CHAPTER VII.THE CARBONIFEROUS SYSTEM—PERIOD OF GIGANTIC VEGETABLES.
The system of rocks termed the Carboniferous constitutes the most remarkable, as well as the most valuable, group in the whole range of geological investigation. The strata of which this system is composed, evince design in the clearest and the most unequivocal manner, testifying to the mandate given on the third day of Creation, that the earth was to bring forth grass, the herb yielding seed, and the fruit-tree yielding fruit after its kind; and which, in the prodigious development of vegetable matter that so early and rapidly ensued, demonstrate such productive powers of nature to have been chiefly prospective, and preparatory to the still higher development of life that was to follow.
Milton has finely imagined a tradition in heaven, long subsisting, concerning the creation of a new world, and of man for whose habitation it was intended:
“Space may produce new worlds, whereof so rife,There went a fame in heaven, that He ere longIntended to create, and therein plantA generation, whom his choice regardShould favor equal to the sons of heaven;The happy seatOf some new race, called Man.”
“Space may produce new worlds, whereof so rife,There went a fame in heaven, that He ere longIntended to create, and therein plantA generation, whom his choice regardShould favor equal to the sons of heaven;The happy seatOf some new race, called Man.”
“Space may produce new worlds, whereof so rife,There went a fame in heaven, that He ere longIntended to create, and therein plantA generation, whom his choice regardShould favor equal to the sons of heaven;The happy seatOf some new race, called Man.”
“Space may produce new worlds, whereof so rife,
There went a fame in heaven, that He ere long
Intended to create, and therein plant
A generation, whom his choice regard
Should favor equal to the sons of heaven;
The happy seat
Of some new race, called Man.”
The idea here so beautifully expressed is, that the cosmical arrangements of the earth were, from the beginning, so conducted as to be subservient to man’s well-being; and, certainly, nothing could show more the dignity of the new race, or the interest taken in them by their Creator, than this tradition which ran ofthem in other spheres. But geology, more to be relied on than poetry, furnishes demonstrative evidence of the anterior designs and purposes of Omnipotent Wisdom in actually fitting up “the happy seat,” and in storing it beforehand with materials suited to the wants and comfortable subsistence of him who was to be its loftiest inhabitant. The coal-metals, in the discovery of their history and position, alone vindicate the importance of geology as a science. The whole group with which they are associated, in their mineral and vegetable contents, their place in the system, and the means provided at once for protection and excavation, manifest a series of contrivances so expressive of design, as cannot fail, when read aright, to draw forth our gratitude and wonder.
I.The Mineral Ingredients, Position, and Arrangement of the Carboniferous System.—The rocks belonging to this formation, in the order of superposition, succeed the old red sandstone, consisting of a series of deposits of great thickness, of an infinite number of alternations and varieties, and nearly the same in every coal-field all over the earth. They constitute one great group of marked physical characters, formed under similar conditions, and produced during the same epoch or period of time. The out-crop of the beds meets the eye along the ridge of which the Lomonds may be taken as the center, ranging eastward by St. Andrews to Fifeness Point, and extending indefinitely westward by Stirling, Campsie Hills, Port-Glasgow, to the coast of Arran. The southern lip of the great coal basin of Scotland stretches from the German Ocean, near Dunbar, to the Ayrshire coast in the North Channel, flanked by the old red sandstone and Silurian rocks almost continuously throughout. And within the space now indicated are situated all the principal coal-fields of the northern part of the empire.
The lower beds of the formation consist generally of coarse-grained sandstone, termed by the English geologists millstone grit, and inclose a few thin unworkable seams of coal. Bands of ironstone, shale, and sandstone are superimposed in repeated alternations. A thick massive limestone lines the edges, feathering in and out through the area of the basin which contains thecoal metals. This is the mountain limestone, the most of which is supposed to have once existed as coral reefs, raised on the bottom of shallow seas, so subdivided as to form suitable compartments for receiving and retaining the matter of the coal. Accordingly, corals, encrinites, and shells everywhere prevail in the rocks of this deposit, and, in some instances, present the appearance of a homogeneous, agglutinated mass of the remains of these marine animals—the first of living creatures which the waters were charged to bring forth, and with which they were now swarming. The bituminous beds, the true coal, generally occupy a central position in the group, firmly caked and inclosed between the arenaceous and shaly strata. The number of seams vary in different basins, ranging in Scotland from eleven to thirty-two or thirty-three, and comprising an average thickness of the useful mineral of a hundred and twenty feet. The varieties of coal—as anthracite or blind-coal, cannel or parrot, and the common house or glance-coal—are occasioned chiefly by the different proportions of the bituminous elements which enter into their composition. Compared with Scotland, the coal-measures of England and Wales are of a greater average thickness, lie far beneath the surface, and contain in general a greater proportion of bitumen.
