[12]The wheels, and every other part of the mechanism except the axes, springs, and such parts as are necessarily of steel, are formed of an alloy of copper with a small portion of tin.It will be observed that the wheels of the seventh column are always quiescent in this process; and it may be asked, of what use they are, and whether some mechanism of a fixed nature would not serve the same purpose? It must, however, be remembered, that for different tables there will be different constant differences; and that when the calculation of a table is about to commence, the wheels on the seventh axis must be moved by the hand, so as to express the constant difference, whatever it may be. In tables, also, which have not a difference rigorously constant, it will be necessary, after a certain number of calculations, to change the constant difference by the hand; and in this case the wheels of the seventh axis must be moved when occasion requires. Such adjustment, however, will only be necessary at very distant intervals, and after a considerable extent of printing and calculation has taken place; and when it is necessary, a provision is made in the machinery by which notice will be given by the sounding of a bell, so that the machine may not run beyond the extent of its powers of calculation.Immediately behind the seven axes on which the figure wheels revolve, are seven other axes; on which are placed, first, the wheels already described as driven by the figure wheels, and which bear upon them the wedge which withdraws the bolt immediately over these latter wheels, and on the same axis is placed the adding bolt. From the bottom of this bolt there projects downwards the pin, which acts upon the unbolting wedge by which the bolt is withdrawn: from the upper surface of the bolt proceeds a tooth, which, when the bolt is shot, enters between the teeth of the adding wheel, which turns on the same axis, and is placed immediately above the bolt: its teeth, on which the bolt acts, are like the teeth of a crown wheel, and are presented downwards. The bolt is fixed upon this axis, and turns with it; but the adding wheel above the bolt, and the unbolting wheel below it, both turn upon the axis, and independently of it. When the axis is made to revolve by the moving power, the bolt revolves with it; and so long as the tooth of the bolt remains inserted between those of the adding wheel, the latter is likewise moved; but when the lower pin of the bolt encounters the unbolting wedge on the lower wheel, the tooth of the bolt is withdrawn, and the motion of the adding wheel is stopped. This adding wheel is furnished with spur teeth, besides the crown teeth just mentioned; and these spur teeth are engaged with those of that unbolting wheel which is in connexion with the adjacent figure wheel to which the addition is to be made. By such an arrangement it is evident that the revolution of the bolt will necessarily add to the adjacent figure wheel the requisite number.It will be perceived, that upon the same axis are placed an unbolting wheel, a bolt, and an adding wheel, one above the other, for every figure wheel; and as there are eighteen figure wheels there will be eighteen tiers; each tier formed of an unbolting wheel, a bolt, and an adding wheel, placed one above the other; the wheels on this axis all revolving independent of the axis, but the bolts being all fixed upon it. The same observations, of course, will apply to each of the seven axes.At the commencement of every revolution of the adding axes, it is evident that the several bolts placed upon them must be shot in order to perform the various additions. This is accomplished by a third set of seven axes, placed at some distance behind the range of the wheels, which turn upon the adding axes: these are calledbolting axes. On these bolting axes are fixed, so as to revolve with them, a bolting finger opposite to each bolt; as the bolting axis is made to revolve by the moving power, the bolting finger is turned, and as it passes near the bolt, it encounters the shoulder of a hammer or lever, which strikes the heel of the bolt, and presses it forward so as to shoot its tooth between the crown teeth of the adding wheel. The only exception to this action is the case in which 0 happens to be at the index of the figure wheel; in that case, the lever or hammer, which the bolting finger would encounter, is, as before stated, lifted out of the way of the bolting finger, so that it revolves without encountering it. It is on the bolting axes that the fingers are spirally arranged so as to equalize their action, as already explained.The same axes in the front of the machinery on which the figure wheels turn, are made to serve the purpose ofcarrying. Each of these bear a series of fingers which turn with them, and which encounter a carrying claw, already described, so as to make the carriage: these carrying fingers are also spirally arranged on their axes, as already described.Although the absolute accuracy which appears to be ensured by the mechanical arrangements here described is such as to render further precautions nearly superfluous, still it may be right to state, that, supposing it were possible for an error to be produced in calculation, this error could be easily and speedily detected in the printed tables: it would only be necessary to calculate a number of the table taken at intervals, through which the mechanical action of the machine has not been suspended, and during which it has received no adjustment by the hand: if the computed number be found to agree with those printed, it may be taken for granted that all the intermediate numbers are correct; because, from the nature of the mechanism, and the principle of computation, an error occurring in any single number of the table would be unavoidably entailed, in an increasing ratio, upon all the succeeding numbers.We have hitherto spoken merely of the practicability of executing by the machinery, when completed, that which its inventor originally contemplated—namely, the calculating and printing of all numerical tables, derived by the method of differences from a constant difference. It has, however, happened that the actual powers of the machinery greatly transcend those contemplated in its original design:—they not only have exceeded the most sanguine anticipations of its inventor, but they appear to have an extent to which it is utterly impossible, even for the most acute mathematical thinker, to fix a probable limit. Certain subsidiary mechanical inventions have, in the progress of the enterprise, been, by the very nature of the machinery, suggested to the mind of the inventor, which confer upon it capabilities which he had never foreseen. It would be impossible even to enumerate, within the limits of this article, much less to describe in detail, those extraordinary mechanical arrangements, the effects of which have not failed to strike with astonishment every one who has been favoured with an opportunity of witnessing them, and who has been enabled, by sufficient mathematical attainments, in any degree to estimate their probable consequences.As we have described the mechanism, the axes containing the several differences are successively and regularly added one to another; but there are certain mechanical adjustments, and these of a very simple nature, which being thrown into action, will cause a difference of any order to be added any number of times to a difference of any other order; and that either proceeding backwards or forwards, from a difference of an inferior to one of a superior order, andvice versa.[13][13]The machine was constructed with the intention of tabulating the equation Delta^{7}_{u} = 0, but, by the means above alluded to, it is capable of tabulating such equations as the following: Delta^{7}u = a Delta u, Delta^{7}u = aDelta^{3}u, Delta^{7}u = units figure of Delta u.Among other peculiar mechanical provisions in the machinery is one by which, when the table for any order of difference amounts to a certain number, a certain arithmetical change would be made in the constant difference. In this way a series may be tabulated by the machine, in which the constant difference is subject to periodical change; or the very nature of the table itself may be subject to periodical change, and yet to one which has a regular law.Some of these subsidiary powers are peculiarly applicable to calculations required in astronomy, and are therefore of eminent and immediate practical utility: others there are by which tables are produced, following the most extraordinary, and apparently capricious, but still regular laws. Thus a table will be computed, which, to any required extent, shall coincide with a given table, and which shall deviate from that table for a single term, or for any required number of terms, and then resume its course, or which shall permanently alter the law of its construction. Thus the engine has calculated a table which agreed precisely with a table of square numbers, until it attained the hundred and first term, which was not the square of 101, nor were any of the subsequent numbers squares. Again, it has computed a table which coincided with the series of natural numbers, as far as 100,000,001, but which subsequently followed another law. This result was obtained, not by working the engine through the whole of the first table, for that would have required an enormous length of time; but by showing, from the arrangement of the mechanism, that it must continue to exhibit the succession of natural numbers, until it would reach 100,000,000. To save time, the engine was set by the hand to the number 99999995, and was then put in regular operation. It produced successively the following numbers.[14]99,999,99699,999,99799,999,99899,999,999100,000,000100,010,002100,030,003100,060,004100,100,005100,150,006&c. &c.[14]Such results as this suggest a train of reflection on the nature and operation of general laws, which would lead to very curious and interesting speculations. The natural philosopher and astronomer will be hardly less struck with them than the metaphysician and theologian.Equations have been already tabulated by the portion of the machinery which has been put together, which are so far beyond the reach of the present power of mathematics, that no distant term of the table can be predicted, nor any function discovered capable of expressing its general law. Yet the very fact of the table being produced by mechanism of an invariable form, and including a distinct principle of mechanical action, renders it quite manifest thatsomegeneral law must exist in every table which it produces. But we must dismiss these speculations: we feel it impossible to stretch the powers of our own mind, so as to grasp the probable capabilities of this splendid production of combined mechanical and mathematical genius; much less can we hope to enable others to appreciate them, without being furnished with such means of comprehending them as those with which we have been favoured. Years must in fact elapse, and many enquirers direct their energies to the cultivation of the vast field of research thus opened, before we can fully estimate the extent of this triumph of matter over mind. 'Nor is it,' says Mr Colebrooke, 'among the least curious results of this ingenious device, that it affords a new opening for discovery, since it is applicable, as has been shown by its inventor, to surmount novel difficulties of analysis. Not confined to constant differences, it is available in every case of differences that follow a definite law, reducible therefore to an equation. An engine adjusted to the purpose being set to work, will produce any distant term, or succession of terms, required—thus presenting the numerical solution of a problem, even though the analytical solution be yet undetermined.' That the future path of some important branches of mathematical enquiry must now in some measure be directed by the dictates of mechanism, is sufficiently evident; for who would toil on in any course of analytical enquiry, in which he must ultimately depend on the expensive and fallible aid of human arithmetic, with an instrument in his hands, in which all the dull monotony of numerical computation is turned over to the untiring action and unerring certainty of mechanical agency?It is worth notice, that each of the axes in front of the machinery on which the figure wheels revolve, is connected with a bell, the tongue of which is governed by a system of levers, moved by the several figure wheels; an adjustment is provided by which the levers shall be dismissed, so as to allow the hammer to strike against the bell, whenever any proposed number shall be exhibited on the axis. This contrivance enables the machine to give notice to its attendants at any time that an adjustment may be required.Among a great variety of curious accidental properties (so to speak) which the machine is found to possess, is one by which it is capable of solving numerical equations which have rational roots. Such an equation being reduced (as it always may be) by suitable transformations to that state in which the roots shall be whole numbers, the values 0, 1, 2, 3, &c., are substituted for the unknown quantity, and the corresponding values of the equation ascertained. From these a sufficient number of differences being derived, they are set upon the machine. The machine being then put in motion, the table axis will exhibit the successive values of the formula, corresponding to the substitutions of the successive whole numbers for the unknown quantity: at length the number exhibited on the table axis will be 0, which will evidently correspond to a root of the equation. By previous adjustment, the bell of the table axis will in this case ring and give notice of the exhibition of the value of the root in another part of the machinery.If the equation have imaginary roots, the formula being necessarily a maximum or minimum on the occurrence of such roots, the first difference will become nothing; and the dials of that axis will under such circumstances present to the respective indices. By previous adjustment, the bell of this axis would here give notice of a pair of imaginary roots.Mr Colebrooke speculates on the probable extension of these powers of the machine: 'It may not therefore be deemed too sanguine an anticipation when I express the hope that an instrument which, in its simpler form, attains to the extraction of roots of numbers, and approximates