Plate XXVIXXVI.—Skeleton of the Mammoth in the St. Petersburg Museum.
XXVI.—Skeleton of the Mammoth in the St. Petersburg Museum.
Beside the skeleton of this famous Mammoth there is placed that of an Indian Elephant, and another Elephant with skin and hair, in order that the visitor may have a proper appreciation of the vast proportions of the Mammoth, as compared with them.Plate XXVI., on the opposite page, represents the saloon of the Museum of St. Petersburg, which contains these three interesting remains.
Fig. 182Fig. 182.—Mammoth restored.
Fig. 182.—Mammoth restored.
In 1860 a great number of bones of the Mammoth, with remains of Hyæna, Horse, Reindeer, Rhinoceros-megarhinus, and Bison, were found in Belgium in digging a canal at Lierre, in the province of Antwerp. An entire skeleton of a young Mammoth, eleven feet six inches high (to the shoulder), has been reconstructed from these remains by M. Dupont, and is now placed in the Royal Museum of Natural History in Brussels.[98]
We cannot doubt, after such testimony, of the existence in the frozen north, of the almost entire remains of the Mammoth. The animals seem to have perished suddenly; enveloped in ice at the moment of their death, their bodies have been preserved from decomposition by the continued action of the cold. If we suppose that one of those animals had sunk into a marsh which froze soon afterwards, or had fallen accidentally into the crevasse of some glacier, it would be easy for us to understand how its body, buried immediately under eternal ice, had remained there for thousands of years without undergoing decomposition.
In Cuvier’s great work onfossil bones, he gives a long and minute enumeration of the various regions of Germany, France, Italy, and other countries, which have furnished in our days bones or tusks of the Mammoth. We venture to quote two of these descriptions:—“In October, 1816,” he says, “there was discovered at Seilberg, near Canstadt, in Würtemberg, near which some remarkable discoveries were made in 1700, a very remarkable deposit, which the king, Frederick I., caused to be excavated, and its contents collected with the greatest care. We are even assured that the visit which the prince, in his ardour for all that was great, paid to this spot, aggravated the malady of which he died a few days after. An officer, Herr Natter, commenced some excavations, and in four-and-twenty hours discovered twenty-one teeth or fragments of teeth of elephant, mixed with a great number of bones. The king having ordered him to continue the excavations, on the second day they came upon a group of thirteen tusks heaped close upon each other, and along with them some molar teeth, lying as if they had been packed artificially. It was on this discovery that the king caused himself to be transported thither, and ordered all the surrounding soil to be dug up, and every object to be carefully preserved in its original position. The largest of the tusks, though it had lost its points and its roots, was still eight feet long and one foot in diameter. Many isolated tusks were also found, with a quantity of molar teeth, from two inches to a foot in length, some still adhering to the jaws. All these fragments were better preserved than those of 1700, which was attributed to the depth of the bed, and, perhaps, to the nature of the soil. The tusks were generally much curved. In the same deposit some bones of Horses and Stags were found, together with a quantity of teeth of the Rhinoceros, and others which were thought to belong to a Bear, and one specimen which was attributed to the Tapir. The place where this discovery was made is named Seilberg; it is about 600 paces from the city of Canstadt, but on the opposite side of the Necker.
“All the great river basins of Germany have, like those of the Necker, yielded fossil bones of the Elephant; those especially abutting on the Rhine are too numerous to be mentioned, nor is Canstadt the only place in the valley of the Necker where they are found.”
But of all parts of Europe, that in which they are found in greatest numbers is the valley of the Upper Arno. We find there a perfect cemetery of Elephants. These bones were at one time so common in this valley, that the peasantry employed them, indiscriminately with stones, in constructing walls and houses. Since they have learned their value, however, they reserve them for sale to travellers.
The bones and tusks of the Mammoth are met with in America as well as in the Old World, scattered through Canada, Oregon, and the Northern States as far south as the Gulf of Mexico. Cuvier enumerates several places on that continent where their remains are met with, mingled with those of the Mastodon. The Russian Lieutenant Kotzebue found them on the north coast of America, in the cliffs of frozen mud in Eschsholtz Bay, within Behring’s Strait, and in other distant parts of the shores of the Arctic Seas, where they were so common that the sailors burnt many pieces in their fires.
It is very strange that the East Indies, that is, one of the only two regions which is now the home of the Elephant, should be almost the only country in which the fossil bones of these animals have not been discovered. In short, from the preceding enumeration, it appears that, during the geological period whose history we are recording the gigantic Mammoth inhabited most regions of the globe. Now-a-days, the only climates which are suited for the existing race of Elephants are those of Africa and India, that is to say, tropical countries; from which we must draw the conclusions to which so many other inferences lead, that, at the epoch in which these animals lived, the temperature of the earth was much higher than in our days; or, more probably, the extinct race of Elephants must have been adapted for living in a colder climate than that which they now require.