The basin containing the coals, as defined above, is inclosed within the great chains of primary and secondary mountains of the central district of Scotland, which were upheaved into dry land before the coal-measures were formed. A period of violent disturbance had thus passed away, when the carboniferous formation bears evident tokens of having been begun and completed in tranquil waters. But after being collected, the coal-metals were exposed to the action of disturbing forces: eruptive masses, of igneous origin, have invaded their domain; basalts and greenstone, trap dykes and veins, are everywhere found within their inclosure; and apparently the utmost disorder and irregularity now reign, where order and stillness once prevailed. But look a little closer: examine the length and breadth of any coal-field in any part of the world, and you will discern proofs of a purpose, not only in the quality of their materials, but in the position, arrangement, and grouping of the metals; those very disturbing forces, to which they and all earthly things have been exposed,giving unequivocal testimony of an overruling intelligence continuing, through all ages, to superintend and guide their various operations.
Study any coal-field in your neighborhood, and observethe placeof the mineral. It does not lie exposed upon the surface, but is placed at a considerable depth in the earth; of which many are apt to complain, thinking that, if a different arrangement had prevailed, much needless labor and expense would have been saved. But the constituent elements of coal are such, that by exposure on the surface the mineral would, in a comparatively short period of time, have run to waste and decay. Even a thick covering of earthy mold would not have been sufficient to protect it; and therefore was the treasure purposely hid in the earth, and so inclosed that the floods could not wash it away. Then consider thequalityof the rocks by which the coal is protected, and along with which it is invariably associated. These consist of limestone, sandstone, shale, and clay ironstone, which always occupy the same basins, and alternate with the coal sometimes in a series of more than a hundred beds. Such a group of well-characterized rocks not only act as a guide for determining the localities of the valuable mineral, but they serve the double purpose of facilitating the excavation, by affording at once a safe roofing to the mine, and an easy passage for the drainage of the water which accumulates in the pits. No other class of rocks would have been so suitable. The granite and crystalline rocks would have been inconvenient, or wholly unfit: no borings could have been effected through such materials to any extent; the operations underneath would have been equally difficult and unmanageable; and through such hard compact substances the drainage must have been impracticable. But a still more remarkable indication of contrivance arises fromthe elevatedandinclined positioninto which the coal strata have been thrown. Had they remained in the position which they originally occupied, and been covered with the vast accumulations which have subsequently taken place, their depth would have been utterly beyond the industry of man to have reached. Hence the waters have disappeared, having accomplished the purpose for which they were, in this instance, spread over the earth, and the rocks formedbeneath them have lifted up their heads; not uniformly, or in one continuous unbroken mass, but divided into small sections, and inclined in every possible direction. The wisdom of this appears from two considerations: From their inclined position, the various beds of coal are worked with greater facility than if they had been horizontal, alevelis produced for the drainage of the water, and the edges of the coal bent upward are brought nearer the surface. But these advantages are, every one of them, increased incalculably by the division of the coal-field into limited sections, whereby less water is allowed to accumulate than if the beds had been indefinitely extended; their lower extremities are prevented from being plunged to a depth that would be inaccessible; and their several portions arranged in a series of tables, like the steps of a stair, rising one behind another, and gradually inclining outward from the lower to the upper seams of the basin. Again, every coal-field is furnished with a system of checks, in the shape offaultsordykes, against floodings, fire-blaze, and other accidents that occur in the operations of mining. These faults or dykes consist of clay, the detritus of the associated rocks, or of intruded whinstone, with which the fractures produced at the period of the disruption and elevation of the coal-field have been filled up, and the various sections of the metal insulated, and contracted to more workable dimensions. They present the appearance of a vertical wall, cutting the strata at right angles; and, though often occasioning much inconvenience and interruption, yet, as every experienced collier well knows, forming upon the whole his greatest safeguard, and essential every way to his operations. To all which add, asconstantsin every coal-field, the minerals of lime and iron, gifts, both of them, of inestimable value: the former in the amelioration of the soil and construction of every social edifice; the latter ductile and plastic as wax, capable of being welded, and yet, by a slight chemical change, possessed of adamantine hardness; and the coal always there, in juxta-position, to serve as a fuel for the reduction of the limestone and ironstone into their economic properties—properties starting into agency as if by a miracle.