to the roots of equations, may, in a more advanced state of improvement, rise to the approximate solution of algebraic equations of elevated degrees. I refer to solutions of such equations proposed by La Grange, and more recently by other annalists, which involve operations too tedious and intricate for use, and which must remain without efficacy, unless some mode be devised of abridging the labour, or facilitating the means of its performance. In any case this engine tends to lighten the excessive and accumulating burden of arithmetical application of mathematical formulæ, and to relieve the progress of science from what is justly termed by the author of this invention, the overwhelming encumbrance of numerical detail.'Although there are not more than eighteen figure wheels on each axis, and therefore it might be supposed that the machinery was capable of calculating only to the extent of eighteen decimal places; yet there are contrivances connected with it, by which, in two successive calculations, it will be possible to calculate even to the extent of thirty decimal places. Its powers, therefore, in this respect, greatly exceed any which can be required in practical science. It is also remarkable, that the machinery is capable of producing the calculated resultstrue to the last figure. We have already explained, that when the figure which would follow the last is greater than 4, then it would be necessary to increase the last figure by 1; since the excess of the calculated number above the true value would in such case be less than its defect from it would be, had the regularly computed final figure been adopted: this is a precaution necessary in all numerical tables, and it is one which would hardly have been expected to be provided for in the calculating machinery.As might be expected in a mechanical undertaking of such complexity and novelty, many practical difficulties have since its commencement been encountered and surmounted. It might have been foreseen, that many expedients would be adopted and carried into effect, which farther experiments would render it necessary to reject; and thus a large source of additional expense could scarcely fail to be produced. To a certain extent this has taken place; but owing to the admirable system of mechanical drawings, which in every instance Mr Babbage has caused to be made, and owing to his own profound acquaintance with the practical working of the most complicated mechanism, he has been able to predict in every case what the result of any contrivance would be, as perfectly from the drawing, as if it had been reduced to the form of a working model. The drawings, consequently, form a most extensive and essential part of the enterprise. They are executed with extraordinary ability and precision, and may be considered as perhaps the best specimens of mechanical drawings which have ever been executed. It has been on these, and on these only, that the work of invention has been bestowed. In these, all those progressive modifications suggested by consideration and study have been made; and it was not until the inventor was fully satisfied with the result of any contrivance, that he had it reduced to a working form. The whole of the loss which has been incurred by the necessarily progressive course of invention, has been the expense of rejected drawings. Nothing can perhaps more forcibly illustrate the extent of labour and thought which has been incurred in the production of this machinery, than the contemplation of the working drawings which have been executed previously to its construction: these drawings cover above a thousand square feet of surface, and many of them are of the most elaborate and complicated description.One of the practical difficulties which presented themselves at a very early stage in the progress of this undertaking, was the impossibility of bearing in mind all the variety of motions propagated simultaneously through so many complicated trains of mechanism. Nothing but the utmost imaginable harmony and order among such a number of movements, could prevent obstructions arising from incompatible motions encountering each other. It was very soon found impossible, by a mere act of memory, to guard against such an occurrence; and Mr Babbage found, that, without some effective expedient by which he could at a glance see what every moving piece in the machinery was doing at each instant of time, such inconsistencies and obstructions as are here alluded to must continually have occurred. This difficulty was removed by another invention of even a more general nature than the calculating machinery itself, and pregnant with results probably of higher importance. This invention consisted in the contrivance of a scheme ofmechanical notationwhich is generally applicable to all machinery whatsoever; and which is exhibited on a table or plan consisting of two distinct sections. In the first is traced, by a peculiar system of signs, the origin of every motion which takes place throughout the machinery; so that the mechanist or inventor is able, by moving his finger along a certain line, to follow out the motion of every piece from effect to cause, until he arrives at the prime mover. The same sign which thus indicates thesourceof motion indicates likewise thespeciesof motion, whether it be continuous or reciprocating, circular or progressive, &c. The same system of signs further indicates the nature of the mechanical connexion between the mover and the thing moved, whether it be permanent and invariable (as between the two arms of a lever), or whether the mover and the moved are separate and independent pieces, as is the case when a pinion drives a wheel; also whether the motion of one piece necessarily implies the motion of another; or when such motion in the one is interrupted, and in the other continuous, &c.The second section of the table divides the time of a complete period of the machinery into any required number of parts; and it exhibits in a map, as it were, that which every part of the machine is doing at each moment of time. In this way, incompatibility in the motions of different parts is rendered perceptible at a glance. By such means the contriver of machinery is not merely prevented from introducing into one part of the mechanism any movement inconsistent with the simultaneous action of the other parts; but when he finds that the introduction of any particular movement is necessary for his purpose, he can easily and rapidly examine the whole range of the machinery during one of its periods, and can find by inspection whether there is any, and what portion of time, at which no motion exists incompatible with the desired one, and thus discover aniche, as it were, in which to place the required movement. A further and collateral advantage consists in placing it in the power of the contriver to exercise the utmost possible economy oftimein the application of his moving power. For example, without some instrument of mechanical enquiry equally powerful with that now described, it would be scarcely possible, at least in the first instance, so to arrange the various movements that they should be all executed in the least possible number of revolutions of the moving axis. Additional revolutions would almost inevitably be made for the purpose of producing movements and changes which it would be possible to introduce in some of the phases of previous revolutions: and there is no one acquainted with the history of mechanical invention who must not be aware, that in the progressive contrivance of almost every machine the earliest arrangements are invariably defective in this respect; and that it is only by a succession of improvements, suggested by long experience, that that arrangement is at length arrived at, which accomplishes all the necessary motions in the shortest possible time. By the application of the mechanical notation, however, absolute perfection may be arrived at in this respect; even before a single part of the machinery is constructed, and before it has any other existence than that which it obtains upon paper.Examples of this class of advantages derivable from the notation will occur to the mind of every one acquainted with the history of mechanical invention. In the common suction-pump, for example, the effective agency of the power is suspended during the descent of the piston. A very simple contrivance, however, will transfer to the descent the work to be accomplished in the next ascent; so that the duty of four strokes of the piston may thus be executed in the time of two. In the earlier applications of the steam-engine, that machine was applied almost exclusively to the process of pumping; and the power acted only during the descent of the piston, being suspended during its ascent. When, however, the notion of applying the engine to the general purposes of manufacture occurred to the mind of Watt, he saw that it would be necessary to cause it to produce a continued rotatory motion; and, therefore, that the intervals of intermission must be filled up by the action of the power. He first proposed to accomplish this by a second cylinder working alternately with the first; but it soon became apparent that the blank which existed during the upstroke in the action of the power, might be filled up by introducing the steam at both ends of the cylinder alternately. Had Watt placed before him a scheme of mechanical notation such as we allude to, this expedient would have been so obtruded upon him that he must have adopted it from the first.One of the circumstances from which the mechanical notation derives a great portion of its power as an instrument of investigation and discovery, is that it enables the inventor to dismiss from his thoughts, and to disencumber his imagination of the arrangement and connexion of the mechanism; which, when it is very complex (and it is in that case that the notation is most useful), can only be kept before the mind by an embarrassing and painful effort. In this respect the powers of the notation may not inaptly be illustrated by the facilities derived in complex and difficult arithmetical questions from the use of the language and notation of algebra. When once the peculiar conditions of the question are translated into algebraical signs, and 'reduced to an equation,' the computist dismisses from his thoughts all the circumstances of the question, and is relieved from the consideration of the complicated relations of the quantities of various kinds which may have entered it. He deals with the algebraical symbols, which are the representatives of those quantities and relations, according to certain technical rules of a general nature, the truth of which he has previously established; and, by a process almost mechanical, he arrives at the required result. What algebra is to arithmetic, the notation we now allude to is to mechanism. The various parts of the machinery under consideration being once expressed upon paper by proper symbols, the enquirer dismisses altogether from his thoughts the mechanism itself, and attends only to the symbols; the management of which is so extremely simple and obvious, that the most unpractised person, having once acquired an acquaintance with the signs, cannot fail to comprehend their use.A remarkable instance of the power and utility of this notation occurred in a certain stage of the invention of the calculating machinery. A question arose as to the best method of producing and arranging a certain series of motions necessary to print and calculate a number. The inventor, assisted by a practical engineer of considerable experience and skill, had so arranged these motions, that the whole might be performed by twelve revolutions of the principal moving axis. It seemed, however, desirable, if possible, to execute these motions by a less number of revolutions. To accomplish this, the engineer sat down to study the complicated details of a part of the machinery which had been put together; the inventor at the same time applied himself to the consideration of the arrangement and connexion of the symbols in his scheme of notation. After a short time, by some transposition of symbols, he caused the received motions to be completed by eight turns of the axis. This he accomplished by transferring the symbols which occupied the last four divisions of his scheme, into such blank spaces as he could discover in the first eight divisions; due care being taken that no symbols should express actions at once simultaneous and incompatible. Pushing his enquiry, however, still further, he proceeded to ascertain whether his scheme of symbols did not admit of a still more compact arrangement, and whether eight revolutions were not more than enough to accomplish what was required. Here the powers of the practical engineer completely broke down. By no effort could he bring before his mind such a view of the complicated mechanism as would enable him to decide upon any improved arrangement. The inventor, however, without any extraordinary mental exertion, and merely by sliding a bit of ruled pasteboard up and down his plan, in search of a vacancy where the different motions might be placed, at length contrived to pack all the motions, which had previously occupied eight turns of the handle, into five turns. The symbolic instrument with which he conducted the investigation, now informed him of the impossibility of reducing the action of the machine to a more condensed form. This appeared by the fulness of every space along the lines of compatible action. It was, however, still possible, by going back to the actual machinery, to ascertain whether movements, which, under existing arrangements, were incompatible, might not be brought into harmony. This he accordingly did, and succeeded in diminishing the number of incompatible conditions, and thereby rendered it possible to make actions simultaneous which were before necessarily successive. The notation was now again called into requisition, and a new disposition of the parts was made. At this point of the investigation, this extraordinary instrument of mechanical analysis put forth one of its most singular exertions of power. It presented to the eye of the engineer two currents of mechanical action, which, from their nature, could not be simultaneous; and each of which occupied a complete revolution of the axis, except about a twentieth; the one occupying the last nineteen-twentieths of a complete revolution of the axis, and the other occupying the first nineteen-twentieths of a complete revolution. One of these streams of action was, the successive picking up by the carrying fingers of the successive carrying claws; and the other was, the successive shooting of nineteen bolts by the nineteen bolting fingers. The notation rendered it obvious, that as the bolting action commenced a small space below the commencement of the carrying, and ended an equal space below the termination of the carrying, the two streams of action could be made to flow after one another in one and the same revolution of the axis. He thus succeeded in reducing the period of completing the action to four turns of the axis; when the notation again informed him that he had again attained a limit of condensed action, which could not be exceeded without a further change in the mechanism. To the mechanism he again recurred, and soon found that it was possible to introduce a change which would cause the action to be completed in three revolutions of the axis. An odd number of revolutions, however, being attended with certain practical inconveniences, it was considered more advantageous to execute the motions in four turns; and here again the notation put forth its powers, by informing the inventor,through the eye, almost independent of his mind, what would be the most elegant, symmetrical, and harmonious disposition of the required motions in four turns. This application of an almost metaphysical system of abstract signs, by which the motion of the hand performs the office of the mind, and of profound practical skill in mechanics alternately, to the construction of a most complicated engine, forcibly reminds us of a parallel in another science, where the chemist with difficulty succeeds in dissolving a refractory mineral, by the alternate action of the most powerful acids, and the most caustic alkalies, repeated in long-continued succession.This important discovery was explained by Mr Babbage, in a short paper read before the Royal Society, and published in the Philosophical Transactions in 1826.