Among the antediluvian Carnivora, one of the most formidable seems to have been theUrsus spelæus, or Cave-bear (Fig. 183). This species must have been a fifth, if not a fourth, larger than the Brown Bear of our days. It was also more squat: some of the skeletons we possess are from nine to ten feet long, and only about six feet high. TheU. spelæusabounded in England, France, Belgium,and Germany; and so extensively in the latter country, that the teeth of the antediluvian Bear, as we have already stated, formed for a long time part of its materia medica, under the name offossil licorn.Fig. 183represents the skull of the Cave-bear.
Fig. 183Fig. 183.—Head of Ursus spelæus.
Fig. 183.—Head of Ursus spelæus.
At the same time with theUrsus spelæusanother Carnivore, theFelis spelæus, or Cave-lion, lived in Europe. This animal is specifically identical with the living Lion of Asia and Africa: but since in these early times he had not to contend with the hunter for food, he was, on the whole, considerably larger than any Lion now existing on the earth.
Fig. 184Fig. 184.—Head of Hyæna spelæa.
Fig. 184.—Head of Hyæna spelæa.
The Hyænas of our age consist of two species, the striped and the spotted Hyænas. The last presents considerable conformity in its structure with that of the Post-pliocene period, which Cuvier designates under the name of the fossil Spotted Hyæna. It seems to have been only a little larger than the existing species.Fig. 184represents the head of theHyæna spelæa, whose remains, with those of others, were found in the caves of Kirkdale and Kent’s Hole; the remains of about 300 being found in the former. Dr. Buckland satisfied himself, from the quantity of their dung, that the Hyænas had lived there. In the cave were found remains of the ox, young elephant, rhinoceros, horse, bear, wolf, hare, water-rat, and several birds. All the bones present an appearance of having been broken and gnawed by the teeth of the Hyænas, and they occur confusedly mixed in loam or mud, or dispersed through the crust of stalagmite which covered the contents of the cave.
The Horse dates from the Quaternary epoch, if not from the last period of the Tertiary epoch. Its remains are found in the same rocks with those of the Mammoth and the Rhinoceros. It is distinguished from our existing Horse only by its size, which was smaller—its remains abound in the Post-pliocene rocks, not only in Europe, but in America; so that an aboriginal Horse existed in the New World long before it was carried thither by the Spaniards, although we know that it was unknown at the date of their arrival. “Certainly it is a marvellous fact in the history of the Mammalia, that in South America, a native horse should have lived and disappeared, to be succeeded in after ages by the countless herds descended from the few introduced with the Spanish colonists!”[99]
The Oxen of the period, if not identical with, were at least very near to our living species. There were three species: theBison priscus,B. primigenius, andB. Pallasii; the first with slender legs, with convex frontal, broader than it was high, and differing but slightly from theAurochs, except in being taller and by having larger horns. The remains ofBison priscusare found in England, France, Italy, Germany, Russia, and America.Bison primigeniuswas, according to Cuvier, the source of our domestic cattle. TheBos Pallasiiis found in America and in Siberia, and resembles in many respects the Musk-ox of Canada.
Where these great Mammals are found we generally discover the fossil remains of several species of Deer. The palæontologicalquestion as regards these animals is very obscure, and it is often difficult to determine whether the remains belong to an extinct or an existing species. This doubt does not extend, however, to the gigantic forest-stag,Cervus megaceros, one of the most magnificent of the antediluvian animals, whose remains are still frequently found in Ireland in the neighbourhood of Dublin; more rarely in France, Germany, Poland, and Italy. Intermediate between the Fallow-deer and the Elk, theCervus megacerospartakes of the Elk in its general proportions and in the form of its cranium, but it approaches the Fallow-deer in its size and in the disposition of its horns. These magnificent appendages, however, while they decorated the head of the animal and gave a most imposing appearance to it, must have sadly impeded its progress through the thick and tangled forests of the ancient world. The length of these horns was between nine and ten feet; and they were so divergent that, measured from one extremity to the other, they occupied a space of between three and four yards.
The skeleton of theCervus megacerosis found in the deposits of calcareous tufa, which underlie the immense peat moss of Ireland; sometimes in the turf itself, as near the Curragh in Kildare; in which position they sometimes occur in little mounds piled up in a small space, and nearly always in the same attitude, the head aloft, the neck stretched out, the horns reversed and thrown downwards towards the back, as if the animal, suddenly immersed into marshy ground, had been under the necessity of throwing up its head in search of respirable air. In the Geological Cabinet of the Sorbonne, at Paris, there is a magnificent skeleton ofCervus megaceros; another belongs to the College of Surgeons in London; and there is a third at Vienna.
