FOOTNOTES:

FOOTNOTES:[56]The Stanford record booklet contains the circle ready for use.[57]SeeIV, 5, andVI, 4.[58]For aid in classifying the responses in this and certain other tests the writer is indebted to Miss Grace Lyman.[59]One is here reminded of the puzzling conundrum, “Why is a brick like an elephant?” The answer being, “Because neither can climb a tree!” A response of this type states a fact, but because of its bizarre nature should hardly be counted satisfactory.[60]For further discussion of the processes involved, seeVII, 5.[61]Supposing the ballots to have been shuffled.[62]See scoring card for samples of satisfactory and unsatisfactory performances.

[56]The Stanford record booklet contains the circle ready for use.

[56]The Stanford record booklet contains the circle ready for use.

[57]SeeIV, 5, andVI, 4.

[57]SeeIV, 5, andVI, 4.

[58]For aid in classifying the responses in this and certain other tests the writer is indebted to Miss Grace Lyman.

[58]For aid in classifying the responses in this and certain other tests the writer is indebted to Miss Grace Lyman.

[59]One is here reminded of the puzzling conundrum, “Why is a brick like an elephant?” The answer being, “Because neither can climb a tree!” A response of this type states a fact, but because of its bizarre nature should hardly be counted satisfactory.

[59]One is here reminded of the puzzling conundrum, “Why is a brick like an elephant?” The answer being, “Because neither can climb a tree!” A response of this type states a fact, but because of its bizarre nature should hardly be counted satisfactory.

[60]For further discussion of the processes involved, seeVII, 5.

[60]For further discussion of the processes involved, seeVII, 5.

[61]Supposing the ballots to have been shuffled.

[61]Supposing the ballots to have been shuffled.

[62]See scoring card for samples of satisfactory and unsatisfactory performances.

[62]See scoring card for samples of satisfactory and unsatisfactory performances.

Procedure.Ask the following questions in order:—

If the child misunderstands and gives the day of the month for the day of the week, orvice versa, we merely repeat the question with suitable emphasis, but give no other help.

Scoring.An error of three days in either direction is allowed forc, buta,b, anddmust all be given correctly. If the child makes an error and spontaneously corrects it, the change is allowed, but corrections must not be called for or suggested.

Remarks.Binet originally located this test in year IX, but unfortunately moved it to year VIII in the 1911 revision. Kuhlmann, Goddard, and Huey all retain it in year IX, where, according to our own data, it unquestionably belongs. With the exception of Binet’s 1911 results, the statistics for the test are in remarkably close agreement for children in France, Germany, England, and Eastern and Western United States. It seems that practically all children in civilized countries have ample opportunity to learn the divisions of the year, month, and week,and to become oriented with respect to these divisions. Special instruction is doubtless capable of hastening time orientation to a certain degree, but not greatly. Binet tells of a Frenchécole maternelleattended by children 4 to 6 years of age, where instruction was given daily in regard to the date, and yet not a single one of the children was able to pass this test. This is a beautiful illustration of the futility of precocious teaching. In spite of well-meant instruction, it is not until the age of 8 or 9 years that children have enough comprehension of time periods, and sufficient interest in them, to keep very close track of the date. Failure to pass the test at the age of 10 or 11 years is a decidedly unfavorable sign, unless the error is very slight.

The fact that normal adults are occasionally unable to give the day of the month is no argument against the validity of the test, since the system of tests is so constructed as to allow for accidental failures on any particular test. As a matter of fact, very nearly 100 per cent of normal 12-year-old children pass this test.

The unavoidable fault of the test is its lack of uniformity in difficulty at different dates. It is easier for school children to give the day of the week on Monday or Friday than on Tuesday, Wednesday, or Thursday. Mistakes in giving the day of the month are less likely to occur at the beginning or end of the month than at any other time, while mistakes in naming the month are most likely to occur then.

It is interesting to compare the four parts of this test in regard to difficulty. Binet and Bobertag both state that ability to name the year comes last, but they give no figures. Our own data show that the four parts of the test are of almost exactly the same difficulty and that this is true at all ages.

Use the five weights, 3, 6, 9, 12, and 15 grams. Be sure that the weights are identical in appearance. The weights may be made as described underV, 1, or they may be purchased of C. H. Stoelting & Co., Chicago, Illinois. If no weights are at hand one of the alternative tests may be substituted.