[15]It is to us more a matter of regret than surprise, that the subject did not receive from scientific men in this country that attention to which its importance in every practical point of view so fully entitled it. To appreciate it would indeed have been scarcely possible, from the very brief memoir which its inventor presented, unaccompanied by any observations or arguments of a nature to force it upon the attention of minds unprepared for it by the nature of their studies or occupations. In this country, science has been generally separated from practical mechanics by a wide chasm. It will be easily admitted, that an assembly of eminent naturalists and physicians, with a sprinkling of astronomers, and one or two abstract mathematicians, were not precisely the persons best qualified to appreciate such an instrument of mechanical investigation as we have here described. We shall not therefore be understood as intending the slightest disrespect for these distinguished persons, when we express our regret, that a discovery of such paramount practical value, in a country preeminently conspicuous for the results of its machinery, should fall still-born and inconsequential through their hands, and be buried unhonoured and undiscriminated in their miscellaneous transactions. We trust that a more auspicious period is at hand; that the chasm which has separated practical from scientific men will speedily close; and that that combination of knowledge will be effected, which can only be obtained when we see the men of science more frequently extending their observant eye over the wonders of our factories, and our great practical manufacturers, with a reciprocal ambition, presenting themselves as active and useful members of our scientific associations. When this has taken place, an order of scientific men will spring up, which will render impossible an oversight so little creditable to the country as that which has been committed respecting the mechanical notation.[16]This notation has recently undergone very considerable extension and improvement. An additional section has been introduced into it; designed to express the process of circulation in machines, through which fluids, whether liquid or gaseous, are moved. Mr Babbage, with the assistance of a friend who happened to be conversant with the structure and operation of the steam-engine, has illustrated it with singular felicity and success in its application to that machine. An eminent French surgeon, on seeing the scheme of notation thus applied, immediately suggested the advantages which must attend it as an instrument for expressing the structure, operation, and circulation of the animal system; and we entertain no doubt of its adequacy for that purpose. Not only the mechanical connexion of the solid members of the bodies of men and animals, but likewise the structure and operation of the softer parts, including the muscles, integuments, membranes, &c.; the nature, motion, and circulation of the various fluids, their reciprocal effects, the changes through which they pass, the deposits which they leave in various parts of the system; the functions of respiration, digestion, and assimilation,—all would find appropriate symbols and representatives in the notation, even as it now stands, without those additions of which, however, it is easily susceptible. Indeed, when we reflect for what a very different purpose this scheme of symbols was contrived, we cannot refrain from expressing our wonder that it should seem, in all respects, as if it had been designed expressly for the purposes of anatomy and physiology.[15]Phil. Trans. 1820, Part III. p. 250, on a method of expressing by signs the action of machinery.[16]This discovery has been more justly appreciated by scientific men abroad. It was, almost immediately after its publication, adopted as the topic of lectures, in an institution on the Continent for the instruction of Civil Engineers.Another of the uses which the slightest attention to the details of this notation irresistibly forces upon our notice, is to exhibit, in the form of a connected plan or map, the organization of an extensive factory, or any great public institution, in which a vast number of individuals are employed, and their duties regulated (as they generally are or ought to be) by a consistent and well-digested system. The mechanical notation is admirably adapted, not only to express such an organized connexion of human agents, but even to suggest the improvements of which such organization is susceptible—to betray its weak and defective points, and to disclose, at a glance, the origin of any fault which may, from time to time, be observed in the working of the system. Our limits, however, preclude us from pursuing this interesting topic to the extent which its importance would justify. We shall be satisfied if the hints here thrown out should direct to the subject the attention of those who, being most interested in such an enquiry, are likely to prosecute it with greatest success.One of the consequences which has arisen in the prosecution of the invention of the calculating machinery, has been the discovery of a multitude of mechanical contrivances, which have been elicited by the exigencies of the undertaking, and which are as novel in their nature as the purposes were novel which they were designed to attain. In some cases several different contrivances were devised for the attainment of the same end; and that among them which was best suited for the purpose was finally selected: the rejected expedients—those overflowings or waste of the invention—were not, however, always found useless. Like thewastein various manufactures, they were soon converted to purposes of utility. These rejected contrivances have found their way, in many cases, into the mills of our manufacturers; and we now find them busily effecting purposes, far different from any which the inventor dreamed of, in the spinning-frames of Manchester.[17][17]An eminent and wealthy retired manufacturer at Manchester assured us, that on the occasion of a visit to London, when he was favoured with a view of the calculating machinery, he found in it mechanical contrivances, which he subsequently introduced with the greatest advantage into his own spinning-machinery.Another department of mechanical art, which has been enriched by this invention, has been that oftools. The great variety of new forms which it was necessary to produce, created the necessity of contriving and constructing a vast number of novel and most valuable tools, by which, with the aid of the lathe, and that alone, the required forms could be given to the different parts of the machinery with all the requisite accuracy.The idea of calculation by mechanism is not new. Arithmetical instruments, such as the calculating boards of the ancients, on which they made their computations by the aid of counters—theAbacus, an instrument for computing by the aid of balls sliding upon parallel rods—the method of calculation invented by Baron Napier, called by himRhabdology, and since calledNapier's bones—the Swan Pan of the Chinese—and other similar contrivances, among which more particularly may be mentioned the Sliding Rule, of so much use in practical calculations to modern engineers, will occur to every reader: these may more properly be calledarithmetical instruments, partaking more or less of a mechanical character. But the earliest piece of mechanism to which the name of a 'calculating machine' can fairly be given, appears to have been a machine invented by the celebrated Pascal. This philosopher and mathematician, at a very early age, being engaged with his father, who held an official situation in Upper Normandy, the duties of which required frequent numerical calculations, contrived a piece of mechanism to facilitate the performance of them. This mechanism consisted of a series of wheels, carrying cylindrical barrels, on which were engraved the ten arithmetical characters, in a manner not very dissimilar to that already described. The wheel which expressed each order of units was so connected with the wheel which expressed the superior order, that when the former passed from 9 to 0, the latter was necessarily advanced one figure; and thus the process of carrying was executed by mechanism: when one number was to be added to another by this machine, the addition of each figure to the other was performed by the hand; when it was required to add more than two numbers, the additions were performed in the same manner successively; the second was added to the first, the third to their sum, and so on.Subtraction was reduced to addition by the method of arithmetical complements; multiplication was performed by a succession of additions; and division by a succession of subtractions. In all cases, however, the operations were executed from wheel to wheel by the hand.[18][18]See a description of this machine by Diderot, in theEncyc. Method.; also in the works of Pascal, tom. IV., p. 7; Paris, 1819.This mechanism, which was invented about the year 1650, does not appear ever to have been brought into any practical use; and seems to have speedily found its appropriate place in a museum of curiosities. It was capable of performing only particular arithmetical operations, and these subject to all the chances of error in manipulation; attended also with little more expedition (if so much), as would be attained by the pen of an expert computer.This attempt of Pascal was followed by various others, with very little improvement, and with no additional success. Polenus, a learned and ingenious Italian, invented a machine by which multiplication was performed, but which does not appear to have afforded any material facilities, nor any more security against error than the common process of the pen. A similar attempt was made by Sir Samuel Moreland, who is described as having transferred to wheel-work the figures ofNapier's bones, and as having made some additions to the machine of Pascal.[19][19]Equidem Morelandus in Anglia, tubæ stentoriæ author, Rhabdologiam ex baculis in cylindrulos transtulit, et additiones auxiliares peragit in adjuncta machina additionum Pascaliana.Grillet, a French mechanician, made a like attempt with as little success. Another contrivance for mechanical calculation was made by Saunderson. Mechanical contrivances for performing particular arithmetical processes were also made about a century ago by Delepréne and Boitissendeau; but they were merely modifications of Pascal's, without varying or extending its objects. But one of the most remarkable attempts of this kind which has been made since that of Pascal, was a machine invented by Leibnitz, of which we are not aware that any detailed or intelligible description was ever published. Leibnitz described its mode of operation, and its results, in the Berlin Miscellany,[20]but he appears to have declined any description of its details. In a letter addressed by him to Bernoulli, in answer to a request of the latter that he would afford a description of the machinery, he says, 'Descriptionem ejus dare accuratam res non facilis foret. De effectu ex eo judicaveris quod ad multiplicandum numerum sex figurarum,e.g.rotam quamdam tantum sexies gyrari necesse est, nulla alia opera mentis, nullis additionibus intervenientibus; quo facto, integrum absolutumque productum oculis objicietur.'[21]He goes on to say that the process of division is performed independently of a succession of subtractions, such as that used by Pascal.[20]Tom. I., p. 317.[21]Com. Epist.tom. I., p. 289.It appears that this machine was one of an extremely complicated nature, which would be attended with considerable expense of construction, and only fit to be used in cases where numerous and expensive calculations were necessary.[22]Leibnitz observes to his correspondent, who required whether it might not be brought into common use, 'Non est facta pro his qui olera aut pisculos vendunt, sed pro observatoriis aut cameris computorum, aut aliis, qui sumptus facile ferunt et multo calculo egent.' Nevertheless, it does not appear that this contrivance, of which the inventor states that he caused two models to be made, was ever applied to any useful purpose; nor indeed do the mechanical details of the invention appear ever to have been published.[22]Sed machinam esse sumptuosam et multarum rotarum instar horologii: Huygenius aliquoties admonuit ut absolvi curarem; quod non sine magno sumptu tædioque factum est, dum varie mihi cum opificibus fuit conflictandum.