eggs, and several others, through the ensuing night. Next morning, very early, both of the eggs with which the experiment was begun, had revived, and in the centre there was the pulsating point, much smaller than the white point, from which, like a spark darting from a cloud, it made its appearance in the diastole; it seemed to me, therefore, that the red point emanated from the white point; that the punctum saliens was in some way engendered in that white point; that the punctum saliens, the blood being already extant, was either originally there produced, or there began to move. I have, indeed, repeatedly seen thepunctum saliens when all but dead, and no longer giving any signs of motion, recover its pulsatile movements under the influence of renewed warmth. In the order of generation, then, I conceive that the punctum and the blood first exist, and that pulsation only occurs subsequently.

This at all events is certain, that nothing whatever of the future fœtus is apparent on this day, save and except certain sanguineous lines, the punctum saliens, and those veins that all present themselves as emanating from a single trunk, (as this itself proceeds from the punctum saliens,) and are distributed in numerous branches over the whole of the colliquament or dissolved fluid. These vessels afterwards constitute the umbilical vessels, by means of which, distributed far and wide, the fœtus as it grows obtains its nourishment from the albumen and vitellus. You have a striking example of similar vessels and their branchings in the leaves of trees, the whole of the veins of which arise from the peduncle or foot-stalk, and from a single trunk are distributed to the rest of the leaf.

The entire including membrane of the colliquament traversed by blood-vessels, corresponds in form and dimensions with the two wings of a moth; and this, in fact, is the membrane which Aristotle[178]describes as “possessing sanguineous fibres, and at the same time containing a limpid fluid, proceeding from those mouths of the veins.”

Towards the end of the fourth day, and the beginning of the fifth, the blood-red point, increased into a small and most delicate vesicle, is perceived to contain blood in its interior, which it propels by its contractions, and receives anew during its diastoles.

Up to this point I have not been able to perceive any difference in the vessels: the arteries are not distinguished from the veins, either by their coats or their pulsations. I am therefore of opinion, that all the vessels may be spoken of indifferently under the name of veins, or, adopting Aristotle’s[179]term, of venous canals.

“The punctum saliens,” says Aristotle, “is already possessed of spontaneous motion, like an animal.” Because an animal is distinguished from that which is none, by the possession ofsense and motion. When this point begins to move for the first time, consequently, we say well that it has assumed an animal nature; the egg, originally imbued with a vegetative soul, now becomes endowed in addition with a motive and sensitive force; from the vegetable it passes into the animal; and at the same time the living principle, which fashions the chick from the egg, and afterwards gives it the measure of intelligence it manifests, enters into the embryo. For, from the actions or manifestations, The Philosopher[180]concludes demonstratively, that the faculties or powers of acting are inherent, and through these the cause and principle of life, the soul, to wit, and the actions, inasmuch as manifestation is action.

I am myself farther satisfied from numerous experiments, that not only is motion inherent in the punctum saliens, which indeed no one denies, but sensation also. For on any the slightest touch, you may see the point variously commoved, and, as it were, irritated; just as sensitive bodies generally give indications of their proper sensations by their motions; and, the injury being repeated, the punctum becomes excited and disturbed in the rhythm and order of its pulsations. Thus do we conclude that in the sensitive-plant, and in zoophytes, there is inherent sensibility, because when touched they contract, as if they felt uncomfortable.

I have seen, I repeat, very frequently, and those who have been with me have seen this punctum, when touched with a needle, a probe, or a finger, and even when exposed to a higher temperature, or a severer cold, or subjected to any other molesting circumstance or thing, give various indications of sensibility, in the variety, force, and frequency of its pulsations. It is not to be questioned, therefore, that this punctum lives, moves, and feels like an animal.

An egg, moreover, too long exposed to the colder air, the punctum saliens beats more slowly and languidly; but the finger, or some other warmth being applied, it forthwith recovers its powers. And farther, after the punctum has gradually languished, and, replete with blood, has even ceased from all kind of motion, or other indication of life, still, on applying my warm finger, in no longer a time than is measured by twenty beatsof my pulse, lo! the little heart is revivified, erects itself anew, and, returning from Hades as it were, is restored to its former pulsations. The same thing happens through heat applied in any other way—that of the fire, or of hot water—as has been proved by myself and others again and again; so that it seemed as if it lay in our power to deliver the poor heart over to death, or to recall it to life at our will and pleasure.