Procedure.Place the five boxes on the table in an irregular group before the child and say: “See the boxes. They all look alike, don’t they? But they are not alike. Some of them are heavy, some are not quite so heavy, and some are still lighter. No two weigh the same. Now, I want you to find the heaviest one and place it here. Then find the one that is just a little lighter and put it here. Then put the next lighter one here, and the next lighter one here, and the lightest of all at this end(pointing each time at the appropriate spot).Do you understand?” Whatever the child answers, in order to make sure that he does understand, we repeat the instructions thus: “Remember now, that no two weights are the same. Find the heaviest one and put it here, the next heaviest here, and lighter, lighter, until you have the very lightest here. Ready; go ahead.”

It is best to follow very closely the formula here given, otherwise there is danger of stating the directions so abstractly that the subject could not comprehend them. A formula like “I want you to arrange the blocks in a gradually decreasing series according to weight” would be Greek to most children of 10 years.

If the subject still seems at a loss to know what to do, the instructions may be again repeated. But no further help of any kind may be given. Do not tell the subject to take the blocks one at a time in the hand and try them, and do not illustrate by hefting the blocks yourself.It is a part of the test to let the subject find his own method.

Give three trials, shuffling the boxes after each. Do not repeat the instructions before the second and third trials unless the subject has used an absurd procedure in the previous trial.

Scoring.The test is passed if the blocks are arranged in the correct ordertwice out of three trials. Always record the order of arrangement and note the number and extent of displacement. Obviously an arrangement like 12–6–15–3–9 is very much more serious than one like 15–12–6–9–3, but we require that two trials be absolutely without error.

Scoring is facilitated if the blocks are marked on the bottom so that they may be easily identified. It is then necessary to exercise some care to see that the subject does not examine the bottom of the blocks for a clue as to the correct order.

Remarks.Binet originally located this test in year IX, but in his 1911 revision changed it to year VIII. Other revisions have retained it in year IX. The correct location depends upon the weights used and upon the procedure and scoring. Kuhlmann uses weights of 3, 9, 18, 27, 36, and 45 grams, and this probably makes the test easier. Bobertag tried two sets of boxes, one set being of larger dimensions than the other. The larger gave decidedly the more errors. If we require only one success in three trials the test could be located a year or two lower in the scale, while three successes as a standard would require that it be moved upward possibly as much as two years.

Much depends also on whether the child is left to find his own method, and on this there has been much difference of procedure. Kuhlmann, Bobertag, and Wallin illustrate the correct method of making the comparison by first heftingand arranging the weights while the subject looks on. We prefer to keep the test in its original form, and with the procedure and scoring we have used it is well located in year IX.

Wallin carries his assistance still further by saying, after the first block has been placed, “Now, find the heaviest of the four,” and after the second has been placed, “Now, find the heaviest of the three,” etc. Finally, when the arrangement has been made, he tells the subject to try them again to make sure the order is correct, allowing the subject to make whatever changes he thinks necessary. This procedure robs the test of its most valuable features. The experiment was not devised primarily as a test of sensory discrimination, for it has long been recognized that individuals who have developed as far as the 9- or 10-year level of intelligence are ordinarily but little below normal in sensory capacity.

Psychologically, the test resembles that of comparing weights inV, 1. Success depends, in the first place, upon the correct comprehension of the task and the setting of a goal to be attained; secondly, upon the choice of a suitable method for realizing the goal; and finally, upon the ability to keep the end clearly in consciousness until all the steps necessary for its attainment have been gone through. Elementary as are the processes involved, they represent the prototype of all purposeful behavior. The statesman, the lawyer, the teacher, the physician, the carpenter, all in their own way and with their own materials, are continually engaged in setting goals, choosing means, and inhibiting the multitudinous appeals of irrelevant and distracting ideas.

In this experiment the subject may fail in any one of the three requirements of the test or in all of them. (1) He may not comprehend the instructions and so be unable toset the goal. (2) Though understanding what is expected of him, he may adopt an absurd method of carrying out the task. Or (3) he may lose sight of the end and begin to play with the blocks, stacking them on top of one another, building trains, tossing them about, etc. Sometimes the guiding idea is not completely lost, but is weakened or rendered only partially operative. In such a case the subject may compare some of the blocks carefully, place others without trying them at all, but continue in his half-rational, half-irrational procedure until all the blocks have been arranged.