—Com. Epist.Even had the mechanism of these machines performed all which their inventors expected from them, they would have been still altogether inapplicable for the purposes to which it is proposed that the calculating machinery of Mr Babbage shall be applied. They were all constructed with a view to perform particular arithmetical operations, and in all of them the accuracy of the result depended more or less upon manipulation. The principle of the calculating machinery of Mr Babbage is perfectly general in its nature, not depending on anyparticular arithmetical operation, and is equally applicable to numerical tables of every kind. This distinguishing characteristic was well expressed by Mr Colebrooke in his address to the Astronomical Society on this invention. 'The principle which essentially distinguishes Mr Babbage's invention from all these is, that it proposes to calculate a series of numbers following any law, by the aid of differences, and that by setting a few figures at the outset; a long series of numbers is readily produced by a mechanical operation. The method of differences in a very wide sense is the mathematical principle of the contrivance. A machine to add a number of arbitrary figures together is no economy of time or trouble, since each individual figure must be placed in the machine; but it is otherwise when those figures follow some law. The insertion of a few at first determines the magnitude of the next, and those of the succeeding. It is this constant repetition of similar operations which renders the computation of tables a fit subject for the application of machinery. Mr Babbage's invention puts an engine in the place of the computer; the question is set to the instrument, or the instrument is set to the question, and by simply giving it motion the solution is wrought, and a string of answers is exhibited.' But perhaps the greatest of its advantages is, that it prints what it calculates; and this completely precludes the possibility of error in those numerical results which pass into the hands of the public. 'The usefulness of the instrument,' says Mr Colebrooke, 'is thus more than doubled; for it not only saves time and trouble in transcribing results into a tabular form, and setting types for the printing of the table, but it likewise accomplishes the yet more important object of ensuring accuracy, obviating numerous sources of error through the careless hands of transcribers and compositors.'Some solicitude will doubtless be felt respecting the present state of the calculating machinery, and the probable period of its completion. In the beginning of the year 1829, Government directed the Royal Society to institute such enquiries as would enable them to report upon the state to which it had then arrived; and also whether the progress made in its construction confirmed them in the opinion which they had formerly expressed,—that it would ultimately prove adequate to the important object which it was intended to attain. The Royal Society, in accordance with these directions, appointed a Committee to make the necessary enquiry, and report. This Committee consisted of Mr Davies Gilbert, then President, the Secretaries, Sir John Herschel, Mr Francis Baily, Mr Brunel, engineer, Mr Donkin, engineer, Mr G. Rennie, engineer, Mr Barton, comptroller of the Mint, and Mr Warburton, M.P. The voluminous drawings, the various tools, and the portion of the machinery then executed, underwent a close and elaborate examination by this Committee, who reported upon it to the Society.They stated in their report, that they declined the consideration of the principle on which the practicability of the machinery depends, and of the public utility of the object which it proposes to attain; because they considered the former fully admitted, and the latter obvious to all who consider the immense advantage of accurate numerical tables in all matters of calculation, especially in those which relate to astronomy and navigation, and the great variety and extent of those which it is professedly the object of the machinery to calculate and print with perfect accuracy;—that absolute accuracy being one of the prominent pretensions of the undertaking, they had directed their attention especially to this point, by careful examination of the drawings and of the work already executed, and by repeated conferences with Mr Babbage on the subject;—that the result of their enquiry was, that such precautions appeared to have been taken in every part of the contrivance, and so fully aware was the inventor of every circumstance which might by possibility produce error, that they had no hesitation in stating their belief that these precautions were effectual, and that whatever the machine would do, it would do truly.They further stated, that the progress which Mr Babbage had then made, considering the very great difficulties to be overcome in an undertaking of so novel a kind, fully equalled any expectations that could reasonably have been formed; and that although several years had elapsed since the commencement of the undertaking, yet when the necessity of constructing plans, sections, elevations, and working drawings of every part; of constructing, and in many cases inventing, tools and machinery of great expense and complexity, necessary to form with the requisite precision parts of the apparatus differing from any which had previously been introduced in ordinary mechanical works; of making many trials to ascertain the value of each proposed contrivance; of altering, improving, and simplifying the drawings;—that, considering all these matters, the Committee, instead of feeling surprise at the time which the work has occupied, felt more disposed to wonder at the possibility of accomplishing so much.The Committee expressed their confident opinion of the adequacy of the machinery to work under all the friction and strain to which it can be exposed; of its durability, strength, solidity, and equilibrium; of the prevention of, or compensation for, wear by friction; of the accuracy of the various adjustments; and of the judgment and discretion displayed by the inventor, in his determination to admit into the mechanism nothing but the very best and most finished workmanship; as a contrary course would have been false economy, and might have led to the loss of the whole capital expended on it.Finally, considering all that had come before them, and relying on the talent and skill displayed by Mr Babbage as a mechanist in the progress of this arduous undertaking, not less for what remained, than on the matured and digested plan and admirable execution of what is completed, the Committee did not hesitate to express their opinion, that in the then state of the engine, they regarded it as likely to fulfil the expectations entertained of it by its inventor.This report was printed in the commencement of the year 1829. From that time until the beginning of the year 1833, the progress of the work has been slow and interrupted. Meanwhile many unfounded rumours have obtained circulation as to the course adopted by Government in this undertaking; and as to the position in which Mr Babbage stands with respect to it. We shall here state, upon authority on which the most perfect reliance may be placed, what have been the actual circumstances of the arrangement which has been made, and of the steps which have been already taken.Being advised that the objects of the projected machinery were of paramount national importance to a maritime country, and that, from its nature, it could never be undertaken with advantage by any individual as a pecuniary speculation, Government determined to engage Mr Babbage to construct the calculating engine for the nation. It was then thought that the work could be completed in two or three years; and it was accordingly undertaken on this understanding about the year 1821, and since then has been in progress. The execution of the workmanship was confided to an engineer by whom all the subordinate workmen were employed, and who supplied for the work the requisite tools and other machinery; the latter being his own property, and not that of Government. This engineer furnished, at intervals, his accounts, which were duly audited by proper persons appointed for that purpose. It was thought advisable—with a view, perhaps, to invest Mr Babbage with a more strict authority over the subordinate agents—that the payments of these accounts of the engineer should pass through his hands. The amount was accordingly from time to time issued to him by the Treasury, and paid over to the engineer. This circumstance has given rise to reports, that he has received considerable sums of money as a remuneration for his skill and labour in inventing and constructing this machinery. Such reports are altogether destitute of truth. He has received, neither directly nor indirectly, any remuneration whatever;—on the contrary, owing to various official delays in the issues of money from the Treasury for the payment of the engineer, he has frequently been obliged to advance these payments himself, that the work might proceed without interruption. Had he not been enabled to do this from his private resources, it would have been impossible that the machinery could have arrived at its present advanced state.It will be a matter of regret to every friend of science to learn, that, notwithstanding such assistance, the progress of the work has been suspended, and the workmen dismissed for more than a year and a half; nor does there at the present moment appear to be any immediate prospect of its being resumed. What the causes may be of a suspension so extraordinary, of a project of such great national and universal interest,—in which the country has already invested a sum of such serious amount as L.15,000,—is a question which will at once suggest itself to every mind; and is one to which, notwithstanding frequent enquiries, in quarters from which correct information might be expected, we have not been able to obtain any satisfactory answer. It is not true, we are assured, that the Government object to make the necessary payments, or even advances, to carry on the work. It is not true, we also are assured, that any practical difficulty has arisen in the construction of the mechanism;—on the contrary, the drawings of all the parts of it are completed, and may be inspected by any person appointed on the part of Government to examine them.[23]Mr Babbage is known as a man of unwearied activity, and aspiring ambition. Why, then, it may be asked, is it that he, seeing his present reputation and future fame depending in so great a degree upon the successful issue of this undertaking, has nevertheless allowed it to stand still for so long a period, without distinctly pointing out to Government the course which they should adopt to remove the causes of delay? Had he done this (which we consider to be equally due to the nation and to himself), he would have thrown upon Government and its agents the whole responsibility for the delay and consequent loss; but we believe he has not done so. On the contrary, it is said that he has of late almost withdrawn from all interference on the subject, either with the Government or the engineer. Does not Mr Babbage perceive the inference which the world will draw from this course of conduct? Does he not see that they will impute it to a distrust of his own power, or even to a consciousness of his own inability to complete what he has begun? We feel assured that such is not the case; and we are anxious, equally for the sake of science, and for Mr Babbage's own reputation, that the mystery—for such it must be regarded—should be cleared up; and that all obstructions to the progress of the undertaking should immediately be removed. Does this supineness and apparent indifference, so incompatible with the known character of Mr Babbage, arise from any feeling of dissatisfaction at the existing arrangements between himself and the Government? If such be the actual cause of the delay, (and we believe that, in some degree, it is so,) we cannot refrain from expressing our surprise that he does not adopt the candid and straightforward course of declaring the grounds of his discontent, and explaining the arrangement which he desires to be adopted. We do not hesitate to say, that every reasonable accommodation and assistance ought to be afforded him. But if he will pertinaciously abstain from this, to our minds, obvious and proper course, then it is surely the duty of Government to appoint proper persons to enquire into and report on the present state of the machinery; to ascertain the causes of its suspension; and to recommend such measures as may appear to be most effectual to ensure its speedy completion. If they do not by such means succeed in putting the project in a state of advancement, they will at least shift from themselves all responsibility for its suspension.
[12]The wheels, and every other part of the mechanism except the axes, springs, and such parts as are necessarily of steel, are formed of an alloy of copper with a small portion of tin.
[12]The wheels, and every other part of the mechanism except the axes, springs, and such parts as are necessarily of steel, are formed of an alloy of copper with a small portion of tin.
It will be observed that the wheels of the seventh column are always quiescent in this process; and it may be asked, of what use they are, and whether some mechanism of a fixed nature would not serve the same purpose? It must, however, be remembered, that for different tables there will be different constant differences; and that when the calculation of a table is about to commence, the wheels on the seventh axis must be moved by the hand, so as to express the constant difference, whatever it may be. In tables, also, which have not a difference rigorously constant, it will be necessary, after a certain number of calculations, to change the constant difference by the hand; and in this case the wheels of the seventh axis must be moved when occasion requires. Such adjustment, however, will only be necessary at very distant intervals, and after a considerable extent of printing and calculation has taken place; and when it is necessary, a provision is made in the machinery by which notice will be given by the sounding of a bell, so that the machine may not run beyond the extent of its powers of calculation.