The most remarkable creatures of the period, however, were the great Edentates—the Glyptodon, the gigantic Megatherium, the Mylodon and the Megalonyx. The order of Edentates is more particularly characterised by the absence of teeth in the fore part of the mouth. The masticating apparatus of the Edentates consists only of molars, the incisors and canine teeth being, with a few exceptions, absent altogether, as the animals composing this order feed chiefly on insects or the tender leaves of plants. The Armadillo, Anteater and Pangolin, are the living examples of the order. We may add, as still further characteristics, largely developed claws at the extremities of the toes. The order seems thus to establish itself as a zoological link in the chain between the hoofed Mammals and theungulated animals, or those armed with claws. All these animals are peculiar to the continent of America.
TheGlyptodon, which appears during the Quaternary period, belonged to the family of Armadilloes, and their most remarkable feature was the presence of a hard, scaly shell, or coat of mail six feet in length, and composed of numerous segments, which covered the entire upper service of the animal from the head to the tail. It was, in short, a mammiferous animal, which appears to have been enclosed in a shell like that of a Turtle; it resembled in many respects theDasypusor Anteater, and had sixteen teeth in each jaw. These teeth were channelled laterally with two broad and deep grooves, which divided the surface of the molars into three parts, whence it was named the Glyptodon. The hind feet were broad and massive, and evidently designed to support a vast incumbent mass; it presented phalanges armed with short thick and depressed nails or claws. The animal was, as we have said, enveloped in, and protected by, a cuirass, or solid carapace, composed of plates which, seen from beneath, appeared to be hexagonal and united by denticulated sutures: above they represented double rosettes. The habitat ofGlyptodon clavipeswas the pampas of Buenos Ayres, and the banks of an affluent of the Rio Santo, near Monte Video; specimens have been found not less than nine feet in length.
The tesselated carapace of the Glyptodon was long thought to belong to the Megatherium; but Professor Owen shows, from the anatomical structure of the two animals, that the cuirass belonged to one of them only, namely, the Glyptodon.
Fig. 185Fig. 185.—Schistopleuron typus. One-twentieth natural size.
Fig. 185.—Schistopleuron typus. One-twentieth natural size.
TheSchistopleurondoes not differ essentially from the Glyptodon, but is supposed to have been a different species of the same genus; the chief difference between the two animals being in the structure of the tail, which is massive in the first and in the other composed of half a score of rings. In other respects the organisation and habits are similar, both being herbivorous, and feeding on roots and vegetables.Fig. 185represents theSchistopleuron typusrestored, and as it appeared when alive.
Some of the fossil Tortoises discovered in the sub-Himalayan beds possessed a carapace twelve feet long by six feet in breadth, which must have corresponded to an animal from eighteen to twenty feet in length; and the bones of the legs were as massive as those of the Rhinoceros.
TheMegatherium, or Animal of Paraguay, as it was called, is, at first view, the oddest and most remarkable animal we have yet hadunder consideration, where all have been, according to our notions, strange, extraordinary, and formidable. The animal creation still goes on as if—
“Nature made them and then broke the die.”
“Nature made them and then broke the die.”
Plate XXVIIXXVII.—Skeleton of the Megatherium (Clift).
XXVII.—Skeleton of the Megatherium (Clift).
If we cast a glance at the skeleton figured on the opposite page (Plate XXVII.), which was found in Paraguay, at Buenos Ayres, in 1788, and which is now placed, in a perfect state of preservation, in the Museum of Natural History in Madrid, it is impossible to avoid being struck with its unusually heavy form, at once awkward as a whole, and ponderous in most of its parts. It is allied to the existing genus of Sloths, which Buffon tells us is “of all the animal creation that which has received the most vicious organisation—a being to which Nature has forbidden all enjoyment; which has only been created for hardships and misery.” This notion of the romantic Buffon is, however, altogether incorrect. An attentive examination of theAnimal ofParaguayshows that its organisation cannot be considered either odd or awkward when viewed in connection with its mode of life and individual habits. The special organisation which renders the movements of the Sloths so sluggish, and apparently so painful on level ground, gives them, on the other hand, marvellous assistance when they live in trees, the leaves of which constitute their exclusive food. In the same manner, if we consider that theMegatheriumwas created to burrow in the earth and feed upon the roots of trees and shrubs, every organ of its heavy frame would appear to be perfectly appropriate to its kind of life, and well adapted to the special purpose which was assigned to it by the Creator. We ought to place the Megatherium between the Sloths and the Anteaters. Like the first, it usually fed on the branches and leaves of trees; like the latter, it burrowed deep in the soil, finding there both food and shelter. It was as large as an Elephant or Rhinoceros of the largest species. Its body measured twelve or thirteen feet in length, and it was between five and six feet high. The engraving on page 403 (Plate XXVII.) will convey, more accurately than any mere verbal description, an idea of the form and proportions of the animal.