These are a few of the facts connected with the arrangement and distribution of the coal-measures, in whatever quarter of theglobe they are found. Is it possible to resist the conclusion, that, in such a disposition of things, there are the clearest indications of contrivance and design? Nay, that the argument derived from the construction and positions of the solid parts of the earth is the same in kind, if not in degree, with that which is so irresistibly demonstrative in the case of the organic structure of the living frame? The dance of atoms imagined by the philosopher of antiquity, could never have terminated in the perfect order and harmony of the heavenly bodies—innumerable systems of worlds maintained,—each hung upon nothing, and duly preserved all of them in their respective spheres. Equally impossible is it to contemplate a disposition of things so adapted, and indeed so indispensable, for availing ourselves of the mineral treasures of the earth—essential to our wants, and ministering so directly to our social comfort and improvement—and yet to refer the whole, or any part, to the blind operation of fortuitous causes. Impossible, indeed, it ever will be, for the human mind to embrace or unravel all the mysteries of creation; but thus admitted to the mighty wonders of the interior, we are almost enabled to trace the history of the moving atoms from their chaotic disorder into their places and arrangement in the visible universe—to see dead matter assuming the forms of life and organization—clothing the earth for a season with luxuriance and beauty—buried for ages under the solid rock—and again, out of coldness and death, affording light, and warmth, and power to the successive generations of men.
II.Origin of the Carboniferous Rocks.—The strata comprised within the coal-measures are variously estimated; being, in some instances, about eleven thousand feet in thickness; in other cases, of much greater depth; and of this mass of matter, the coal itself does not occupy more than a maximum average of one hundred and fifty feet. The shales consist of thin beds of mud, washed down by the rivers from the neighboring heights, and would appear to have formed the soil on which subsisted a rank vegetation; the impressions of plants, roots, and trunks of trees being still found in a standing position. It is from these bands of mudstone that the best specimens of the flora of the period are derived; every thin splitting presenting the most entire andbeautifully-preserved figures of fronds and stems. The ironstone is usually mixed up or associated with the shales, and consists, like them, of comparatively thin beds of ferruginous clay. The sandstones, of which the greater proportion of the mass consists, have clearly resulted in the continued action of the same causes that produced the old red deposit of the anterior period. But the two remarkable products of the age are the calcareous and coaly strata, which give character to the system as well as the epoch in which they were formed; the one showing a sudden development of carbonate of lime, and the other an increase of vegetable matter, whose enduring monuments point them out as the most striking cotemporaneous and co-extensive formations on the surface of the globe, or connected with the history of our planet. The bituminous products of the Silurian period, if the anachronism may be pardoned, are but as the gleanings after the full harvest.
The limestone is unquestionably of marine origin, as the countless myriads of testacea inclosed in it testify, and was probably constructed by the primeval families of those island-making architects by which the coral-reefs of our present seas are raised, and whose instincts have found them similar employment in all ages of the world. The limestones of the earlier systems may have been formed in the same manner; and then, as in the subsequent period, we must go to the great original storehouse of Nature for the materials on which they worked. The spoils of the primary rocks could not supply them, as the quantity of the carbonate of lime therein contained bears no proportion to the masses which constitute the mountain limestone group. But the calcareous substance was already, in some elementary form, in combination or otherwise, in existence—the animals capable of secreting and arranging it anew, as the secondary instruments of creation, were abounding in the seas—shallow bottoms over the subjacent sandstones of the devonian system, and within the required conditions of life, were prepared for their operations. The waters had now brought forth abundantly the moving creatures, which, at first more scantily distributed, produced the limestone of the silurian rocks, as the arborial remains of the land, in like stinted measure, are inclosed in the older palæozoic deposits. Their day of increase as it advanced, each after their kind, is recorded in the vast accumulationsof animal and vegetable matter which compose the strata of the carboniferous system, both of an order and quality purposely so arranged, and never upon the same scale of magnitude to be repeated in the combustible mineral.
This account, as given by geologists, of the origin of the mountain limestone, is rendered not only probable, but almost certain, by the manner in which we find these little insects, the coral-builders, constructing their piles of masonry at the present day. For example, certain species of polyps, of solitary habits, work alone, each rearing a single stem or stalk, from which others project; then more stems are produced, until, upon the completion of the whole, there results one of those beautiful arborescent structures so much prized as ornaments for cabinets and drawing-rooms. Some, again, attach themselves to the loose stones, upon which they form their little tree or flower-top; others adhere to the solid rock, from which there springs a stony vegetation, rivaling often, in variety, luxuriance, and brilliancy, the most showy vegetable productions of tropical climes. But a certain class are gregarious, and will only work in company. Myriads of these inhabit the Pacific, constructing entire islands, and throwing up mighty barriers of rock, and threading over vast areas of the sea with inosculating lines of coral reef. The calcareous accumulation, known as the Great Barrier Reef, extends for about a thousand miles in length, by about thirty in mean breadth, filling up, with its various reticulations, the whole intermediate space betwixt the coast of Australia and Bristow Island, off the coast of New Guinea. The works of these minute creatures thus occupy an area which may be roughly estimated at thirty thousand square miles; the different branches forming compartments of variable extent, which are divided into linear, outer, and inner reefs, and embracing within their ample folds the entire spoils of ocean living or floating in these parts.