Immediately behind the seven axes on which the figure wheels revolve, are seven other axes; on which are placed, first, the wheels already described as driven by the figure wheels, and which bear upon them the wedge which withdraws the bolt immediately over these latter wheels, and on the same axis is placed the adding bolt. From the bottom of this bolt there projects downwards the pin, which acts upon the unbolting wedge by which the bolt is withdrawn: from the upper surface of the bolt proceeds a tooth, which, when the bolt is shot, enters between the teeth of the adding wheel, which turns on the same axis, and is placed immediately above the bolt: its teeth, on which the bolt acts, are like the teeth of a crown wheel, and are presented downwards. The bolt is fixed upon this axis, and turns with it; but the adding wheel above the bolt, and the unbolting wheel below it, both turn upon the axis, and independently of it. When the axis is made to revolve by the moving power, the bolt revolves with it; and so long as the tooth of the bolt remains inserted between those of the adding wheel, the latter is likewise moved; but when the lower pin of the bolt encounters the unbolting wedge on the lower wheel, the tooth of the bolt is withdrawn, and the motion of the adding wheel is stopped. This adding wheel is furnished with spur teeth, besides the crown teeth just mentioned; and these spur teeth are engaged with those of that unbolting wheel which is in connexion with the adjacent figure wheel to which the addition is to be made. By such an arrangement it is evident that the revolution of the bolt will necessarily add to the adjacent figure wheel the requisite number.
It will be perceived, that upon the same axis are placed an unbolting wheel, a bolt, and an adding wheel, one above the other, for every figure wheel; and as there are eighteen figure wheels there will be eighteen tiers; each tier formed of an unbolting wheel, a bolt, and an adding wheel, placed one above the other; the wheels on this axis all revolving independent of the axis, but the bolts being all fixed upon it. The same observations, of course, will apply to each of the seven axes.
At the commencement of every revolution of the adding axes, it is evident that the several bolts placed upon them must be shot in order to perform the various additions. This is accomplished by a third set of seven axes, placed at some distance behind the range of the wheels, which turn upon the adding axes: these are calledbolting axes. On these bolting axes are fixed, so as to revolve with them, a bolting finger opposite to each bolt; as the bolting axis is made to revolve by the moving power, the bolting finger is turned, and as it passes near the bolt, it encounters the shoulder of a hammer or lever, which strikes the heel of the bolt, and presses it forward so as to shoot its tooth between the crown teeth of the adding wheel. The only exception to this action is the case in which 0 happens to be at the index of the figure wheel; in that case, the lever or hammer, which the bolting finger would encounter, is, as before stated, lifted out of the way of the bolting finger, so that it revolves without encountering it. It is on the bolting axes that the fingers are spirally arranged so as to equalize their action, as already explained.
The same axes in the front of the machinery on which the figure wheels turn, are made to serve the purpose ofcarrying. Each of these bear a series of fingers which turn with them, and which encounter a carrying claw, already described, so as to make the carriage: these carrying fingers are also spirally arranged on their axes, as already described.
Although the absolute accuracy which appears to be ensured by the mechanical arrangements here described is such as to render further precautions nearly superfluous, still it may be right to state, that, supposing it were possible for an error to be produced in calculation, this error could be easily and speedily detected in the printed tables: it would only be necessary to calculate a number of the table taken at intervals, through which the mechanical action of the machine has not been suspended, and during which it has received no adjustment by the hand: if the computed number be found to agree with those printed, it may be taken for granted that all the intermediate numbers are correct; because, from the nature of the mechanism, and the principle of computation, an error occurring in any single number of the table would be unavoidably entailed, in an increasing ratio, upon all the succeeding numbers.
We have hitherto spoken merely of the practicability of executing by the machinery, when completed, that which its inventor originally contemplated—namely, the calculating and printing of all numerical tables, derived by the method of differences from a constant difference. It has, however, happened that the actual powers of the machinery greatly transcend those contemplated in its original design:—they not only have exceeded the most sanguine anticipations of its inventor, but they appear to have an extent to which it is utterly impossible, even for the most acute mathematical thinker, to fix a probable limit. Certain subsidiary mechanical inventions have, in the progress of the enterprise, been, by the very nature of the machinery, suggested to the mind of the inventor, which confer upon it capabilities which he had never foreseen. It would be impossible even to enumerate, within the limits of this article, much less to describe in detail, those extraordinary mechanical arrangements, the effects of which have not failed to strike with astonishment every one who has been favoured with an opportunity of witnessing them, and who has been enabled, by sufficient mathematical attainments, in any degree to estimate their probable consequences.
As we have described the mechanism, the axes containing the several differences are successively and regularly added one to another; but there are certain mechanical adjustments, and these of a very simple nature, which being thrown into action, will cause a difference of any order to be added any number of times to a difference of any other order; and that either proceeding backwards or forwards, from a difference of an inferior to one of a superior order, andvice versa.[13]
[13]The machine was constructed with the intention of tabulating the equation Delta^{7}_{u} = 0, but, by the means above alluded to, it is capable of tabulating such equations as the following: Delta^{7}u = a Delta u, Delta^{7}u = aDelta^{3}u, Delta^{7}u = units figure of Delta u.
[13]The machine was constructed with the intention of tabulating the equation Delta^{7}_{u} = 0, but, by the means above alluded to, it is capable of tabulating such equations as the following: Delta^{7}u = a Delta u, Delta^{7}u = aDelta^{3}u, Delta^{7}u = units figure of Delta u.
Among other peculiar mechanical provisions in the machinery is one by which, when the table for any order of difference amounts to a certain number, a certain arithmetical change would be made in the constant difference. In this way a series may be tabulated by the machine, in which the constant difference is subject to periodical change; or the very nature of the table itself may be subject to periodical change, and yet to one which has a regular law.
Some of these subsidiary powers are peculiarly applicable to calculations required in astronomy, and are therefore of eminent and immediate practical utility: others there are by which tables are produced, following the most extraordinary, and apparently capricious, but still regular laws. Thus a table will be computed, which, to any required extent, shall coincide with a given table, and which shall deviate from that table for a single term, or for any required number of terms, and then resume its course, or which shall permanently alter the law of its construction. Thus the engine has calculated a table which agreed precisely with a table of square numbers, until it attained the hundred and first term, which was not the square of 101, nor were any of the subsequent numbers squares. Again, it has computed a table which coincided with the series of natural numbers, as far as 100,000,001, but which subsequently followed another law. This result was obtained, not by working the engine through the whole of the first table, for that would have required an enormous length of time; but by showing, from the arrangement of the mechanism, that it must continue to exhibit the succession of natural numbers, until it would reach 100,000,000. To save time, the engine was set by the hand to the number 99999995, and was then put in regular operation. It produced successively the following numbers.[14]
99,999,99699,999,99799,999,99899,999,999100,000,000100,010,002100,030,003100,060,004100,100,005100,150,006&c. &c.
[14]Such results as this suggest a train of reflection on the nature and operation of general laws, which would lead to very curious and interesting speculations. The natural philosopher and astronomer will be hardly less struck with them than the metaphysician and theologian.
[14]Such results as this suggest a train of reflection on the nature and operation of general laws, which would lead to very curious and interesting speculations. The natural philosopher and astronomer will be hardly less struck with them than the metaphysician and theologian.
Equations have been already tabulated by the portion of the machinery which has been put together, which are so far beyond the reach of the present power of mathematics, that no distant term of the table can be predicted, nor any function discovered capable of expressing its general law. Yet the very fact of the table being produced by mechanism of an invariable form, and including a distinct principle of mechanical action, renders it quite manifest thatsomegeneral law must exist in every table which it produces. But we must dismiss these speculations: we feel it impossible to stretch the powers of our own mind, so as to grasp the probable capabilities of this splendid production of combined mechanical and mathematical genius; much less can we hope to enable others to appreciate them, without being furnished with such means of comprehending them as those with which we have been favoured. Years must in fact elapse, and many enquirers direct their energies to the cultivation of the vast field of research thus opened, before we can fully estimate the extent of this triumph of matter over mind. 'Nor is it,' says Mr Colebrooke, 'among the least curious results of this ingenious device, that it affords a new opening for discovery, since it is applicable, as has been shown by its inventor, to surmount novel difficulties of analysis. Not confined to constant differences, it is available in every case of differences that follow a definite law, reducible therefore to an equation. An engine adjusted to the purpose being set to work, will produce any distant term, or succession of terms, required—thus presenting the numerical solution of a problem, even though the analytical solution be yet undetermined.' That the future path of some important branches of mathematical enquiry must now in some measure be directed by the dictates of mechanism, is sufficiently evident; for who would toil on in any course of analytical enquiry, in which he must ultimately depend on the expensive and fallible aid of human arithmetic, with an instrument in his hands, in which all the dull monotony of numerical computation is turned over to the untiring action and unerring certainty of mechanical agency?
It is worth notice, that each of the axes in front of the machinery on which the figure wheels revolve, is connected with a bell, the tongue of which is governed by a system of levers, moved by the several figure wheels; an adjustment is provided by which the levers shall be dismissed, so as to allow the hammer to strike against the bell, whenever any proposed number shall be exhibited on the axis. This contrivance enables the machine to give notice to its attendants at any time that an adjustment may be required.
Among a great variety of curious accidental properties (so to speak) which the machine is found to possess, is one by which it is capable of solving numerical equations which have rational roots. Such an equation being reduced (as it always may be) by suitable transformations to that state in which the roots shall be whole numbers, the values 0, 1, 2, 3, &c., are substituted for the unknown quantity, and the corresponding values of the equation ascertained. From these a sufficient number of differences being derived, they are set upon the machine. The machine being then put in motion, the table axis will exhibit the successive values of the formula, corresponding to the substitutions of the successive whole numbers for the unknown quantity: at length the number exhibited on the table axis will be 0, which will evidently correspond to a root of the equation. By previous adjustment, the bell of the table axis will in this case ring and give notice of the exhibition of the value of the root in another part of the machinery.
If the equation have imaginary roots, the formula being necessarily a maximum or minimum on the occurrence of such roots, the first difference will become nothing; and the dials of that axis will under such circumstances present to the respective indices. By previous adjustment, the bell of this axis would here give notice of a pair of imaginary roots.