It is essential, therefore, to supplement the mere record of success or failure by jotting down a brief but accurate description of the performance. Note any hesitation or inability to grasp the instructions. Note especially any absurd procedure, such as placing all the blocks without hefting any of them, comparing only some of them, holding them up and shaking them, hefting two at once in the same hand, etc. The ideal method, of course, is to try all the blocks carefully before placing any of them, then to make a tentative arrangement, and finally, to correct this tentative arrangement by means of individual comparisons. A slight departure from this method does not always bring failure, but it renders success less probable. As a rule it is only the very intelligent children of 10 years who think to test out their first arrangement by making a final and additional trial of each block in turn. Contrary to what might be supposed, success is slightly favored by hefting the blocks successively with one hand rather than by taking one in each hand for simultaneous comparison, but as the child cannot be expected to know this, we must regard the two methods as equally logical.

The test of arranging weights has met universal praise. Its special advantage is that it tests the subject’s intelligencein the manipulation ofthingsrather than his capacity for dealing withabstractions. It tests his ability to do something rather than his ability to express himself in language. It throws light upon certain factors of motor adaptation and practical judgment which play a great part in the everyday life of the average human being. It depends as little upon school, perhaps, as any other test of the scale, and it is readily usable with children of all nations without danger of being materially altered in translation Moreover, it is always an interesting test for the child. Bobertag goes so far as to say that any 8- or 9-year child who passes this test cannot possibly be feeble-minded. This may be true; but the converse is hardly the case; that is, the failure of older children is by no means certain proof of mental retardation. The same observation, however, applies equally well to many other of the Binet tests, some of which correlate more closely with true mental age than this one. A rather considerable fraction of normal 12-year-olds fail on it, and it is in fact somewhat less dependable than certain other tests if we wish to differentiate between 9-year and 11-year intelligence. But it is a test we could ill afford to eliminate.[63]

Procedure.Ask the following questions in the order here given:—

Coins are not used, and the subject is not allowed the help of pencil and paper. If the subject forgets the statement of the problem, it is permissible to repeat it once, but only once. The response should be made in ten or fifteen seconds for each problem.

Scoring,The test is passed iftwo out of threeproblems are answered correctly in the allotted time. In case two answers are given to a problem, we follow the usual rule of counting the second and ignoring the first.

Remarks.Problems of this nature, when thoroughly standardized, are extremely valuable as tests of intelligence. The difficulty of the test, as we have used it, does not lie in the subtraction of 4 from 10, 12 from 15, etc. Such subtractions, when given as problems in subtraction, are readily solved by practically all normal 8-year-olds who have attended school as much as two years. The problems of the test have a twofold difficulty: (1) The statement of the problem must be comprehended and held in mind until the solution has been arrived at; (2) the problem is so stated that the subject must himself select the fundamental operation which applies. The latter difficulty is somewhat the greater of the two, addition sometimes being employed instead of subtraction.

It is just such difficulties as this that prove so perplexing to the feeble-minded. High-grade defectives, although they require more than the usual amount of drill and are likely to make occasional errors, are nevertheless capable of learning to add, subtract, multiply, and divide fairly well. Their main trouble comes in deciding which of these operations a given problem calls for. They can master routine, but as regards initiative, judgment, and power to reason they are little educable. The psychology and pedagogy of mental deficiency is epitomized in this statement.

There has been little disagreement as to the proper locationof the test of making change, but various procedures have been employed. Coins have generally been employed, in which case the subject is actually allowed to make the change. Most other revisions have also given only a single problem, usually 4 cents out of 20 cents, or 4 out of 25, or 9 out of 25. It is evident that these are not all of equal difficulty. There is general agreement, however, that normal children of 9 years should be able to make simple change.

The series are 6–5–2–8; 4–9–3–7; 3–6–2–9.