The English reader is chiefly indebted to the zeal and energy of Sir Woodbine Parish for the materials from which our naturalists have been enabled to re-construct the history of the Megatherium. The remains collected by him were found in the river Salado, which runs through the flat alluvial plains called Pampas to the south of the city of Buenos Ayres. A succession of three unusually dry seasons had lowered the waters to such a degree as to expose part of the pelvis to view, as the skeleton stood upright in the mud forming the bed of the river. Further inquiries led to the discovery of the remains of two other skeletons near the place where the first had been found; and with them an immense shell or carapace was met with, most of the bones associated with which crumbled to pieces on exposure to the air. The osseous structure of this enormous animal, as furnished by Mr. Clift, an eminent anatomist of the day, and under whose superintendence the skeleton was drawn, must have exceeded fourteen feet in length, and upwards of eight feet in height. The deeply shaded parts of the figure show the portions which are deficient in the Madrid skeleton.
Cuvier pointed out that the skull very much resembled that of the Sloths, but that the rest of the skeleton bore relationship, partly to the Sloths, and partly to the Anteaters.
The large bones, which descend from the zygomatic arch along the cheek-bones, would furnish a powerful means of attaching themotor muscles of the jaws. The anterior part of the muzzle is fully developed, and riddled with holes for the passage of the nerves and vessels which must have been there, not for a trunk, which would have been useless to an animal furnished with a very long neck, but for a snout analogous to that of the Tapir.
The jaw and dental apparatus cannot be exactly stated, because the number of teeth in the lower jaw is not known. The upper jaw, Professor Owen has shown, contained five molars on each side; and from comparison and analogy with theScelidotheriumit may be conjectured that theMegatheriumhad four on each side of the lower jaw. Being without incisors or canines, the structure of its eighteen molars proves that it was not carnivorous: they each resemble the composite molars of the Elephant.
Fig. 186Fig. 186.—Skeleton of Megatherium foreshortened.
Fig. 186.—Skeleton of Megatherium foreshortened.
The vertebræ of the neck (as exhibited in the foreshortened figure (Fig. 186), taken from the work of Pander and D’Alton, and showing nearly a front view of the head), as well as the anterior and posterior extremities of the Madrid skeleton, although powerful, are not to be compared in dimensions to those of the other extremity of the body; for the head seems to have been relatively light and defenceless. The lumbar vertebræ increase in a degree corresponding to the enormous enlargement of the pelvis and the posterior members. The vertebræ of the tail are enormous, as is seen inFig. 187, which represents the bones of the pelvis and hind foot, discovered bySir Woodbine Parish, and now in the Museum of the College of Surgeons. If we add to these osseous organs the muscles, tendons, and integuments which covered them, we must admit that the tail of theMegatheriumcould not be less than two feet in diameter. It is probable that, like the Armadillo, it employed the tail to assist in supporting the enormous weight of its body; it would also be a formidable defensive organ when employed, as is the case with the Pangolins and Crocodiles. The fore-feet would be about three feet long and one foot broad. They would form a powerful implement for excavating the earth, to the greatest depths at which the roots of vegetables penetrate. The fore-feet rested on the ground to their full length. Thus solidly supported by the two hind-feet and the tail, and in advance by one of the fore-feet, the animal could employ the fore-foot left at liberty in clearing away the earth, in digging up the roots of trees, or in tearing down the branches; the toes of the fore-feet were, for this purpose, furnished with large and powerful claws, which lie at an oblique angle relatively to the ground, much like the burrowing talons of the mole.
Fig. 187Fig. 187.—Bones of the pelvis of the Megatherium.
Fig. 187.—Bones of the pelvis of the Megatherium.
The solidity and size of the pelvis must have been enormous; its immense iliac bones are nearly at right angles with the vertebral column; their external edges are distant more than a yard and a half from each other when the animal is standing. The femur is three times the thickness of the thigh-bone of the Elephant, and the many peculiarities of structure in this bone appear to have been intended to give solidity to the whole frame, by means of its short and massive proportions. The two bones of the leg are, like the femur, short, thick, and solid; presenting proportions which we only meet with in the Armadilloes and Anteaters; burrowing animals with which, as we have said, its two extremities seem to connect it.