The mountain limestone of our own country, formed in like manner on the sea-bottom of corallines, has a wide geographical range, extending from the bay of St. Andrew’s on the north, to the extremity of Wales on the south; passing into Ireland, where it is elevated into long ridges, or occupies the mountain-slopes; and forming outliers or extended barriers in all thesouthern counties of Scotland, and in the greater portion of the northern, the middle, and the south-western districts of England. These were the coral reefs of an ocean now raised into dry land, divided, too, into outer and inner compartments, or arranged into systems of lines and branches, which diverged from or inosculated with each other. Nor does the resemblance between the recent and the more ancient formations stop here, but extends to the structure of the deposits, lithologically considered, the mechanical, sub-crystalline, and crystalline texture being exhibited in both sets of rocks. Thus, in the examination of Heron Island, the coral beds, one to two feet thick, are found to have a tendency to split into slabs, and joints are observed to cross each other at right angles, parallel to the dip and strike, respectively, giving to the still living coral rock the jointings, cleavage, and stratification of the greater palæozoic deposits. Naturalists divide these polyps into existing and extinct races. But whether extinct and specifically different, or otherwise, they are creatures of a family, possessed of the same habits and performing the same operations, now as of old; and if, as geologists say, millions of ages have elapsed between the actings of the first and last generations, our admiration will be only all the more unbounded by thus witnessing the harmony of creation through indefinite time, and the accuracy of the Book which contains the record of it.
The coal itself, as now universally admitted, is of vegetable origin. Under the microscope, in the most compact specimens, the tissues by which all the coal plants are more or less distinguished can be distinctly traced. Chemically considered, its vegetable origin is equally well established. Carbon constitutes the principal ingredient of the mineral the quality of which enters most abundantly into the composition of vegetables. One theory of its formation is, that vegetable matter, carried to the sea or extensive lakes, has undergone a process of decomposition, by which, while some of its principles may have escaped or been evolved in new combinations, the carbon, with a portion of the hydrogen, has remained; this, mixed with more or less earthy matter, has in its soft state been consolidated by the force of aggregation simply, or by compression from the superincumbent strata, and the action of a higher degree of temperature than nowexists. Others are of opinion that coal is the altered residuum of trees and smaller plants that have grown on the spot where we now find them—that the forests were submerged and covered by detrital matter, which was upraised to form a foundation and a soil for another forest, to be in its turn submerged and converted into coal—and that thus the alternations which the vertical section of a coal-field exhibits are to be accounted for. The former views are maintained by Sir R. Murchison and other eminent geologists. The latter have been adopted by Sir Charles Lyell, in consequence mainly of the arrangements and structure observed in the remarkable coal-field of Nova Scotia, where he states that there is a range of perpendicular cliffs in the Bay of Fundy, composed of regular coal-measures, inclined at an angle between twenty-four and thirty degrees, whose united thickness is between four and five miles. By neither theory, perhaps, nor by any other yet advanced, is it possible to reconcile all the appearances which that singular compound, acoal-fieldexhibits—the various changes which the vegetable matter has undergone to convert it into lignite, jet, common coal, cannel coal, and anthracite, two or more of these varieties often occurring in the same coal-measures—in one quarter the clearest indications that the sea has let in its floods and mingled its spoils with those of the land, and in another quarter, through fourteen thousand feet, for example, of the drift accumulations in Nova Scotia, that there is not a trace even of any substance of amarinecharacter, all appearing to have been deposited in fresh water. But while no explanation yet given of the phenomena can be regarded as satisfactory, while Nature withholds much, and ever will, of the wonderful processes through which she attains her ends, the vegetable source of the product cannot be questioned; nay, the origin of coal from the extinct forests, from the trees and plants of a former age, is so very probable, that some beds sound like wood under the beat of the hammer; and large areas, when thin slices are placed under the microscope, are found in every portion to retain the woody-fibrous structure.
III.The Botanical Charactersof the flora of the coal period form of themselves an interesting subject of study, and suggestsome very important considerations as to the history and purpose of the formation. These will be best understood by a reference to the structure and habits of plants in general. Those of the coal, it will thence be seen, belong exclusively to one or two families,—as ferns, palms, and coniferæ,—which seem to have grown in every soil, and to have been adapted to every climate.
The most general divisions of existing plants are into thevascularesandcellulares. The former kinds all bear flowers, possess a system of spiral vessels, and are termed phonogamous. The latter, on the other hand, are flowerless, have no spiral vessels, and are denominated cryptogamous.