Procedure and scoring.Exactly as inVII, alternate test 2.[64]

ProcedureThe words used are:—

Say: “You know what a sentence is, of course. A sentence is made up of some words which say something. Now, I am going to give you three words, and you must make up a sentence that has all three words in it. The three words are ‘boy,’ ‘ball,’ ‘river.’ Go ahead and make up a sentence that has all three words in it.” The others are given in the same way.

Note that the subject is not shown the three words written down, and that the reply is to be given orally.

If the subject does not understand what is wanted, the instruction may be repeated, but it is not permissible to illustrate what a sentence is by giving one. There must be no preliminary practice.

A curious misunderstanding which is sometimes encountered comes from assuming that the sentence must be constructed entirely of the three words given. If it appears that the subject is stumbling over this difficulty, we explain: “The three words must be put with some other words so that all of them together will make a sentence.”

Nothing is said about hurrying, but if a sentence is not given within one minute the rule is to count that part of the test a failure and to proceed to the next trio of words.

Give only one trial for each part of the test.

Do not specially caution the child to avoid giving more than one sentence, as this is implied in the formula used and should be understood.

Scoring.The test is passed iftwo of the threesentences are satisfactory. In order to be satisfactory a sentence must fulfill the following requirements: (1) It must either be a simple sentence, or, if compound, must not contain more than two distinct ideas; and (2) it must not express an absurdity.

Slight changes in one or more of the key words are disregarded, asriverforrivers, etc.

The scoring is difficult enough to justify rather extensive illustration.

(a) Boy, ball, riverSatisfactory.An analysis of 128 satisfactory responses gave the following classification:—Simple sentence containing a simple subject and a simple predicate; as: “The boy threw his ball into the river.” “The boy lost his ball in the river.” “The boy’s ball fell into the river.” “The boy swam into the river after his ball,” etc. This group contains 76 per cent of the correct responses.A sentence with a simple subject and a compound predicate; as: “A boy went to the river and took his ball with him.” About 8 per cent of all were of this type.A complex sentence containing a relative clause (2 per centonly); as: “The boy ran after his ball which was rolling toward the river.”A compound sentence containing two independent clauses (about 14 per cent); as: “The boy had a ball and he lost it in the river.”Unsatisfactory.The failures fall into four chief groups:—Sentences with three clauses (or else three separate sentences).Sentences containing an absurdity.Sentences which omit one of the key words.Silence, due ordinarily to inability to comprehend the task.Group 1 includes 78 per cent of the failures; group 2, about 12 per cent; and group 3 and 4 about 5 per cent each. Samples of group 1 are: “There was a boy, and he bought a ball, and it fell into the river.” “I saw a boy, and he had a ball, and he was playing by the river.” Illustration of an absurd sentence, “The boy was swimming in the river and he was playing ball.”(b) Work, money, menSatisfactory:—Sentence with a simple subject and simple predicate (including 75 per cent of 116 satisfactory responses); as: “Men work for their money.” “Men get money for their work,” etc.A complex sentence with a relative clause (12 per cent of correct answers); as: “Men who work earn much money.” “It is easy for men to earn money if they are willing to work,” etc.A compound sentence with two independent, coördinate clauses (13 per cent); as: “Men work and they earn money.” “Some men have money and they do not work.”Unsatisfactory:—Three clauses; as: “I know a man and he has money, and he works at the store.”Sentences which are absurd or meaningless; as: “Men work with their money.”Omission of one of the words.Inability to respond.(c) Desert, rivers, lakesSatisfactory:—Sentences with a simple subject and a simple predicate (including 84 per cent of 126 correct answers); as: “There are no rivers or lakes in the desert.” “The desert has one river and one lake,” etc.A complex sentence with a relative clause (only 2 per cent); as: “In the desert there was a river which flowed into a lake.”A compound sentence with two independent, coördinate clauses (11 per cent); as: “We went to the desert, and it had no rivers or lakes.”A compound, complex sentence (3 per cent of all); as: “There was a desert, and near by there was a river that emptied into a lake.”Unsatisfactory:—Sentences with three clauses (40 per cent of all failures); as: “A desert is dry, rivers are long, lakes are rough.”Sentences containing an absurdity (12 per cent of the failures): as: “a desert is dry, rivers are long, lakes are filled with swimming boys.” “The lake went through the desert and the river.” “There was a desert and rivers and lakes in the forest.” “The desert is full of rivers and lakes.”Omission of one of the words (40 per cent of the failures).Inability to respond (8 per cent).