The anatomical organisation of these members denotes heavy, slow, and powerful locomotion, but solid and admirable combinations for supporting the weight of an enormous sedentary creature; a sort of excavating machine, slow of motion but of incalculable power for its own purposes. In short, theMegatheriumexceeded in dimensions all existing Edentates. It had the head and shoulders of the Sloth, the feet and legs combined the characteristics of the Anteaters and Sloths, of enormous size, since it was at least twelve feet long when full grown, its feet armed with gigantic claws, and its tail at once a means of supporting its huge body and an instrument of defence. An animal built with such massive proportions could evidently neither creep nor run; its walk would be excessively slow. But what necessity was there for rapid movement in a being onlyoccupied in burrowing under the earth, seeking for roots, and which would consequently rarely change its place? What need had it of agility to fly from its enemies, when it could overthrow the Crocodile with a sweep of its tail? Secure from the attacks of other animals, this robust herbivorous creature, of whichFigure 188is a restoration, must have lived peacefully and respected in the solitary pampas of America.
Fig. 188Fig. 188.—Megatherium restored.
Fig. 188.—Megatherium restored.
The immediate cause of the extinction of the Megatherium is, probably, to be found in causes which are still in operation in South America. The period between the years 1827 and 1830 is calledthe “gran seco,” or the great drought, in South America; and according to Darwin, the loss of cattle in the province of Buenos Ayres alone was calculated at 1,000,000 head. One proprietor at San Pedro, in the middle of the finest pasture-country, had lost 20,000 cattle previously to those years. “I was informed by an eyewitness,” he adds, “that the cattle, in herds of thousands, rushed into the Parana, and, being exhausted by hunger, they were unable to crawl up the muddy banks, and thus were drowned. The arm of the river which runs by San Pedro was so full of putrid carcases, that the master of a vessel told me that the smell rendered it quite impassable. All the small rivers became highly saline, and this caused the death of vast numbers in particular spots; for when an animal drinks of such water it does not recover. Azara describes the fury of the wild horses on a similar occasion: rushing into the marshes, those which arrived first being overwhelmed and crushed by those which followed.”[100]The upright position in which the various specimens of Megatheria were found indicates some such cause of death; as if the ponderous animal, approaching the banks of the river, when shrunk within its banks, had been bogged in soft mud, sufficiently adhesive to hold it there till it perished.
Like the Megatherium, theMylodonclosely resembled the Sloth, and it belonged exclusively to the New World. Smaller than the Megatherium, it differed from it chiefly in the form of the teeth. These organs presented only molars with smooth surfaces, indicating that the animal fed on vegetables, probably the leaves and tender buds of trees. As the Mylodon presents at once hoofs and claws on each foot, it has been thought that it formed the link between the hoofed, or ungulated animals and the Edentates. Three species are known, which lived in the pampas of Buenos Ayres.
In consequence of some hints given by the illustrious Washington, Mr. Jefferson, one of his successors as President of the United States, discovered, in a cavern of Western Virginia, the bones of a species of gigantic Sloth, which he pronounced to be the remains of some carnivorous animal. They consisted of a femur, a humerus, an ulna, and three claws, with half a dozen other bones of the foot. These bones Mr. Jefferson believed to be analogous to those of the lion. Cuvier saw at once the true analogies of the animal. The bones were the remains of a species of gigantic Sloth; the complete skeleton of which was subsequently discovered in the Mississippi, in such a perfect state of preservation that the cartilages, still adheringto the bones, were not decomposed. Jefferson called this species theMegalonyx. It resembled in many respects the Sloth. Its size was that of the largest ox; the muzzle was pointed; the jaws were armed with cylindrical teeth; the anterior limbs much longer than the posterior; the articulation of the foot oblique to the leg; two great toes, short, and armed with long and very powerful claws; the index finger more slender, and armed also with a less powerful claw; the tail strong and solid: such were the salient points of the organisation of theMegalonyx, whose form was a little slighter than that of theMegatherium.
Fig. 189Fig. 189.—Mylodon robustus.
Fig. 189.—Mylodon robustus.