What has now been stated, for the most part comes to pass on the fourth day from the commencement of the incubation—I say, for the most part,—because it is not invariably so, inasmuch as there is great diversity in the maturity of eggs, and some are more speedily perfected than others. As in trees laden with fruit, some, more forward and precocious, falls from the branches, and some, more crude and immature, still hangs firmly on the bough; so are some eggs less forward on the fifth day than others in the course of the third. This, that I might give it forth as a thing attested and certain, I have repeatedly ascertained in numerous eggs, incubated for the same length of time, and opened on the same day. Nor can I ascribe it to any difference of sex, or inclemency of weather, or neglect of incubation, or to any other cause but an inherent weakness of the egg itself, or some deficiency of the native heat.

Hypenemic or unfruitful eggs, begin to change at this time, as the critical day when they must show their disposition. As fertile eggs are changed by the inherent plastic force into colliquament (which afterwards passes into blood), so do wind-eggs now begin to change and to putrefy. I have, nevertheless, occasionally observed the spot or cicatricula to expand considerably even in hypenemic eggs, but never to rise into a cumulus, nor to become circumscribed by regularly disposed concentric circles. Sometimes I have even observed the vitellus to get somewhat clearer, and to become liquefied; but this was unequally; there were flocks, as if formed by sudden coagulation, swimming dispersed through it like clouds. And although such eggs could not yet be called putrid, nor were they offensive, still were they disposed to putrefaction; and, if continued under the hen, they soon arrived at this state, the rottenness commencing at the very spot where in fruitful eggs the reproductive germ appears.

The more perfect or forward eggs then, about the end of the fourth day, contain a double or bipartite pulsating vesicle, each portion reciprocating the other’s motion, in such order and manner that whilst one is contracting, the other is distended with blood and ruddy in colour; but this last contracting anon forces out its charge of blood, and, an instant being interposed, the former rises again and repeats its pulse. And it is easy to perceive that the action of these vesicles is contraction, by which the blood is moved and propelled into the vessels.

“On the fourth day,” says Aldrovandus,[181]“two puncta are perceived, both of which are in motion; these, undoubtedly, are the heart and the liver, viscera which Aristotle allowed to eggs incubated for three days.”

The Philosopher,[182]however, nowhere says anything of the kind; neither, for the most part, are the viscera mentioned conspicuous before the tenth day. And I am indeed surprised that Aldrovandus should have taken one of these pulsating points for the liver, as if this viscus were ever moved in any such manner! It seems much better to believe that with the growth of the embryo one of the pulsating points is changed into the auricles, the other into the ventricles of the heart. For in the adult, the ventricles are filled in the same manner by the auricles, and by their contraction they are straightway emptied again, as we have shown in our treatise on the Motion of the Heart and Blood.

In more forward eggs, towards the end of the fourth day, I have occasionally found I know not what cause of obscurity intervening and preventing me from seeing these pulsating vesicles with the same distinctness as before; it was as if there had been a haze interposed between them and the eye. In a clearer light, nevertheless, and with the use of magnifying glasses, the observations of one day being further collated with those of the next succeeding day, it was discovered that the indistinctness was caused by the rudiments of the body,—a nebula concocted from part of the colliquament, or an effluvium concreting around the commencements of the veins.

Aldrovandus appears to have observed this: “On the fifth day,” says he, “the punctum, which we have stated to be theheart, is no longer seen to move externally, but to be covered over and concealed; still its two meatus venosi are perceived more distinctly than before, one of them being, further, larger than the other.” But our learned author was mistaken here; for this familiar divinity, the heart, enters into his mansion and shuts himself up in its inmost recesses a long time afterwards, and when the house is almost completely built. Aldrovandus also errs when he says, “by the vis insita of the veins, the remaining portion of the albumen acquires a straw colour,” for this colour is observed in the thicker albumen of every spoilt egg, and it goes on increasing in depth from day to day as the egg grows staler, and this without any influence of the veins, the thinner portion only being dissipated.