Satisfactory.An analysis of 128 satisfactory responses gave the following classification:—

Unsatisfactory.The failures fall into four chief groups:—

Group 1 includes 78 per cent of the failures; group 2, about 12 per cent; and group 3 and 4 about 5 per cent each. Samples of group 1 are: “There was a boy, and he bought a ball, and it fell into the river.” “I saw a boy, and he had a ball, and he was playing by the river.” Illustration of an absurd sentence, “The boy was swimming in the river and he was playing ball.”

Satisfactory:—

Unsatisfactory:—

Satisfactory:—

Unsatisfactory:—

Remarks.The test of constructing a sentence containing given words was first used by Masselon and is known as “the Masselon experiment.” Meumann, who used it in a rather extended experiment,[65]finds it a good test of intelligence and a reliable index as to the richness, definiteness, and maturity of the associative processes. As Meumann shows, it is instructive to study the qualitative differences between the responses of bright and dull children, apart from questions of sentence structure. These differences areespecially discernible in (a) the logical qualities of the associations, and (b) the definiteness of statement. As regards (a), bright children are much more likely to use the given words as keystones in the construction of a sentence which would be logically suggested by them. For example,donkey,blows, suggest some such sentence as, “The donkey receives blows because he is lazy.” In like manner we have found that the wordswork,money,menusually suggest to the more intelligent children a sentence like “Men work for their money” (or “because they need money,” etc.), while the dull child is more likely to give some such sentence as “The men have work and they don’t have much money.” That is, the sentence of the dull child, even though correct in structure and free enough from outright absurdity to satisfy the standard of scoring which we have set forth, is likely to express ideas which are more or less nondescript, ideas not logically suggested by the set of words given.

The experiment is one of the many forms of the “completion test,” or “the combination method.” As we have already noted, the power to combine more or less separate and isolated elements into a logical whole is one of the most essential features of intelligence. The ability to do so in a given case depends, in the first place, upon the number and logical quality of the associations which have previously been made with each of the given elements separately, and in the second place, upon the readiness with which these ideational stores yield up the particular associations necessary for weaving the given words into some kind of unity. The child must pass from what is given to what is not given but merely suggested. This requires a certain amount of invention. Scattered fragments must be conceived as the skeleton of a thought, and this skeleton, or partial skeleton, must be assembled and made whole. The task is analogousto that which confronts the palæontologist, who is able to reconstruct, with a high degree of certainty, the entire skeleton of an extinct animal from the evidence furnished by three or four fragments of bones. It is no wonder, therefore, that subjects whose ideational stores are scanty, and whose associations are based upon accidental rather than logical connections, find the test one of peculiar difficulty. Invention thrives in a different soil.

Binet located this test in year X. Goddard and Kuhlmann assign it the same location, though their actual statistics agree closely with our own. Our procedure makes the test somewhat easier than that of Binet, who gave only one trial and used the somewhat more difficult wordsParis,river,fortune. Others have generally followed the Binet procedure, merely substituting for Paris the name of a city better known to the subject. Binet’s requirement of a written response also makes the test harder.

Perhaps the greatest obstacle to uniformity in the use of the test comes from the difficulty of scoring, particularly in deciding whether the sentence contains enough absurdity to disqualify it, and whether it expresses three separate ideas or only two. It is hoped that the rather large variety of sample responses which we have given will reduce these difficulties to a minimum.

An additional word is necessary in regard to what constitutes an absurdity in (b). A sentence like “There are some rivers and lakes in the desert” is not an absurdity in certain parts of Western United States. In Professor Ordahl’s tests at Reno, Nevada, many children whose intelligence was altogether above suspicion gave this reply. The statement is, indeed, perfectly true for the semi-arid region in the vicinity of Reno known as “the desert.” On the other hand, such sentences as “The desert is full of rivers and lakes,” or “There are forty rivers and lakesin the desert,” can hardly be considered satisfactory. Similar difficulties are presented by (c), though not so frequently. “Men who work do not have money” expresses, unfortunately, more truth than nonsense.