The country in which the Megatherium has been found is described by Mr. Darwin as belonging to the great Pampean formation, which consists partly of a reddish clay and in part of a highly calcareous marly rock. Near the coast there are some plains formed from thewreck of the upper plain, and from mud, gravel, and sand thrown up by the sea during the slow elevation of the land, as shown by the raised beds of recent shells. At Punta Alta there is a highly-interesting section of one of the later-formed little plains, in which many remains of these gigantic land-animals have been found. These were, says Mr. Darwin:—“First, parts of three heads and other bones of the Megatherium, the huge dimensions of which are expressed by its name. Secondly, theMegalonyx, a great allied animal. Thirdly, theScelidotherium, also an allied animal, of which I obtained a nearly perfect skeleton: it must have been as large as a rhinoceros; in the structure of its head it comes, according to Professor Owen, nearest to the Cape Anteater, but in some other respects it approaches to the Armadilloes. Fourthly, theMylodon Darwinii, a closely related genus, of little inferior size. Fifthly, another gigantic edental quadruped. Sixthly, a large animal with an osseous coat, in compartments, very like that of an armadillo. Seventhly, an extinct kind of horse. Eighthly, a tooth of a pachydermatous animal, probably the same with the Macrauchenia, a huge beast with a long neck like a camel. Lastly, the Toxodon, perhaps one of the strangest animals ever discovered; in size it equalled an Elephant or Megatherium, but the structure of its teeth, as Professor Owen states, proves indisputably that it was intimately related to the Gnawers, the order which, at the present day, includes most of the smallest quadrupeds; in many details it is allied to the pachydermata; judging from the position of its eyes, ears, and nostrils, it was probably aquatic, like the Dugong and Manatee, to which it is allied. How wonderfully are the different orders—at the present time so well separated—blended together in different points in the structure of the Toxodon!”[101]
Fig. 190Fig. 190.—Lower jaw of the Mylodon.
Fig. 190.—Lower jaw of the Mylodon.
The remains on which our knowledge of theScelidotheriumisfounded include the cranium, which is nearly entire, with the teeth and part of the os hyoides, seven cervical, eight dorsal, and five sacral vertebræ, both the scapulæ, and some other bones. The remains of the cranium indicate that its general form was an elongated slender compressed cone, beginning behind by a flattened vertical base, expanding slightly to the cheek-bone, and thence contracting to the anterior extremity. All these parts were discovered in their natural relative positions, indicating, as Mr. Darwin observes, that the gravelly formation in which they were discovered had not been disturbed since its deposition.
Fig. 191Fig. 191.—Skull of Scelidotherium.
Fig. 191.—Skull of Scelidotherium.
The lower jaw-bone ofMylodon, which Mr. Darwin discovered at the base of the cliff called Punta Alta, in Northern Patagonia, had the teeth entire on both sides; they are implanted in deep sockets, and only about one-sixth of the last molar projects above the alveolus, but the proportion of the exposed part increases gradually in the inner teeth (Fig. 191).
“The habits of life of these Megatheroid animals were a complete puzzle to naturalists, until Professor Owen solved the problem with remarkable ingenuity. The teeth indicate, by their simple structure, that these Megatheroid animals lived on vegetable food, and probably on the leaves and small twigs of trees; their ponderous forms and great strong curved claws seem so little adapted for locomotion, that some eminent naturalists have actually believed that, like the Sloths, to which they are intimately related, they subsisted by climbing back downwards, on trees, and feeding on the leaves. It was a bold, not to say preposterous idea to conceive even antediluvian trees with branches strong enough to bear animals as large as elephants. Professor Owen, with far more probability,believes that, instead of climbing on the trees, they pulled the branches down to them, and tore up the smaller ones by the roots, and so fed on the leaves. The colossal breadth and weight of their hinder quarters, which can hardly be imagined without having been seen, become, on this view, of obvious service instead of being an encumbrance; their apparent clumsiness disappears. With their great tails and their huge heels firmly fixed like a tripod in the ground, they could freely exert the full force of their most powerful arms and great claws. TheMylodon, moreover, was furnished with a long extensile tongue, like that of the giraffe, which byone of those beautiful provisions of Nature, thus reaches, with the aid of its long neck, its leafy food.”[102]
Plate XXVIIIXXVIII.—Ideal European Landscape in the Quaternary Epoch.
XXVIII.—Ideal European Landscape in the Quaternary Epoch.
Fig. 192Fig. 192.—Dinornis, and Bos.
Fig. 192.—Dinornis, and Bos.
Two gigantic birds seem to have lived in New Zealand during the Quaternary epoch. TheDinornis, which, if we may judge from thetibia, which is upwards of three feet long, and from its eggs, which are much larger than those of the Ostrich, must have been of most extraordinary size for a bird. InFig. 192an attempt is made to restore this fearfully great bird, theDinornis. As to theEpiornis, its eggs only have been found.
On the opposite page (Plate XXVIII.) an attempt is made to represent the appearance of Europe during the epoch we have under consideration. The Bear is seated at the mouth of its den—the cave (thus reminding us of the origin of its name ofUrsus spelæus), where it gnaws the bones of the Elephant. Above the cavern theHyæna spelæalooks out, with savage eye, for the moment when it will be prudent to dispute possession of these remains with its formidable rival. The great Wood-stag, with other great animals of the epoch, occupies the farthest shore of a small lake, where some small hills rise out of a valley crowned with the trees and shrubs of the period. Mountains, recently upheaved, rise on the distant horizon, covered with a mantle of frozen snow, reminding us that the glacial period is approaching, and has already begun to manifest itself.