Mr Colebrooke speculates on the probable extension of these powers of the machine: 'It may not therefore be deemed too sanguine an anticipation when I express the hope that an instrument which, in its simpler form, attains to the extraction of roots of numbers, and approximates to the roots of equations, may, in a more advanced state of improvement, rise to the approximate solution of algebraic equations of elevated degrees. I refer to solutions of such equations proposed by La Grange, and more recently by other annalists, which involve operations too tedious and intricate for use, and which must remain without efficacy, unless some mode be devised of abridging the labour, or facilitating the means of its performance. In any case this engine tends to lighten the excessive and accumulating burden of arithmetical application of mathematical formulæ, and to relieve the progress of science from what is justly termed by the author of this invention, the overwhelming encumbrance of numerical detail.'
Although there are not more than eighteen figure wheels on each axis, and therefore it might be supposed that the machinery was capable of calculating only to the extent of eighteen decimal places; yet there are contrivances connected with it, by which, in two successive calculations, it will be possible to calculate even to the extent of thirty decimal places. Its powers, therefore, in this respect, greatly exceed any which can be required in practical science. It is also remarkable, that the machinery is capable of producing the calculated resultstrue to the last figure. We have already explained, that when the figure which would follow the last is greater than 4, then it would be necessary to increase the last figure by 1; since the excess of the calculated number above the true value would in such case be less than its defect from it would be, had the regularly computed final figure been adopted: this is a precaution necessary in all numerical tables, and it is one which would hardly have been expected to be provided for in the calculating machinery.
As might be expected in a mechanical undertaking of such complexity and novelty, many practical difficulties have since its commencement been encountered and surmounted. It might have been foreseen, that many expedients would be adopted and carried into effect, which farther experiments would render it necessary to reject; and thus a large source of additional expense could scarcely fail to be produced. To a certain extent this has taken place; but owing to the admirable system of mechanical drawings, which in every instance Mr Babbage has caused to be made, and owing to his own profound acquaintance with the practical working of the most complicated mechanism, he has been able to predict in every case what the result of any contrivance would be, as perfectly from the drawing, as if it had been reduced to the form of a working model. The drawings, consequently, form a most extensive and essential part of the enterprise. They are executed with extraordinary ability and precision, and may be considered as perhaps the best specimens of mechanical drawings which have ever been executed. It has been on these, and on these only, that the work of invention has been bestowed. In these, all those progressive modifications suggested by consideration and study have been made; and it was not until the inventor was fully satisfied with the result of any contrivance, that he had it reduced to a working form. The whole of the loss which has been incurred by the necessarily progressive course of invention, has been the expense of rejected drawings. Nothing can perhaps more forcibly illustrate the extent of labour and thought which has been incurred in the production of this machinery, than the contemplation of the working drawings which have been executed previously to its construction: these drawings cover above a thousand square feet of surface, and many of them are of the most elaborate and complicated description.
One of the practical difficulties which presented themselves at a very early stage in the progress of this undertaking, was the impossibility of bearing in mind all the variety of motions propagated simultaneously through so many complicated trains of mechanism. Nothing but the utmost imaginable harmony and order among such a number of movements, could prevent obstructions arising from incompatible motions encountering each other. It was very soon found impossible, by a mere act of memory, to guard against such an occurrence; and Mr Babbage found, that, without some effective expedient by which he could at a glance see what every moving piece in the machinery was doing at each instant of time, such inconsistencies and obstructions as are here alluded to must continually have occurred. This difficulty was removed by another invention of even a more general nature than the calculating machinery itself, and pregnant with results probably of higher importance. This invention consisted in the contrivance of a scheme ofmechanical notationwhich is generally applicable to all machinery whatsoever; and which is exhibited on a table or plan consisting of two distinct sections. In the first is traced, by a peculiar system of signs, the origin of every motion which takes place throughout the machinery; so that the mechanist or inventor is able, by moving his finger along a certain line, to follow out the motion of every piece from effect to cause, until he arrives at the prime mover. The same sign which thus indicates thesourceof motion indicates likewise thespeciesof motion, whether it be continuous or reciprocating, circular or progressive, &c. The same system of signs further indicates the nature of the mechanical connexion between the mover and the thing moved, whether it be permanent and invariable (as between the two arms of a lever), or whether the mover and the moved are separate and independent pieces, as is the case when a pinion drives a wheel; also whether the motion of one piece necessarily implies the motion of another; or when such motion in the one is interrupted, and in the other continuous, &c.
The second section of the table divides the time of a complete period of the machinery into any required number of parts; and it exhibits in a map, as it were, that which every part of the machine is doing at each moment of time. In this way, incompatibility in the motions of different parts is rendered perceptible at a glance. By such means the contriver of machinery is not merely prevented from introducing into one part of the mechanism any movement inconsistent with the simultaneous action of the other parts; but when he finds that the introduction of any particular movement is necessary for his purpose, he can easily and rapidly examine the whole range of the machinery during one of its periods, and can find by inspection whether there is any, and what portion of time, at which no motion exists incompatible with the desired one, and thus discover aniche, as it were, in which to place the required movement. A further and collateral advantage consists in placing it in the power of the contriver to exercise the utmost possible economy oftimein the application of his moving power. For example, without some instrument of mechanical enquiry equally powerful with that now described, it would be scarcely possible, at least in the first instance, so to arrange the various movements that they should be all executed in the least possible number of revolutions of the moving axis. Additional revolutions would almost inevitably be made for the purpose of producing movements and changes which it would be possible to introduce in some of the phases of previous revolutions: and there is no one acquainted with the history of mechanical invention who must not be aware, that in the progressive contrivance of almost every machine the earliest arrangements are invariably defective in this respect; and that it is only by a succession of improvements, suggested by long experience, that that arrangement is at length arrived at, which accomplishes all the necessary motions in the shortest possible time. By the application of the mechanical notation, however, absolute perfection may be arrived at in this respect; even before a single part of the machinery is constructed, and before it has any other existence than that which it obtains upon paper.
Examples of this class of advantages derivable from the notation will occur to the mind of every one acquainted with the history of mechanical invention. In the common suction-pump, for example, the effective agency of the power is suspended during the descent of the piston. A very simple contrivance, however, will transfer to the descent the work to be accomplished in the next ascent; so that the duty of four strokes of the piston may thus be executed in the time of two. In the earlier applications of the steam-engine, that machine was applied almost exclusively to the process of pumping; and the power acted only during the descent of the piston, being suspended during its ascent. When, however, the notion of applying the engine to the general purposes of manufacture occurred to the mind of Watt, he saw that it would be necessary to cause it to produce a continued rotatory motion; and, therefore, that the intervals of intermission must be filled up by the action of the power. He first proposed to accomplish this by a second cylinder working alternately with the first; but it soon became apparent that the blank which existed during the upstroke in the action of the power, might be filled up by introducing the steam at both ends of the cylinder alternately. Had Watt placed before him a scheme of mechanical notation such as we allude to, this expedient would have been so obtruded upon him that he must have adopted it from the first.
One of the circumstances from which the mechanical notation derives a great portion of its power as an instrument of investigation and discovery, is that it enables the inventor to dismiss from his thoughts, and to disencumber his imagination of the arrangement and connexion of the mechanism; which, when it is very complex (and it is in that case that the notation is most useful), can only be kept before the mind by an embarrassing and painful effort. In this respect the powers of the notation may not inaptly be illustrated by the facilities derived in complex and difficult arithmetical questions from the use of the language and notation of algebra. When once the peculiar conditions of the question are translated into algebraical signs, and 'reduced to an equation,' the computist dismisses from his thoughts all the circumstances of the question, and is relieved from the consideration of the complicated relations of the quantities of various kinds which may have entered it. He deals with the algebraical symbols, which are the representatives of those quantities and relations, according to certain technical rules of a general nature, the truth of which he has previously established; and, by a process almost mechanical, he arrives at the required result. What algebra is to arithmetic, the notation we now allude to is to mechanism. The various parts of the machinery under consideration being once expressed upon paper by proper symbols, the enquirer dismisses altogether from his thoughts the mechanism itself, and attends only to the symbols; the management of which is so extremely simple and obvious, that the most unpractised person, having once acquired an acquaintance with the signs, cannot fail to comprehend their use.
A remarkable instance of the power and utility of this notation occurred in a certain stage of the invention of the calculating machinery. A question arose as to the best method of producing and arranging a certain series of motions necessary to print and calculate a number. The inventor, assisted by a practical engineer of considerable experience and skill, had so arranged these motions, that the whole might be performed by twelve revolutions of the principal moving axis. It seemed, however, desirable, if possible, to execute these motions by a less number of revolutions. To accomplish this, the engineer sat down to study the complicated details of a part of the machinery which had been put together; the inventor at the same time applied himself to the consideration of the arrangement and connexion of the symbols in his scheme of notation. After a short time, by some transposition of symbols, he caused the received motions to be completed by eight turns of the axis. This he accomplished by transferring the symbols which occupied the last four divisions of his scheme, into such blank spaces as he could discover in the first eight divisions; due care being taken that no symbols should express actions at once simultaneous and incompatible. Pushing his enquiry, however, still further, he proceeded to ascertain whether his scheme of symbols did not admit of a still more compact arrangement, and whether eight revolutions were not more than enough to accomplish what was required. Here the powers of the practical engineer completely broke down. By no effort could he bring before his mind such a view of the complicated mechanism as would enable him to decide upon any improved arrangement. The inventor, however, without any extraordinary mental exertion, and merely by sliding a bit of ruled pasteboard up and down his plan, in search of a vacancy where the different motions might be placed, at length contrived to pack all the motions, which had previously occupied eight turns of the handle, into five turns. The symbolic instrument with which he conducted the investigation, now informed him of the impossibility of reducing the action of the machine to a more condensed form. This appeared by the fulness of every space along the lines of compatible action. It was, however, still possible, by going back to the actual machinery, to ascertain whether movements, which, under existing arrangements, were incompatible, might not be brought into harmony. This he accordingly did, and succeeded in diminishing the number of incompatible conditions, and thereby rendered it possible to make actions simultaneous which were before necessarily successive. The notation was now again called into requisition, and a new disposition of the parts was made. At this point of the investigation, this extraordinary instrument of mechanical analysis put forth one of its most singular exertions of power. It presented to the eye of the engineer two currents of mechanical action, which, from their nature, could not be simultaneous; and each of which occupied a complete revolution of the axis, except about a twentieth; the one occupying the last nineteen-twentieths of a complete revolution of the axis, and the other occupying the first nineteen-twentieths of a complete revolution. One of these streams of action was, the successive picking up by the carrying fingers of the successive carrying claws; and the other was, the successive shooting of nineteen bolts by the nineteen bolting fingers. The notation rendered it obvious, that as the bolting action commenced a small space below the commencement of the carrying, and ended an equal space below the termination of the carrying, the two streams of action could be made to flow after one another in one and the same revolution of the axis. He thus succeeded in reducing the period of completing the action to four turns of the axis; when the notation again informed him that he had again attained a limit of condensed action, which could not be exceeded without a further change in the mechanism. To the mechanism he again recurred, and soon found that it was possible to introduce a change which would cause the action to be completed in three revolutions of the axis. An odd number of revolutions, however, being attended with certain practical inconveniences, it was considered more advantageous to execute the motions in four turns; and here again the notation put forth its powers, by informing the inventor,through the eye, almost independent of his mind, what would be the most elegant, symmetrical, and harmonious disposition of the required motions in four turns. This application of an almost metaphysical system of abstract signs, by which the motion of the hand performs the office of the mind, and of profound practical skill in mechanics alternately, to the construction of a most complicated engine, forcibly reminds us of a parallel in another science, where the chemist with difficulty succeeds in dissolving a refractory mineral, by the alternate action of the most powerful acids, and the most caustic alkalies, repeated in long-continued succession.