Another extensive subdivision of plants proceeds upon their anatomical structure, and the laws which regulate their mode of growth. Thus one class, it has been observed, increase in bulk by additional increments to the outside of all the parts which compose the plant, as the roots, stems, and branches; another, by additions to the inside of all these members: and for this reason the former are called exogenous, and the latter endogenous. In the one case the new or youngest growth is always exterior to the old; and if thus left unprotected, it will be readily admitted that the growth of all such plants would be greatly and constantly endangered by atmospheric as well as innumerable other causes. The remedy provided by nature against this, is a covering of the substance called bark, which is folded round the entire exterior, stem and branches, of the whole exogens, and within which the newly-formed tissue is all safely deposited. No plant, on the other hand, whose growth is from within, needs any such protection, and accordingly none of them—as all the grasses, corns, canes, and fungi—are possessed of bark, or any analogous membrane. The bark is an ephemeral substance, which lasts only for a year, and has annually to be renewed.
The additions to all exogenous plants are indicated in the stem or trunk, by concentric lines or circles. In the center there is a cellular substance called pith. When you take, therefore, a cross section of the trunk of this class, the structure and parts will be arranged thus—bark on the outside, pith in the center, and between these, concentric deposits of woody matter, and all connected into a solid mass by plates of comb-like tissue, radiatingfrom the interior to the circumference, and termed medullary rays. A structure like this, so closely and firmly united, and filled up through all its parts, was surely intended for endurance; and yet out of this class of the vegetable tribes, nature has selected few of her carboniferous models. The plants of the period, as yet detected, are composed chiefly of cellular tissue, mixed up with the substance of the stem, and without pith, medullary rays, concentric woody deposits, or the binding ligament of bark. The hardy oak and tall slender cane may be taken as examples of the two modes of structure—the former allied to existing, the latter to extinct families.
Another ground of distinction among plants consists in the leaves or flattened expansions, from which they derive all their grace and symmetry. This is farther connected with the seed and rudimentary organs, and gives rise to the division intocotyledonousandacotyledonousplants. The non-flowering or cryptogamous are all of the latter kind. The flowering or phonogamous not only belong to the former, but are again subdivided into monocotyledonous or dicotyledonous, according as their seed-vessels are possessed of one or of two lobes. Where there are two lobes the expansion of the germ upon bursting from the ground terminates in two imperfect leaves, by which the botanist can at once determine the class to which it belongs. The corns and grasses have single cotyledons, from one extremity of which descend the roots, and from the other the stem springs up, terminated with a single leaf.
The leaves perform important functions in all those orders of plants with which they are connected, and serve as interesting guides in fossil botany, which seldom derives any assistance from the more destructible and “fleeting flower.” The leaves of plants consist of a complicated net-work of vessels, filled up in the interstices by cellular tissue, and covered over with a thin epidermis or skin. Those belonging to the monocotyledonous sub-class are traversed by a number of parallel veins, while dicotyledonous leaves are divided into regular compartments, some of which upon withering display the most perfect and beautiful system of reticulation, rivaling in delicacy of texture the wing of the gossamer. Leaves which outlast the season, as in evergreens, are termednon-deciduous, and are covered or interwoven with a thin crust of silex, which at once serves to protect and communicate to these ornamental shrubs their bright enameled appearance. The grasses possess this property, and some of them can elaborate in their joints crystals of considerable magnitude. The leaves of ferns are called fronds, and differ from true leaves in bearing the reproductive organs on the surface, while the slightest inspection of their form and mode of expansion readily distinguishes them from all others. Fronds, properly so termed, originate in the stem and are part of it; there is no distinct line of demarkation between them: stem, leaf, and spori, or seed; are all as one body; and thus, as being of one piece, these membranous organs have been quaintly likened to a garment without a seam.
From this brief description it will be seen that all plants and trees arrange themselves under two great classes, namely, the soft and spongy, or the hard and fibrous-woody structure. The remains of such as have been detected in the carboniferous rocks belong almost exclusively to the former class, the cryptogamiæ and endogenæ, while of the three hundred and upward of fossil species which have been described and figured, not more than ten, and some of these still of doubtful characters, can be regarded as of exogenous and true woody growth. Ferns, mosses, palms, and gigantic succulent plants, now all allied to those of tropical climates, constitute the vast preponderancy of the fossil flora of the age in question. Are we to infer from this that the other families and tribes which at present so abundantly cover the earth were not then in existence? The botanist can now refer to his catalogue of eighty to a hundred thousand species of existing plants, growing in the different regions of the globe, and of widely distinguished habits and forms; and were few or none of these in being then? We possess not, as yet, sufficient data for the solution of this very interesting problem, although in the progress of geological discovery, every year is adding to the list, and giving us a more extended acquaintance with the vegetable products of the coal period. An important experiment recently made by Professor Lindley would seem to favor the probability that a far more numerically abundant flora had then existed. One hundred and seventy plants were thrown into a vessel containing fresh water,and among them were species belonging to all the natural orders of which the flora of the coal-measures consists, and also to other natural orders which it might have been expected would be found associated with them. In the course of two years, one hundred and twenty-one species had disappeared, being entirely decomposed, and of the fifty which remained, the most perfect specimens were those of coniferous plants, ferns, palms, lycopodiaceæ, and the like—the families, all of them, most allied to those preserved in the coal-measures.