Procedure.Say to the child: “You know what a rhyme is, of course. A rhyme is a word that sounds like another word. Two words rhyme if they end in the same sound. Understand?” Whether the child says he understands or not, we proceed to illustrate what a rhyme is, as follows: “Take the two words ‘hat’ and ‘cat.’ They sound alike and so they make a rhyme. ‘Hat,’ ‘rat,’ ‘cat,’ ‘bat’ all rhyme with one another.”

That is, we first explain what a rhyme is and then we give an illustration. A large majority of American children who have reached the age of 9 years understand perfectly what a rhyme is, without any illustration. A few, however, think they understand, but do not; and in order to insure that all are given equal advantage it is necessary never to omit the illustration.

After the illustration say: “Now, I am going to give you a word and you will have one minute to find as many words as you can that rhyme with it. The word is ‘day.’ Name all the words you can think of that rhyme with ‘day.’”

If the child fails with the first word, before giving the second we repeat the explanation and give sample rhymes forday; otherwise we proceed without further explanation tomillandspring, saying, “Now, you have another minute to name all the words you can think of that rhyme with ‘mill,’” etc. Apart from the mention of “one minute” say nothing to suggest hurrying, as this tends to throw some children into mental confusion.

Scoring.Passed if intwo out of the threeparts of the experiment the child findsthree wordswhich rhyme with the word given, the time limit for each series beingone minute. Note that in each case there must be three words in addition to the word given. These must be real words, not meaningless syllables or made-up words. However, we should be liberal enough to accept such words asding(from “ding-dong ”) forspring,Jill(see “Jack and Jill”) formill,Fay(girl’s name) forday, etc.

Remarks.At first thought it would seem that the demands made by this test upon intelligence could not be very great. Sound associations between words may be contrasted unfavorably with associations like those of cause and effect, part to whole, whole to part, opposites, etc. But when we pass froma-prioriconsiderations to an examination of the actual data, we find that the giving of rhymes is closely correlated with general intelligence.

The 9-year-olds who test at or above 10 years nearly always do well in finding rhymes, while 9-year-olds who test as low as 8 years seldom pass. When a test thus shows high correlation with the scale as a whole, we must either accept the test as valid or reject the scale altogether. While the feeble-minded do not do as well in this test as normal children of corresponding mental age, the percentage successes for them rises rapidly between mental age 8 and mental age 10 or 11.

Closer psychological analysis of the processes involved will show why this is true. To find rhymes for a given word means that one must hunt out verbal associations under the direction of a guiding idea. Every word has innumerable associations and many of these tend, in greater or less degree, to be aroused when the stimulus word is given. In order to succeed with the test, however, it is necessary to inhibit all associations which are not relevantto the desired end. The directing idea must be held so firmly in mind that it will really direct the thought associations. Besides acting to inhibit the irrelevant, it must create a sort of magnetic stress (to borrow a figure from physics) which will give dominance to those associative tendencies pointing in the right direction. Even the feeble-minded child of imbecile grade has in his vocabulary a great many words which rhyme withday,mill, andspring. He fails on the test because his verbal associations cannot be subjugated to the influence of a directing idea. The end to be attained does not dominate consciousness sufficiently to create more than a faint stress. Instead of a single magnetic pole there is a conflict of forces. The result is either chaos or partial success.Millmay suggesthill, and then perhaps the directing idea becomes suddenly inoperative and the child givesmountain,valley, or some other irrelevant association. The lack of associations, however, is a more frequent cause of failure than inability to inhibit the irrelevant.

If any one supposes that finding rhymes does not draw upon the higher mental powers, let him try the experiment upon himself in various stages of mental efficiency, say at 9a.m., when mentally refreshed by a good night of sleep and again when fatigued and sleepy. Poets questioned by Galton on this point all testified to the greater difficulty of finding rhymes when mentally fatigued. In this and in many other respects the mental activities of the fatigued or sleepy individual approach the type of mentation which is normal to the feeble-minded.

It is important to note that adults make a less favorable showing in this test than normal children of corresponding mental age, Mr. Knollin’s “hoboes” of 12-year intelligence doing hardly as well as school children of 10-year intelligence. Those who are habitually employed in schoolexercises probably acquire an adeptness in verbal associations which is later gradually lost in the preoccupations of real life.