This important discovery was explained by Mr Babbage, in a short paper read before the Royal Society, and published in the Philosophical Transactions in 1826.[15]It is to us more a matter of regret than surprise, that the subject did not receive from scientific men in this country that attention to which its importance in every practical point of view so fully entitled it. To appreciate it would indeed have been scarcely possible, from the very brief memoir which its inventor presented, unaccompanied by any observations or arguments of a nature to force it upon the attention of minds unprepared for it by the nature of their studies or occupations. In this country, science has been generally separated from practical mechanics by a wide chasm. It will be easily admitted, that an assembly of eminent naturalists and physicians, with a sprinkling of astronomers, and one or two abstract mathematicians, were not precisely the persons best qualified to appreciate such an instrument of mechanical investigation as we have here described. We shall not therefore be understood as intending the slightest disrespect for these distinguished persons, when we express our regret, that a discovery of such paramount practical value, in a country preeminently conspicuous for the results of its machinery, should fall still-born and inconsequential through their hands, and be buried unhonoured and undiscriminated in their miscellaneous transactions. We trust that a more auspicious period is at hand; that the chasm which has separated practical from scientific men will speedily close; and that that combination of knowledge will be effected, which can only be obtained when we see the men of science more frequently extending their observant eye over the wonders of our factories, and our great practical manufacturers, with a reciprocal ambition, presenting themselves as active and useful members of our scientific associations. When this has taken place, an order of scientific men will spring up, which will render impossible an oversight so little creditable to the country as that which has been committed respecting the mechanical notation.[16]This notation has recently undergone very considerable extension and improvement. An additional section has been introduced into it; designed to express the process of circulation in machines, through which fluids, whether liquid or gaseous, are moved. Mr Babbage, with the assistance of a friend who happened to be conversant with the structure and operation of the steam-engine, has illustrated it with singular felicity and success in its application to that machine. An eminent French surgeon, on seeing the scheme of notation thus applied, immediately suggested the advantages which must attend it as an instrument for expressing the structure, operation, and circulation of the animal system; and we entertain no doubt of its adequacy for that purpose. Not only the mechanical connexion of the solid members of the bodies of men and animals, but likewise the structure and operation of the softer parts, including the muscles, integuments, membranes, &c.; the nature, motion, and circulation of the various fluids, their reciprocal effects, the changes through which they pass, the deposits which they leave in various parts of the system; the functions of respiration, digestion, and assimilation,—all would find appropriate symbols and representatives in the notation, even as it now stands, without those additions of which, however, it is easily susceptible. Indeed, when we reflect for what a very different purpose this scheme of symbols was contrived, we cannot refrain from expressing our wonder that it should seem, in all respects, as if it had been designed expressly for the purposes of anatomy and physiology.
[15]Phil. Trans. 1820, Part III. p. 250, on a method of expressing by signs the action of machinery.
[15]Phil. Trans. 1820, Part III. p. 250, on a method of expressing by signs the action of machinery.
[16]This discovery has been more justly appreciated by scientific men abroad. It was, almost immediately after its publication, adopted as the topic of lectures, in an institution on the Continent for the instruction of Civil Engineers.
[16]This discovery has been more justly appreciated by scientific men abroad. It was, almost immediately after its publication, adopted as the topic of lectures, in an institution on the Continent for the instruction of Civil Engineers.
Another of the uses which the slightest attention to the details of this notation irresistibly forces upon our notice, is to exhibit, in the form of a connected plan or map, the organization of an extensive factory, or any great public institution, in which a vast number of individuals are employed, and their duties regulated (as they generally are or ought to be) by a consistent and well-digested system. The mechanical notation is admirably adapted, not only to express such an organized connexion of human agents, but even to suggest the improvements of which such organization is susceptible—to betray its weak and defective points, and to disclose, at a glance, the origin of any fault which may, from time to time, be observed in the working of the system. Our limits, however, preclude us from pursuing this interesting topic to the extent which its importance would justify. We shall be satisfied if the hints here thrown out should direct to the subject the attention of those who, being most interested in such an enquiry, are likely to prosecute it with greatest success.
One of the consequences which has arisen in the prosecution of the invention of the calculating machinery, has been the discovery of a multitude of mechanical contrivances, which have been elicited by the exigencies of the undertaking, and which are as novel in their nature as the purposes were novel which they were designed to attain. In some cases several different contrivances were devised for the attainment of the same end; and that among them which was best suited for the purpose was finally selected: the rejected expedients—those overflowings or waste of the invention—were not, however, always found useless. Like thewastein various manufactures, they were soon converted to purposes of utility. These rejected contrivances have found their way, in many cases, into the mills of our manufacturers; and we now find them busily effecting purposes, far different from any which the inventor dreamed of, in the spinning-frames of Manchester.[17]
[17]An eminent and wealthy retired manufacturer at Manchester assured us, that on the occasion of a visit to London, when he was favoured with a view of the calculating machinery, he found in it mechanical contrivances, which he subsequently introduced with the greatest advantage into his own spinning-machinery.
[17]An eminent and wealthy retired manufacturer at Manchester assured us, that on the occasion of a visit to London, when he was favoured with a view of the calculating machinery, he found in it mechanical contrivances, which he subsequently introduced with the greatest advantage into his own spinning-machinery.
Another department of mechanical art, which has been enriched by this invention, has been that oftools. The great variety of new forms which it was necessary to produce, created the necessity of contriving and constructing a vast number of novel and most valuable tools, by which, with the aid of the lathe, and that alone, the required forms could be given to the different parts of the machinery with all the requisite accuracy.
The idea of calculation by mechanism is not new. Arithmetical instruments, such as the calculating boards of the ancients, on which they made their computations by the aid of counters—theAbacus, an instrument for computing by the aid of balls sliding upon parallel rods—the method of calculation invented by Baron Napier, called by himRhabdology, and since calledNapier's bones—the Swan Pan of the Chinese—and other similar contrivances, among which more particularly may be mentioned the Sliding Rule, of so much use in practical calculations to modern engineers, will occur to every reader: these may more properly be calledarithmetical instruments, partaking more or less of a mechanical character. But the earliest piece of mechanism to which the name of a 'calculating machine' can fairly be given, appears to have been a machine invented by the celebrated Pascal. This philosopher and mathematician, at a very early age, being engaged with his father, who held an official situation in Upper Normandy, the duties of which required frequent numerical calculations, contrived a piece of mechanism to facilitate the performance of them. This mechanism consisted of a series of wheels, carrying cylindrical barrels, on which were engraved the ten arithmetical characters, in a manner not very dissimilar to that already described. The wheel which expressed each order of units was so connected with the wheel which expressed the superior order, that when the former passed from 9 to 0, the latter was necessarily advanced one figure; and thus the process of carrying was executed by mechanism: when one number was to be added to another by this machine, the addition of each figure to the other was performed by the hand; when it was required to add more than two numbers, the additions were performed in the same manner successively; the second was added to the first, the third to their sum, and so on.
Subtraction was reduced to addition by the method of arithmetical complements; multiplication was performed by a succession of additions; and division by a succession of subtractions. In all cases, however, the operations were executed from wheel to wheel by the hand.[18]
[18]See a description of this machine by Diderot, in theEncyc. Method.; also in the works of Pascal, tom. IV., p. 7; Paris, 1819.
[18]See a description of this machine by Diderot, in theEncyc. Method.; also in the works of Pascal, tom. IV., p. 7; Paris, 1819.
This mechanism, which was invented about the year 1650, does not appear ever to have been brought into any practical use; and seems to have speedily found its appropriate place in a museum of curiosities. It was capable of performing only particular arithmetical operations, and these subject to all the chances of error in manipulation; attended also with little more expedition (if so much), as would be attained by the pen of an expert computer.
This attempt of Pascal was followed by various others, with very little improvement, and with no additional success. Polenus, a learned and ingenious Italian, invented a machine by which multiplication was performed, but which does not appear to have afforded any material facilities, nor any more security against error than the common process of the pen. A similar attempt was made by Sir Samuel Moreland, who is described as having transferred to wheel-work the figures ofNapier's bones, and as having made some additions to the machine of Pascal.[19]
[19]Equidem Morelandus in Anglia, tubæ stentoriæ author, Rhabdologiam ex baculis in cylindrulos transtulit, et additiones auxiliares peragit in adjuncta machina additionum Pascaliana.
[19]Equidem Morelandus in Anglia, tubæ stentoriæ author, Rhabdologiam ex baculis in cylindrulos transtulit, et additiones auxiliares peragit in adjuncta machina additionum Pascaliana.
Grillet, a French mechanician, made a like attempt with as little success. Another contrivance for mechanical calculation was made by Saunderson. Mechanical contrivances for performing particular arithmetical processes were also made about a century ago by Delepréne and Boitissendeau; but they were merely modifications of Pascal's, without varying or extending its objects. But one of the most remarkable attempts of this kind which has been made since that of Pascal, was a machine invented by Leibnitz, of which we are not aware that any detailed or intelligible description was ever published. Leibnitz described its mode of operation, and its results, in the Berlin Miscellany,[20]but he appears to have declined any description of its details. In a letter addressed by him to Bernoulli, in answer to a request of the latter that he would afford a description of the machinery, he says, 'Descriptionem ejus dare accuratam res non facilis foret. De effectu ex eo judicaveris quod ad multiplicandum numerum sex figurarum,e.g.rotam quamdam tantum sexies gyrari necesse est, nulla alia opera mentis, nullis additionibus intervenientibus; quo facto, integrum absolutumque productum oculis objicietur.'[21]He goes on to say that the process of division is performed independently of a succession of subtractions, such as that used by Pascal.
[20]Tom. I., p. 317.
[20]Tom. I., p. 317.