Now the important fact to be attended to in this experiment is, the wide geographical distribution during the carboniferous era of those tribes of plants which enter most certainly and abundantly into the composition of the coal metals. Many others may, and doubtless did, flourish within the period of the formation. But that the plants, possessed of the most conservative vegetable qualities, and the most capable of resisting solution in water, should be precisely the kinds which had then a universal range over the earth’s surface, can be ascribed to nothing else than to a wise predetermined purpose and arrangement. These plants were growing in every region. Every clime favored them—every soil nourished them. The bituminous product was intended for man’s use, whose family was destined to inhabit the whole earth. How irresistible the conclusion, corroborative of all the proofs of design derived from the nature and structure of the coal-measures, that, anticipating his wants and providing for his improvement, nature purposely constructed such forms of vegetable life, possessed, like the watch, with a compensation balance so as to suit every condition, and to thrive in every land; or, what is equally probable and consonant to the requirements of the problem, that there was such a uniformity of climate and temperature, and other chemical adjustments, as were most adapted to the peculiar and prevailing vegetation of the period.
IV.The Organic Remainswe proceed to consider more in detail, where a remarkable contrast will be observed between the vegetable and animal types presented, so far as they have been respectively fossilized and preserved. The vegetables are nearly all of terrestrial, the animals are as generally and predominantlyof marine, characters. Is this the result of blind chance, or of contrivance and foresight?
The plants of the coal epoch consist chiefly of the cryptogamia, and of these the ferns are the most abundant, composing, according to the estimate of M. Brongniart, about two-thirds of the entire carboniferous flora.
1. Sphenopteris linearis; 2. Pecopteris Mantelli; 3. Sphenopteris affinis.
1. Sphenopteris linearis; 2. Pecopteris Mantelli; 3. Sphenopteris affinis.
1. Sphenopteris linearis; 2. Pecopteris Mantelli; 3. Sphenopteris affinis.
The number of known existing ferns amounts to between seven and eight hundred, of which about fifty species belong to Great Britain, and upward of two hundred to the inter-tropical island of Jamaica. Nearly two hundred fossil species have been discovered in the British coal strata alone. The fossil genera most common to the district around, and occurring in every section of the great valley of the Scottish lowlands, are cyclopteris, neuropteris, pecopteris, and sphenopteris. The shales and clay-ironstones in which these beautiful plants are detected, are generally of a dark brownish color, while the impressions are all of the deepest jet, bringing out in lively contrast the complete cast of the fronds. There is a great resemblance between the specimens of extinct ferns and the existing families of our filices, now growing on every hill, brae, or mountain corrie; and, if this were all the difference, nature would seem to have departed but little from her original models. But the presumption is that most, if not all, the ferns of the coal era were trees which attained to a great height, and similar to the tree-ferns now growing so abundantly in the islands of the Pacific. The decorticated stems and trunks are deeply indented with scars, the markings, it is supposed, of the fronds which dropped fromtheir feathery sides. This inference is borne out by the additional circumstance, that the fossils are generally much flattened and compressed, as would necessarily happen to succulent plants and such trees as consisted of the cellular tissue of the endogenous class. What a striking change in the vegetation of our country, where purple heaths, and cheerful grasses, and luxuriant corns, and forests of every tint and structure, have replaced the long green stems, and dark somber hues of the fern-clad regions of the olden times! The remains of this tribe are so numerous as to have stinted, one would suppose, or utterly to have prevented the growth and increase of every other order of plants, bringing before the imagination the scenes of our Australian colonies, so wild and wondrous to European eyes—and carrying back the mind to the vision of primeval ages, through a long succession of times and their events, the vista of an infant world.
The lycopodia, or club-moss tribe, are also very widely distributed among the coal-measures, and attained in the earlier ages of the earth’s history an equally gigantic size with the tree-ferns. At the present day, they are all weak, prostrate plants, of from two to three feet in length, and, following the same laws as the mosses and ferns, they are most abundant in hot, humid situations within the tropics, and especially in the smaller islands. As respects their botanical affinities, the lycopodiums are intermediate between ferns and coniferæ on the one hand, and ferns and mosses on the other; related to the first of those families in the abundance of annular ducts contained in their axis, and to the second in the whole aspect and outline of the stem of the larger kinds. Indeed, so great is the resemblance between lycopodia and certain coniferæ, that there is no other external character, except size, by which they can be distinguished; and, according to Professor Lindley, it is, at least, as probable that some of those specimens detected in the ancient flora of the world, which have been considered gigantic club-mosses, are really and truly pines, as that they are flowerless plants.