All these fossil bones, belonging to the great Mammalia which we have been describing, are found in the Quaternary formation; but the most abundant of all are those of the Elephant and the Horse. The extreme profusion of the bones of the Mammoth, crowded into the more recently formed deposits of the globe, is only surpassed by the prodigious quantity of the bones of the Horse which are buried in the same beds. The singular abundance of the remains of these two animals proves that, during the Quaternary epoch, the earth gave nourishment to immense herds of the Horse and the Elephant. It is probable that from one pole to the other, from the equator to the two extremities of the axis of the globe, the earth must have formed a vast and boundless prairie, while an immense carpet of verdure covered its whole surface; and such abundant pastures would be absolutely necessary to sustain these prodigious numbers of herbivorous animals of great size.
The mind can scarcely realise the immense and verdant plains of this earlier world, animated by the presence of an infinity of suchinhabitants. In its burning temperature, Pachyderms of monstrous forms, but of peaceful habits, traversed the tall vegetation, composed of grasses of all sorts. Deer of gigantic size, their heads ornamented with enormous horns, escorted the heavy herds of the Mammoth; while the Horse, small in size and compact of form, galloped and frisked round these magnificent horizons of verdure which no human eye had yet contemplated.
Nevertheless, all was not quiet and tranquil in the landscapes of the ancient world. Voracious and formidable carnivorous animals waged a bloody war on the inoffensive herds. The Tiger, the Lion, and the ferocious Hyæna; the Bear, and the Jackal, there selected their prey. On the opposite page an endeavour is made to represent the great animals among the Edentates which inhabited the American plains during the Quaternary epoch (Plate XXIX). We observe there the Glyptodon, the Megatherium, the Mylodon, and, along with them, the Mastodon. A small Ape (the Orthopithecus), which first appeared in the Miocene period, occupies the branch of a tree in the landscape. The vegetation is that of tropical America at the present time.
The deposits of this age, which are of later date than the Crag, and of earlier date than the Boulder Clay, with its fragments of rocks frequently transported from great distances, are classed under the term “pre-glacial.”
After the deposition of the Forest Bed, which is seen overlying the Crag for miles between high and low-water mark, on the shore west of Cromer, in Norfolk, there was a general reduction of temperature, and a period of intense cold, known as the “glacial period,” seems to have set in, during which a great part of what is now the British Islands was covered with a thick coating of ice, and probably united with the Continent.
At this time England south of the Bristol Channel (the estuary of the Severn), and the Thames, appears to have been above water. The northern part of the country, and the high-ground generally of Britain and Ireland were covered with gliding glaciers, by whose grinding action the whole surface became moulded and worn into its present shape, while the floating icebergs which broke off at the sea-side from these glaciers, conveyed away and dropped on the bed of the sea those fragments of rocks and the gravel and other earthy materials which are now generally recognised as glacial accumulations.
In all directions, however, proofs are being gradually obtained that, about this period, movements of submersion under the sea were in progress, all north of the Thames.
Plate XXIXXXIX.—Ideal American Landscape in the Quaternary Epoch.
XXIX.—Ideal American Landscape in the Quaternary Epoch.
Ramsay points out indications, first of an intensely cold period, when land was much more elevated than it is now; then of submergence beneath the sea; and, lastly, re-elevation attended by glacial action. “When we speak of the vegetation and quadrupeds of Cromer Forest being pre-glacial,” says Lyell, “we merely mean that their formation preceded the era of the general submergence of the British Isles beneath the waters of the glacial sea. The successive deposits seen in direct superposition on the Norfolk coast,” adds Sir Charles, “imply at first the prevalence over a wide area of the Newer Pliocene Sea. Afterwards, the bed of the sea was converted into dry land, and underwent several oscillations of level, so as to be, first, dry land supporting a forest; then an estuary; then again land; and, finally, a sea near the mouth of a river, till the downward movement became so great as to convert the whole area into a sea of considerable depth, in which much floating ice, carrying mud, sand, and boulders melted, letting its burthen fall to the bottom. Finally, over the till with boulders stratified drift was formed; after which, but not until the total subsidence amounted to more than 400 feet, an upward movement began, which re-elevated the whole country, so that the lowest of the terrestrial formations, or the forest bed, was brought up to nearly its pristine level, in such a manner as to be exposed at a low tide. Both the descending and ascending movement seem to have been very gradual.”
Fig. 193Fig. 193.—Palæophognos Gesneri. Fossil Toad.
Fig. 193.—Palæophognos Gesneri. Fossil Toad.