But the embryo enlarging, as we say below, and the ramifications of the meatus venosi extending far and wide to the albumen and vitellus, portions of both of these fluids become liquefied, not indeed in the way Aldrovandus will have it, from some vis insita in the vessels, but from the heat of the blood which they contain. For into whatsoever part of either fluid the vessels in question extend, straightway liquefaction appears in their vicinity; and it is on this account that the yelk about this epoch appears double: its superior portion, which is in juxtaposition with the blunt end of the egg, has already become more diffluent than the rest, and appears like melted yellow wax in contrast with the other colder firmer portion; like bodies in general in a state of fusion, it also occupies a larger space. Now this superior portion, liquefied by the genial heat, is separated from the other liquids of the egg, but particularly the albumen, by a tunica propria of extreme tenuity. It therefore happens that if this most delicate, fragile, and invisible membrane be torn, immediately there ensues an admixture and confusion of the albumen and vitellus, by which everything is obscured. And such an accident is a frequent cause of failure in the reproductive power, (for the different fluids in question are possessed of opposite natures,) according to Aristotle,[183]in the place already so frequently referred to: “Eggs are spoiled and become addled in warm weather especially, and with good reason; for as wine grows sour in hot weather, the leesbecoming diffused through it, (which is the cause of its spoiling,) so do eggs perish when the yelk spoils, for the lees and the yelk are the more earthy portion in each. Wherefore wine is destroyed by an admixture with its dregs, and an egg by the diffusion of its yelk.”[184]And here, too, we may not improperly refer to that passage[185]where he says: “When it thunders, the eggs that are under incubation are spoiled;” for it must be a likely matter that a membrane so delicate should give way amidst a conflict of the elements. And perhaps it is because thunder is frequent about the dog days that eggs which are rotten have been calledcynosura; so that Columella rightly informs us that “the summer solstice, in the opinion of many, is not a good season for breeding chickens.”

This at all events is certain, that eggs are very readily shaken and injured when the fowls are disturbed during incubation, at which time the fluids are liquefied and expanded, and their containing membranes are distended and extremely tender.

The fourth inspection of the egg.

“In the course of the fifth day of incubation,” says Aristotle,[186]“the body of the chick is first distinguished, of very small dimensions indeed, and white; but the head conspicuous and the eyes extremely prominent, a state in which they afterwards continue long; for they only grow smaller and shrink at a later period. In the lower portion of the body there is no rudimentary member corresponding with what is seen in the upper part. But of the channels which proceed from the heart, one now tends to the investing membrane, the other to the yelk; together they supply the office of an umbilical cord. The chick, therefore, derives its origin from the albumen, but it is afterwards nourished by the yelk, through the umbilicus.”

These words of Aristotle appear to subdivide the entire generation of the chick into three stages or periods, viz.: from thefirst day of the incubation to the fifth; from thence on to the tenth or fourteenth: and from this or that to the twentieth. It seems as if he had only given an account in his history of the circumstances he observed at these three epochs; and it is then indeed that the greatest changes take place in the egg; as if these three critical seasons, or these three degrees in the process which leads from the perfect egg to the evolution of the chicken, were especially to be distinguished. On the fourth day the first particle of the embryo appears, viz.: the punctum saliens and the blood; and then the new being is incorporated. On the seventh day the chick is distinguished by its extremities, and begins to move. On the tenth it is feathered. About the twentieth it breathes, chirps, and endeavours to escape. The life of the egg, up to the fourth day, seems identical with that of plants, and can only be accounted as of a vegetative nature. From this onwards to the tenth day, however, like an animal, it is possessed by a sensitive and motive principle, with which it continues to increase, and is afterwards gradually perfected, becoming covered with feathers, furnished with a beak, nails, and all else that is necessary to its escape from the shell; emancipated from which, it enters at length on its own independent existence.

Of the incidents that happen after the fourth day, Aristotle enumerates three particularly, viz.: the construction of the body; the distribution of the veins, which have already the office and nature of the umbilicus; and the matter whence the embryo first arises, and is constituted and nourished.

In reference to the structure of the body, he speaks of its size and colour, of the parts which are most conspicuous in it, (the head and eyes,) and of the distinction of its extremities.

The body is indeed extremely minute, and of the form of the common maggot that gives birth to the fly; it is of a white colour, too, like the maggot of the flesh-fly which we see cherished and nourished in putrid meat. He happily adds, “it is most remarkable for its head and eyes.” For what first appears is homogeneous and indistinct, a kind of concretion or coagulation of the colliquament, like the jelly prepared from hartshorn; it is a mere transparent cloud, and scarcely recognizable, save as it appears, divided, seemingly, into two parts, one of which is globular and much larger than the other; this is therudiment of the head, which first becomes visible on the fifth day, very soon after which the eyes are distinguishable, being from the first of large size and prominent, and marked off from the rest of the head and body by a certain circumfusion of black matter. Either of the eyes is larger than the whole of the rest of the head, in the same way as the head surpasses the remainder of the body in dimensions. The whiteness of the body, and prominence of the eyes, (which, as well as the brain, are filled internally with perfectly pellucid water, but externally are of a dark colour), continue for some time—up to the tenth day, and even longer; for, as we have seen, Aristotle says that “the eyes decrease at a late period, and contract to the proper proportion.” But for my own part, I do not think that the eyes of birds ever contract in the same ratio which we observe between the head and eyes of a viviparous animal. For if you strip off the integuments from the head and eyes of a fowl or another bird, you will perceive one of the eyes to equal the entire brain in dimensions; in the woodcock and others, one of the eyes indeed is as large as the whole head, if you make abstraction of the bill. But this is common to all birds that the orbit or cavity which surrounds the eye is larger than the brain, a fact that is apparent in the cranium of every bird. Their eyes, however, are made to look smaller, because every part, except the pupil, is covered with skin and feathers; neither are they possessed of such a globular form as would cause them to project; they are of a flatter configuration, as in fishes.