Another family of fossil plants abundant in the coal formation are the calamites, so named from their jointed reed-like structure. They attained to the size of trees, trunks upward of a foot in diameter being often met with, but still of such a soft succulenttexture as to maintain the character of being, if reeds, easily shaken by the winds. These, and various specimens of the palm tribe, are to be found in every coal-field, and often in such vast masses as to show that they constituted no inconsiderable proportion of the flora of the period. Palms now only flourish within the regions of the tropics, where, from their various properties, as well as great productiveness as fruit-bearers, they constitute the chief source of dependence to the inhabitants for all their supplies of the necessaries, luxuries, and medicines of life. A single spathe of the date contains about 12,000 male flowers: another species has been computed to have 207,000 in a spathe, or 600,000 upon a single individual. The spathe constitutes the raceme or flower-stem of the tree, and on a single raceme of a Seje palm, Humboldt estimated the flowers at forty-four thousand, and the fruits at eight thousand. When these magnificent productions of nature covered the plains and marshes of our northern climes, there were no roaming tribes to gather their fruits, inhale their fragrance, or bask in their shades. And yet they were not formed in vain. Buried in the rocks, their collected remains now yield a product as useful and valuable to the human family—as contributive to intellectual improvement, as they would have been to mere animal enjoyment.
The genus sigillaria, one of the most common of the coal plants, possessed the singular properties of being apparently hollow in the center, yet with an inner woody axis floating in a woody succulent jelly, and inclosed in a thick outer coating of bark. The trunk is beautifully fluted with longitudinal parallel lines, regularly arranged along the surface, and dotted all over with small scars, as if impressed by the leaves penetrating through the bark into the central woody axis. The stigmariæ, once supposed to be a distinct genus, are now generally regarded as simply the roots of the sigillariæ; they are, for the most part, found resting in their natural position, in large clusters often; and forming with their dense matted fibers a floor of considerable thickness, on which, season after season, the leaves fell as the coaly matter accumulated. This tree grew to an enormous size, specimens of four feet in diameter by fifty feet in length being frequently met with; traces of a vascular and fibrous structure can be observed in thestems—also the annular wood layers are sometimes beautifully defined; and, combined with a coating of bark of an inch in thickness, the probability is, that the sigillaria belonged to the exogenous class of vegetables.
Calamite.
Calamite.
Calamite.
But of all the plants found in the coal-measures, theconiferæor pine tribe, distinguished by their punctated woody tissue, are the most interesting, whether we consider their characteristic properties, extensive distribution, antiquity, and consistency of habit through all the epochs and changes of creation. Unlike the tree-forms already noticed, the pines grow now as they grew before, inhabiting the same places, and preserving the same appearances in bulk and figure. In structure the coniferæ occupy a place intermediate between cellurares and vasculares, connected with the former through the lycopodiums, and with the latter by the myriceæ, or aromatic gale tribe. The scales of the cones are regarded by botanists as true foliage or reduced leaves, and in this respect they approximate to the genus zamia, of the order cycadeæ, where these organs are distinctly developed as carpellary leaves. Thus widely connected through the chain of vegetable life, the fossil pines, discovered in our coal-fields, form also the most interesting link between the present and the remote past, showing similar conditions of vegetable existence and forest landscape. No class of plants have been more useful to man than the whole pine family; none are more universal in their distribution over the face of the globe; none are possessed of such powers of endurance, existing through all time, and natives of every part ofthe world, from the perpetual snows of Arctic America, to the hottest regions of the Indian Archipelago. These trees differ as remarkably in form as in size, ranging through every gradation from the stinted juniper of the Grampians to the stately cedars of Lebanon. And the fossil specimens, huge in dimensions as those of Craigleith are, do not excel the existing races. The araucaria, or Norfolk Island pine, attains a height of two hundred feet; and in the Oregon territory of North-West America, there are species of the fir tribe (P. Lambertiana and P. Douglasii), which rise to even still more gigantic proportions. Figuratively, it is said of the cedar, that its branches shall cover the earth, and in the shadow thereof all fowl of every wing shall dwell: literally and truly we find, that members of the same family have existed in all lands, and flourished in the mountains through all ages.
Compared with the present condition of things, New Zealand bears the most striking resemblance in the character of its vegetation to the flora of the ancient carboniferous age. “The number of species of plants at present known is 632, of which 314 are dicotyledonous, and the rest, or 318, are monocotyledonous and cellular. The number of monocotyledonous is very small in comparison with the cellular; there are 76 species. The grasses have given way to ferns, for the ferns and fern-like plants are the most numerous in New Zealand, and cover immense districts. They replace thegramineæor grasses of other countries, and give a character to all the open land of the hills and plains. Some of the arborescent species grow to thirty feet and more in height, and the variety and elegance of their forms, from the minutest species to the giants of their kind, are most remarkable.”[4]
These few types of the flora of the ancient world clearly indicate the course and progress of creation. A dense vegetable covering already existed over all the earth. No grasses, indeed, as yet are found to have clothed the plains. But marsh plants grew luxuriantly in the waters. Fucoids and algæ abounded in the seas. The hills and mountains raised high in air their pines, palms, and fern-trees; nor would creepers and parasites be wanting, climbing to their topmost branches and mingling their brightenlivening hues with the dark somber shades of the forest. Earth heard the voice of its Maker, and everything good and seasonable sprang from its teeming bosom.