[21]Com. Epist.tom. I., p. 289.
[21]Com. Epist.tom. I., p. 289.
It appears that this machine was one of an extremely complicated nature, which would be attended with considerable expense of construction, and only fit to be used in cases where numerous and expensive calculations were necessary.[22]Leibnitz observes to his correspondent, who required whether it might not be brought into common use, 'Non est facta pro his qui olera aut pisculos vendunt, sed pro observatoriis aut cameris computorum, aut aliis, qui sumptus facile ferunt et multo calculo egent.' Nevertheless, it does not appear that this contrivance, of which the inventor states that he caused two models to be made, was ever applied to any useful purpose; nor indeed do the mechanical details of the invention appear ever to have been published.
[22]Sed machinam esse sumptuosam et multarum rotarum instar horologii: Huygenius aliquoties admonuit ut absolvi curarem; quod non sine magno sumptu tædioque factum est, dum varie mihi cum opificibus fuit conflictandum.—Com. Epist.
[22]Sed machinam esse sumptuosam et multarum rotarum instar horologii: Huygenius aliquoties admonuit ut absolvi curarem; quod non sine magno sumptu tædioque factum est, dum varie mihi cum opificibus fuit conflictandum.—Com. Epist.
Even had the mechanism of these machines performed all which their inventors expected from them, they would have been still altogether inapplicable for the purposes to which it is proposed that the calculating machinery of Mr Babbage shall be applied. They were all constructed with a view to perform particular arithmetical operations, and in all of them the accuracy of the result depended more or less upon manipulation. The principle of the calculating machinery of Mr Babbage is perfectly general in its nature, not depending on anyparticular arithmetical operation, and is equally applicable to numerical tables of every kind. This distinguishing characteristic was well expressed by Mr Colebrooke in his address to the Astronomical Society on this invention. 'The principle which essentially distinguishes Mr Babbage's invention from all these is, that it proposes to calculate a series of numbers following any law, by the aid of differences, and that by setting a few figures at the outset; a long series of numbers is readily produced by a mechanical operation. The method of differences in a very wide sense is the mathematical principle of the contrivance. A machine to add a number of arbitrary figures together is no economy of time or trouble, since each individual figure must be placed in the machine; but it is otherwise when those figures follow some law. The insertion of a few at first determines the magnitude of the next, and those of the succeeding. It is this constant repetition of similar operations which renders the computation of tables a fit subject for the application of machinery. Mr Babbage's invention puts an engine in the place of the computer; the question is set to the instrument, or the instrument is set to the question, and by simply giving it motion the solution is wrought, and a string of answers is exhibited.' But perhaps the greatest of its advantages is, that it prints what it calculates; and this completely precludes the possibility of error in those numerical results which pass into the hands of the public. 'The usefulness of the instrument,' says Mr Colebrooke, 'is thus more than doubled; for it not only saves time and trouble in transcribing results into a tabular form, and setting types for the printing of the table, but it likewise accomplishes the yet more important object of ensuring accuracy, obviating numerous sources of error through the careless hands of transcribers and compositors.'
Some solicitude will doubtless be felt respecting the present state of the calculating machinery, and the probable period of its completion. In the beginning of the year 1829, Government directed the Royal Society to institute such enquiries as would enable them to report upon the state to which it had then arrived; and also whether the progress made in its construction confirmed them in the opinion which they had formerly expressed,—that it would ultimately prove adequate to the important object which it was intended to attain. The Royal Society, in accordance with these directions, appointed a Committee to make the necessary enquiry, and report. This Committee consisted of Mr Davies Gilbert, then President, the Secretaries, Sir John Herschel, Mr Francis Baily, Mr Brunel, engineer, Mr Donkin, engineer, Mr G. Rennie, engineer, Mr Barton, comptroller of the Mint, and Mr Warburton, M.P. The voluminous drawings, the various tools, and the portion of the machinery then executed, underwent a close and elaborate examination by this Committee, who reported upon it to the Society.
They stated in their report, that they declined the consideration of the principle on which the practicability of the machinery depends, and of the public utility of the object which it proposes to attain; because they considered the former fully admitted, and the latter obvious to all who consider the immense advantage of accurate numerical tables in all matters of calculation, especially in those which relate to astronomy and navigation, and the great variety and extent of those which it is professedly the object of the machinery to calculate and print with perfect accuracy;—that absolute accuracy being one of the prominent pretensions of the undertaking, they had directed their attention especially to this point, by careful examination of the drawings and of the work already executed, and by repeated conferences with Mr Babbage on the subject;—that the result of their enquiry was, that such precautions appeared to have been taken in every part of the contrivance, and so fully aware was the inventor of every circumstance which might by possibility produce error, that they had no hesitation in stating their belief that these precautions were effectual, and that whatever the machine would do, it would do truly.
They further stated, that the progress which Mr Babbage had then made, considering the very great difficulties to be overcome in an undertaking of so novel a kind, fully equalled any expectations that could reasonably have been formed; and that although several years had elapsed since the commencement of the undertaking, yet when the necessity of constructing plans, sections, elevations, and working drawings of every part; of constructing, and in many cases inventing, tools and machinery of great expense and complexity, necessary to form with the requisite precision parts of the apparatus differing from any which had previously been introduced in ordinary mechanical works; of making many trials to ascertain the value of each proposed contrivance; of altering, improving, and simplifying the drawings;—that, considering all these matters, the Committee, instead of feeling surprise at the time which the work has occupied, felt more disposed to wonder at the possibility of accomplishing so much.
The Committee expressed their confident opinion of the adequacy of the machinery to work under all the friction and strain to which it can be exposed; of its durability, strength, solidity, and equilibrium; of the prevention of, or compensation for, wear by friction; of the accuracy of the various adjustments; and of the judgment and discretion displayed by the inventor, in his determination to admit into the mechanism nothing but the very best and most finished workmanship; as a contrary course would have been false economy, and might have led to the loss of the whole capital expended on it.
Finally, considering all that had come before them, and relying on the talent and skill displayed by Mr Babbage as a mechanist in the progress of this arduous undertaking, not less for what remained, than on the matured and digested plan and admirable execution of what is completed, the Committee did not hesitate to express their opinion, that in the then state of the engine, they regarded it as likely to fulfil the expectations entertained of it by its inventor.
This report was printed in the commencement of the year 1829. From that time until the beginning of the year 1833, the progress of the work has been slow and interrupted. Meanwhile many unfounded rumours have obtained circulation as to the course adopted by Government in this undertaking; and as to the position in which Mr Babbage stands with respect to it. We shall here state, upon authority on which the most perfect reliance may be placed, what have been the actual circumstances of the arrangement which has been made, and of the steps which have been already taken.
Being advised that the objects of the projected machinery were of paramount national importance to a maritime country, and that, from its nature, it could never be undertaken with advantage by any individual as a pecuniary speculation, Government determined to engage Mr Babbage to construct the calculating engine for the nation. It was then thought that the work could be completed in two or three years; and it was accordingly undertaken on this understanding about the year 1821, and since then has been in progress. The execution of the workmanship was confided to an engineer by whom all the subordinate workmen were employed, and who supplied for the work the requisite tools and other machinery; the latter being his own property, and not that of Government. This engineer furnished, at intervals, his accounts, which were duly audited by proper persons appointed for that purpose. It was thought advisable—with a view, perhaps, to invest Mr Babbage with a more strict authority over the subordinate agents—that the payments of these accounts of the engineer should pass through his hands. The amount was accordingly from time to time issued to him by the Treasury, and paid over to the engineer. This circumstance has given rise to reports, that he has received considerable sums of money as a remuneration for his skill and labour in inventing and constructing this machinery. Such reports are altogether destitute of truth. He has received, neither directly nor indirectly, any remuneration whatever;—on the contrary, owing to various official delays in the issues of money from the Treasury for the payment of the engineer, he has frequently been obliged to advance these payments himself, that the work might proceed without interruption. Had he not been enabled to do this from his private resources, it would have been impossible that the machinery could have arrived at its present advanced state.
It will be a matter of regret to every friend of science to learn, that, notwithstanding such assistance, the progress of the work has been suspended, and the workmen dismissed for more than a year and a half; nor does there at the present moment appear to be any immediate prospect of its being resumed. What the causes may be of a suspension so extraordinary, of a project of such great national and universal interest,—in which the country has already invested a sum of such serious amount as L.15,000,—is a question which will at once suggest itself to every mind; and is one to which, notwithstanding frequent enquiries, in quarters from which correct information might be expected, we have not been able to obtain any satisfactory answer. It is not true, we are assured, that the Government object to make the necessary payments, or even advances, to carry on the work. It is not true, we also are assured, that any practical difficulty has arisen in the construction of the mechanism;—on the contrary, the drawings of all the parts of it are completed, and may be inspected by any person appointed on the part of Government to examine them.[23]Mr Babbage is known as a man of unwearied activity, and aspiring ambition. Why, then, it may be asked, is it that he, seeing his present reputation and future fame depending in so great a degree upon the successful issue of this undertaking, has nevertheless allowed it to stand still for so long a period, without distinctly pointing out to Government the course which they should adopt to remove the causes of delay? Had he done this (which we consider to be equally due to the nation and to himself), he would have thrown upon Government and its agents the whole responsibility for the delay and consequent loss; but we believe he has not done so. On the contrary, it is said that he has of late almost withdrawn from all interference on the subject, either with the Government or the engineer. Does not Mr Babbage perceive the inference which the world will draw from this course of conduct? Does he not see that they will impute it to a distrust of his own power, or even to a consciousness of his own inability to complete what he has begun? We feel assured that such is not the case; and we are anxious, equally for the sake of science, and for Mr Babbage's own reputation, that the mystery—for such it must be regarded—should be cleared up; and that all obstructions to the progress of the undertaking should immediately be removed. Does this supineness and apparent indifference, so incompatible with the known character of Mr Babbage, arise from any feeling of dissatisfaction at the existing arrangements between himself and the Government? If such be the actual cause of the delay, (and we believe that, in some degree, it is so,) we cannot refrain from expressing our surprise that he does not adopt the candid and straightforward course of declaring the grounds of his discontent, and explaining the arrangement which he desires to be adopted. We do not hesitate to say, that every reasonable accommodation and assistance ought to be afforded him. But if he will pertinaciously abstain from this, to our minds, obvious and proper course, then it is surely the duty of Government to appoint proper persons to enquire into and report on the present state of the machinery; to ascertain the causes of its suspension; and to recommend such measures as may appear to be most effectual to ensure its speedy completion. If they do not by such means succeed in putting the project in a state of advancement, they will at least shift from themselves all responsibility for its suspension.