There has been more disagreement as to the proper location of this test than of any other test of the Binet scale. Binet placed it in year XII of the 1908 scale, but shifted it to year XV in 1911. Kuhlmann retains it in year XII, while Goddard drops it down to year XI. However, when we examine the actual statistics for normal children we do not find very marked disagreement, and such disagreement as is present can be largely accounted for by variations in procedure and by differing conclusions drawn from identical data. In the first place, Binet gave but one trial. This, of course, makes the test much harder than when three trials are given and only two successes are required. To make one trial equal in difficulty to three trials we should perhaps need to demand only two rhymes, instead of three, in the one trial. In the second place, the word used by Binet (obeissance) is much harder than one-syllable words likeday,mill, andspring. Finally, the wide shift of the test from year XII to year XV was not justified by the statistics of Binet himself, and the figures of Kuhlmann and Goddard are really in exceptionally close agreement with our own, notwithstanding the fact that Goddard required three successes instead of two. In four series of tests, considered together, we have found 62 per cent passing at year IX, 81 per cent at year X, 83 per cent at year XI, and 94 per cent at year XII.

Procedure.Simply ask the subject to “name all the months of the year.” Do not start him off by naming one month; give no look of approval or disapproval as themonths are being named, and make no suggestions or comments of any kind.

When the months have been named, we “check up” the performance by asking: “What month comes before April?” “What month comes before July?” “What month comes before November?”

Scoring.Passed if the months are named in aboutfifteen or twenty seconds with no more than one errorof omission, repetition, or displacement, and iftwo out of the three check questionsare answered correctly. Disregard place of beginning.

Remarks.Some are inclined to consider this test of little value, because of its supposed dependence on accidental training. With this opinion we cannot fully agree. The arguments already given in favor of the retention ofnaming the days of the week(year VII), apply equally well in the present case. It has been shown, however, that age, apart from intelligence, does have some effect on the ability to name the months. Defective adults of 9-year intelligence do about as well with it as normal children of 10-year intelligence.

The test appears in year X of Binet’s 1908 scale and in year IX of the 1911 revision. Goddard places it correctly in year IX, while Kuhlmann and Bobertag have omitted it.

Procedure.Place before the subject a cardboard on which are pasted three 1-cent and three 2-cent stamps arranged as follows: 111222. Be sure to lay the card so that the stamps will be right side up for the child. Say: “You know, of course, how much a stamp like this costs(pointing to a 1-cent stamp).And you know how much one like thiscosts(pointing to a 2-cent stamp).Now, how much money would it take to buy all these stamps?”

Do not tell the individual values of the stamps if these are not known, for it is a part of the test to ascertain whether the child’s spontaneous curiosity has led him to find out and remember their values. If the individual values are known, but the first answer is wrong, a second trial may be given. In such cases, however, it is necessary to be on guard against guessing.

If the child merely names an incorrect sum without saying anything to indicate how he arrived at his answer, it is well to tell him to figure it up aloud. “Tell me how you got it.”

Scoring.Passed if the correct value is given in not over fifteen seconds.

Remarks.The value of this test may be questioned on two grounds: (1) That it has an ambiguous significance, since failure to pass it may result either from incorrect addition or from lack of knowledge of the individual values of the stamps; (2) that familiarity with stamps and their values is so much a matter of accident and special instruction that the test is not fair.

Both criticisms are in a measure valid. The first, however, applies equally well to a great many useful intelligence tests. In fact, it is only a minority in which success depends on but one factor. The other criticism has less weight than would at first appear. While it is, of course, not impossible for an intelligent child to arrive at the age of 9 years without having had reasonable opportunity to learn the cost of the common postage stamps, the fact is that a large majority have had the opportunity and that most of those of normal intelligence have taken advantage of it. It is necessary once more to emphasize the fact that in its method of locating a test the Binet system makes ample allowance for “accidental” failures.

Like the tests of naming coins, repeating the names of the days of the week or the months of the year, giving the date, tying a bow-knot, distinguishing right and left, naming the colors, etc., this one also throws light on the child’s spontaneous interest in common objects. It is mainly the children of deficient intellectual curiosity who do not take the trouble to learn these things at somewhere near the expected age.