The carboniferous limestones are everywhere loaded withanimalremains. Every member of the series, the ironstones, sandstones, shales, and even the coal itself, all abound in relics of the past; and, as was to be expected, the fossils chiefly belong to marine forms of life. And in these there is no great departure, as might likewise be inferred, from the orders, and even generic types, we have been surveying in the lower formations. But there is an increase in the species of some of them, as well as the introduction of new and distinct creations altogether.
1. Product. scabriculus; 2. Inoceramus vetustus; 3. Bellerophon tangentialis.
1. Product. scabriculus; 2. Inoceramus vetustus; 3. Bellerophon tangentialis.
1. Product. scabriculus; 2. Inoceramus vetustus; 3. Bellerophon tangentialis.
Thus the corals and encrinites remain with scarcely a change in outward form, but of increasing variety, and in countless myriads. The trilobites are nearly extinct, while the annelidæ, which appear not in the devonian system, return to the stage in greater numbers and diversity of structure. The conchiferæ are likewise enlarged in every order; as also the crustaceæ, which are more than quadrupled. Pteropodæ present four genera in the silurian group, decline to one in the devonian, which genus is not found in the carboniferous, but a new one takes its place. The brachiopodæ are again very abundant, as they were in the two former groups. The most characteristic shells of the order and period are the productus, spirifer, terebratula. One genus of heteropoda, the bellerophon, appeared in the silurian rocks, of which there were eleven species. Eight species occur in the devonian system along with a new genus, porcellia. The bellerophon numbers nineteen species in the carboniferous rocks, and the porcellia, which occurs also, contains three.
The cephalopods, the most predaceous of their kind, lose generically, while they multiply prodigiously in species during the latter epoch. Thus the goniatites alone amount to fifty-four, the nautili to forty-two, and the orthoceratites, which had declined to twelve in the devonian, swell to thirty-two species in the carboniferous series.
But the fishes in this group of rocks exhibit, unquestionably, the largest amount, both in number and form, of new types. Here the sharks and sauroids appear, for the first time, not small, or attenuated in bulk, but vigorous, robust specimens of their kind, strong and expert swimmers, armed with enlarged destructive organs, and every way equipped for maintaining the due proportion of numbers, and the free trade of the ocean. Thus of the order of placoids, there are twenty-eight genera, and ninety-four species; of ganoids there are five genera, and twelve species; and sauroids enumerate thirteen genera, and twenty-four distinct and entirely new specific creations. A specimen of reptilian life has here also been detected; and what is of still greater theoretic importance, in tracing the course of creation, the immediately overlying sandstones have yielded up impressions of the winged tribes that “fly in the open firmament of heaven.” This interesting fact will, in its proper place in the order of superposition, be more fully alluded to.
The genus holoptychius, which began in the old red sandstone, again occurs in the carboniferous system, under eight new specific forms. Along with the megalichthys, afterward noticed, these constitute the two great natural families of fishes of carnivorous propensities, which give a marked character to the period. The prodigious increase of the shark-like creatures, of which not less than sixty species have been described from thousands of teeth, fins, detached vertebræ, and other fragments, is equally striking. Thus, in all, the faunæ of the carboniferous period amount to upward of a thousand species, which have been either figured or described.
In contemplating the period of creation under review, we are struck not more with the forms of life which actually existed, than with the absence of races which were afterward so abundant.No quadruped or true terrestrial animal is found so low in the series of rocks, or mixed up in any way with all this profusion of marine exuviæ. Fossil insects and indications of other winged tribes have been detected; but no bone nor foot-print of beast, or inhabitant of land, has anywhere been discovered. The fact is all-important, as showing not only a plan, but a progress and succession in the work of creation. A vegetation, so rank and luxuriant as has been traced, trees towering hundreds of feet into the sky, and branches of the densest foliage stretching on every side, was amply fitted to afford shelter and food to families of terrestrial creatures of every kind. But in the circumstance, that during this period there were repeated alternations of marine and fresh water deposits, and consequently repeated submergence and elevation of land, we see a reason why the terrestrial races were not yet called into being. Great continents, comparatively speaking, did not exist; and there was no ark of safety provided to float them over the billows. Race after race would have violently perished during every shift or subsidence of the sea bottom: and hence, until the carboniferous series was completed and a statical equilibrium established between the land and waters, few or none of the races which afterward swarmed in our plains and forests were introduced upon the scene.