The Tertiary formations, in many parts of Europe, of more or less extent, are covered by an accumulation of heterogeneous deposits, filling up the valleys, and composed of very various materials, consisting mostly of fragments of the neighbouring rocks. The erosions which we remark at the bottoms of the hills, and which have greatly enlarged already existing valleys; the mounds of gravel accumulated at one point, and which is formed of rolled materials, that is to say, of fragments of rocks worn smooth and round by continual friction during a long period, in which they have been transported from one point to another—all these signs indicate that these denudations of the soil, these displacements and transport of very heavy bodies to great distances, are due to the violent and sudden action of large currents of water. An immense wave has been thrown suddenly on the surface of the earth, making great ravages in its passage, furrowing the earth and driving before it débris of all sorts in its disorderly course. Geologists give the name ofdiluviumto a formation thus removed and scattered, which, from its heterogeneous nature, brings under our eyes, as it were, the rapid passage of an impetuous torrent—a phenomenon which is commonly designated as adeluge.
To what cause are we to attribute these sudden and apparently temporary invasions of the earth’s surface by rapid currents of water? In all probability to the upheaval of some vast extent of dry land, to the formation of some mountain or mountain-range in the neighbourhood of the sea, or even in the bed of the sea itself. The land suddenly elevated by an upward movement of the terrestrial crust, or by the formation of ridges and furrows at the surface, has, by its reaction, violently agitated the waters, that is to say, the more mobile portion of the globe. By this new impulse the waters have been thrown with great violence over the earth, inundating the plains and valleys, and for the moment covering the soil with their furious waves, mingled with the earth, sand, and mud, of which the devastated districts have beendenuded by their abrupt invasion. The phenomenon has been sudden but brief, like the upheaval of the mountain or chain of mountains, which is presumed to have been the cause of it; but it was often repeated: witness the valleys which occur in every country, especially those in the neighbourhood of Lyons and of the Durance. These strata indicate as many successive deposits. Besides this, the displacement of blocks of minerals from their normal position is proof, now perfectly recognisable, of this great phenomenon.
There have been, doubtless, during the epochs anterior to the Quaternary period of which we write, many deluges such as we are considering. Mountains and chains of mountains, through all the ages we have been describing, were formed by upheaval of the crust into ridges, where it was too elastic or too thick to be fractured. Each of these subterranean commotions would be provocative of momentary irruptions of the waves.
But the visible testimony to this phenomenon—the living proofs of this denudation, of this tearing away of the soil, are found nowhere so strikingly as in the beds superimposed, far and near, upon the Tertiary formations, and which bear the geological name ofdiluvium. This term was long employed to designate what is now better known as the “boulder” formation, a glacial deposit which is abundant in Europe north of the 50th, and in America north of the 40th, parallel, and re-appearing again in the southern hemisphere; but altogether absent in tropical regions. It consists of sand and clay, sometimes stratified, mixed with rounded and angular fragments of rock, generally derived from the same district; and their origin has generally been ascribed to a series of diluvial waves raised by hurricanes, earthquakes, or the sudden upheaval of land from the bed of the sea, which had swept over continents, carrying with them vast masses of mud and heavy stones, and forcing these stones over rocky surfaces so as to polish and impress them with furrows and striæ. Other circumstances occurred, however, to establish a connection between this formation and the glacial drift. The size and number of the erratic blocks increase as we travel towards the Arctic regions; some intimate association exists, therefore, between this formation and the accumulations of ice and snow which characterise the approaching glacial period.
As we have already stated at the beginning of this chapter, there is very distinct evidence of two successive deluges in our hemisphere during the Quaternary epoch. The two may be distinguished as theEuropean Delugeand theAsiatic. The two European deluges occurred prior to the appearance of man; the Asiatic delugehappened after that event; and the human race, then in the early days of its existence, certainly suffered from this cataclysm. In the present chapter we confine ourselves to the two cataclysms which overwhelmed Europe in the Quaternary epoch.
The first occurred in the north of Europe, where it was produced by the upheaval of the mountains of Norway. Commencing in Scandinavia, the wave spread and carried its ravages into those regions which now constitute Sweden, Norway, European Russia, and the north of Germany, sweeping before it all the loose soil on the surface, and covering the whole of Scandinavia—all the plains and valleys of Northern Europe—with a mantle of transported soil. As the regions in the midst of which this great mountainous upheaval occurred—as the seas surrounding these vast spaces were partly frozen and covered with ice, from their elevation and neighbourhood to the pole—the wave which swept these countries carried along with it enormous masses of ice. The shock, produced by the collision of these several solid blocks of frozen water, would only contribute to increase the extent and intensity of the ravages occasioned by this violent cataclysm, which is represented inPlate XXX.