“In the lower part of the body,” says the philosopher, “we perceive the rudiments of no member corresponding with the superior members.” And the thing is so in fact; for as the body at first appears to consist of little but head and eyes, so inferiorly there is neither any extremity,—wings, legs, sternum, rump,—nor any viscus apparent; the body indeed is still without any kind of proper form; in so far as I am able to perceive, it consists of a small mass adjacent to the vein, like the bent keel of a boat, like a maggot or an ant, without a vestige of ribs, wings, or feet, to which a globular and much more conspicuous mass is appended, the rudiment of the head, to wit, divided, as it seems, into three vesicles when regarded from either side, but in fact consisting of four cells, two of which, of great size and a black colour, are the rudiments of the eyes; of the remaining twoone being the brain, the other the cerebellum. All of these are full of perfectly limpid water. In the middle of the blackness of the eye, the pupil is perceived shining like a transparent central spark or crystal. I imagine that three of these vesicles being particularly conspicuous, has been the cause of indifferent observers falling into error. For as they had learned from the schoolmen that there was a triple dominion in the animal body, and they believed that these principal parts, the brain, the heart, and the liver, performed the highest functions in the economy, they easily persuaded themselves that these three vesicles were the rudiments and commencements of these parts. Coiter, however, as becomes an experienced anatomist, affirms more truly that whilst he had observed the beak and eyes from the seventh day of incubation, he could yet discover nothing of the viscera.

But let us hear the philosopher further: “Of the conduits which lead from the heart, one tends to the investing membrane, another to the yelk, in order to perform the office of umbilicus.” The embryo having now taken shape, these veins do indeed perform the function of the umbilical cord, the ramifications of one of them proceeding to be distributed to the outer tunic which invests the albumen, those of the other running for distribution to the vitellary membrane and its included fluid. Whence it clearly appears that both of these fluids are alike intended for the nourishment of the embryo. And although Aristotle says that “the chick has its commencement in the albumen, and is nourished through the umbilicus by the yelk,” he still does not say that the chick is formed from the albumen. The embryo, in fact, is formed from that clear liquid which we have spoken of under the name of the colliquament, and the whole of what we have called the eye of the egg is contained or included within the albumen. Neither does our author say that the whole and sole nutriment of the embryo reaches it through the umbilicus. My own observations lead me to interpret his words in this way: although the embryo of the fowl begins to be formed in the albumen, nevertheless it is not nourished solely by that, but also by the yelk, to which one of the two umbilical conduits pertains, and from whence it derives nourishment in a more especial manner; for the albumen, according to Aristotle’s opinion, is the more concoct and purerliquid, the yelk the more earthy and solid one, and, therefore, more apt to sustain the chick when it has once attained to greater consistency and strength; and further because, as shall be explained below, the yelk supplies the place of milk, and is the last part that is consumed, a residuary portion, even after the chick is born, and when it is following its mother, being still contained in its abdomen.

What has now been stated takes place from the fourth to the tenth day. I have yet to speak of the order and manner in which each of the particulars indicated transpires.

In the inspection made on the fifth day, we observed around the short vein which proceeds from the angle where the two alternately pulsating points are situated, something whiter and thicker, like a cloud, although still transparent, through which the vein just mentioned is seen obscurely, and as it were through a haze. The same thing I have occasionally seen in the more forward eggs in the course of the fourth day. Now this is the rudiment of the body, and from hour to hour it goes on increasing in compactness and solidity; both surrounding the afore-named vein, and being appended to it in the guise of a kind of globule. This globular rudiment far exceeds the coronal portion, as I shall call it, of the vermicular body; it is triangular in figure, being obscurely divided into three parts, like so many swelling buds of a tree. One of these is orbicular and larger than either of the other two; and it is darkened by most delicate filaments proceeding from the circumference to the centre; this appears to be the commencement of the ciliary body, and therefore proclaims that this is the part which is to undergo transformation into the eye. In its middle the minute pupil, shining like a bright point, as already stated, is conspicuous; and it was from this indication especially that I ventured to conjecture that the whole of the globular mass was the rudiment of the future head, and this black circle one of the eyes, having the other over against it; for the two are so situated that they can by no means be seen at once and together, one always lying over and concealing the other.

The first rudiment of the future body, which we have stated to sprout around the vein, acquires an oblong and somewhat bent figure, like the keel of a boat. It is of a mucaginous consistence, like the white mould that grows upon damp thingsexcluded from the air. The vein to which this mucor attaches, as I have said, is the vena cava, descending along the spinal column, as my subsequent observations have satisfied me. And if you carefully note the order of contraction in the pulsating vesicles, you may see the one which contracts last impelling its blood into the root of this vein and distending it.

Thus there are two manifest contractions and two similar dilatations in the two vesicles which are seen moving and pulsating alternately; and the contraction of the one which precedes causes the distension or dilatation of the other; for the blood escapes from the cavity of the former vesicle, when it contracts, into that of the latter, which it fills, distends, and causes to pulsate; but this second vesicle, contracting in its turn, throws the blood, which it had received from the former vesicle, into the root of the vein aforesaid, and at the same time distends it.—I go on speaking of this vessel as a vein, though from its pulsation I hold it to be the aorta, because the veins are not yet distinguished from the arteries by any difference in the thickness of their respective coats.

After having contemplated these points with great care, and in many eggs, I remained for some time in suspense as to the opinion I should adopt; whether I should conclude that the concrete appended globular mass proceeded from the colliquament in which it swam, becoming a compacted and coagulated matter in the way that clouds are formed from invisible vapour condensed in the upper regions of the air; or believe that it took its rise from a certain effluvium exhaled from the sanguineous conduit mentioned, originating by diapedesis or transudation, and by deriving nourishment from thence, was enabled to increase? For the beginnings of even the greatest things are often extremely small, and, by reason of this minuteness, sufficiently obscure.

This much I think I have sufficiently determined at all events, viz. that the puncta salientia and meatus venosi, and the vena cava itself, are the parts that first exist; and that the globular mass mentioned afterwards grows to them. I am further certain that the blood is thrown from the punctum saliens into the vein, and that from this does the corpuscle in question grow, and by this is it nourished. The fungus or mucor first originates from an effluvium of the vein on whichit appears, and it is thence nourished and made to increase; in the same way as mouldiness grows in moist places, in the dark corners of houses which long escape cleansing; or, like camphor upon cedar wood tables, and moss upon rocks and the bark of trees; lastly, as a kind of delicate down grows upon certain grubs.

Upon the same occasion I also debated with myself whether or not I should conclude, that with the coagulation of the colliquament accomplished, the rudiments of the head and body existed simultaneously with the punctum saliens and the blood, but in a pellucid state, and so delicate that they almost escaped the eye, until becoming inspissated into a fungus or mucor, they acquired a more opaque white colour, and then came into view; the blood meantime from its greater spissitude and purple colour being readily perceptible in the diaphanous colliquament. But now when I look at the thing more narrowly, I am of opinion that the blood exists before any particle of the body appears; that it is the first-born of all the parts of the embryo; that from it both the matter out of which the fœtus is embodied, and the nutriment by which it grows are derived; that it is in fine, if such thing there be, the primary generative particle. But wherefore I am led to adopt this idea shall afterwards be shown more at length when I come to treat of the primary genital part, of the innate heat, and the radical moisture; and, at the same time, conclude as to what we are to think of the vital principle (anima), from a great number of observations compared with one another.

About this period almost every hour makes a difference; every thing grows larger, more definite and distinct; the rate of change in the egg is rapid, and one change succeeds immediately upon the back of another. The cavity in the egg is now much larger, and the whole of its upper portion is empty; it is as if a fifth part of the egg had been removed.

The ramifications of the veins extend more widely, and are more numerous, not only in the colliquament as before, but they spread on one hand into the albumen, and on the other into the yelk, so that both of these fluids are everywhere covered over with blood-vessels. The upper portion of the yelk has now become much dissolved, so that it very obviously differs from the lower portion; there are now, as it were, two yelks, or two kinds of yelk; whilst the superior, like melted wax, isexpanded and looks pellucid, the inferior has become more dense, and with the thicker portion of the albumen has subsided to the sharp end of the egg. The tunica propria of the upper portion of the yelk is so thin that it gives way on the slightest succussion, when there ensues admixture of the fluids, and, as we have said, interruption to the further progress of the process of generation.


Back to IndexNext