The test was located in year VIII of the Binet scale. However, Binet used coins, three single and three double sous. Since we do not have either a half-cent or a 2-cent coin, it has been necessary to substitute postage stamps. This changes the nature of the test and makes it much harder. It becomes less a test of ability to do a simple sum, and more a test of knowledge as to the value of the stamps used. That the test is easy enough for year VIII when it can be given in the original form is indicated by all the French, German, and English statistics available, but four separate series of Stanford tests agree in finding it too hard for year VIII when stamps are substituted and the test is carried out according to the procedure described above.

FOOTNOTES:[63]Compare withV, 1.[64]See discussion, p.207ff.[65]“Ueber eine neue Methode der Intelligenzprüfung und über den Wert der Kombinationsmethoden,” inZeitschrift für Pädagogische Psychologie und Experimentelle Pädagogik(1912), pp. 145–63.

[63]Compare withV, 1.

[63]Compare withV, 1.

[64]See discussion, p.207ff.

[64]See discussion, p.207ff.

[65]“Ueber eine neue Methode der Intelligenzprüfung und über den Wert der Kombinationsmethoden,” inZeitschrift für Pädagogische Psychologie und Experimentelle Pädagogik(1912), pp. 145–63.

[65]“Ueber eine neue Methode der Intelligenzprüfung und über den Wert der Kombinationsmethoden,” inZeitschrift für Pädagogische Psychologie und Experimentelle Pädagogik(1912), pp. 145–63.

Procedure and scoring as inVIII, 6.At year X, thirty words should be correctly defined.

Procedure.Say to the child: “I am going to read a sentence which has something foolish in it, some nonsense. I want you to listen carefully and tell me what is foolish about it.” Then read the sentences, rather slowly and in a matter-of-fact voice, saying after each: “What is foolish about that?” The sentences used are the following:—

Each should ordinarily be answered within thirty seconds. If the child is silent, the sentence should berepeated; but no other questions or suggestions of any kind are permissible. Such questions as “Could the road be downhill both ways?” or, “Do you think the girl could have killed herself?” would, of course, put the answer in the child’s mouth. It is even best to avoid laughing as the sentence is read.

Owing to the child’s limited power of expression it is not always easy to judge from the answer given whether the absurdity has really been detected or not. In such cases ask him to explain himself, using some such formula as: “I am not sure I know what you mean. Explain what you mean. Tell me what is foolish in the sentence I read.” This usually brings a reply the correctness or incorrectness of which is more apparent, while at the same time the formula is so general that it affords no hint as to the correct answer. Additional questions must be used with extreme caution.

Scoring.Passed if the absurdity is detected infour out of the fivestatements. The following are samples of satisfactory and unsatisfactory answers:—

(a) The road downhillSatisfactory.“If it was downhill to the city it would be uphill coming back.” “It can’t be downhill both directions.” “That could not be.” “That is foolish. (Explain.) Because it must be uphill one way or the other.” “That would be a funny road. (Explain.) No road can be like that. It can’t be downhill both ways.”Unsatisfactory.“Perhaps he took a little different road coming back.” “I guess it is a very crooked road.” “Coming back he goes around the hill.” “The man lives down in a valley.” “The road was made that way so it would be easy.” “Just a road. I don’t see anything foolish.” “He should say, ‘a road which goes.’”(b) What the engineer saidSatisfactory.“If he has more cars he will go slower.” “It is the other way. If he wants to go faster he mustn’t have so manycars.” “The man didn’t mean what he said, or else it was a slip of the tongue.” “That’s the way it would be if he was going downhill.” “Foolish, because the cars don’t help pull the train.” “He ought to sayslower, notfaster.”Unsatisfactory.“A long train is nicer.” “The engine pulls harder if the train has lots of cars.” “That’s all right. I suppose he likes a big train.” “Nothing foolish; when I went to the city I saw a train that had lots of cars and it was going awfully fast.” “He should have said, ‘the faster I canrun.’”(c) The girl who was thought to have killed herselfSatisfactory.“She could not have cut herself into eighteen pieces.” “She would have been dead before that.” “She might have cut two or three pieces off, but she couldn’t do the rest.” (Laughing) “Well, she may have killed herself; but if she did it’s a sure thing that some one else came along after and chopped her up.” “That policeman must have been a fool. (Explain.) To think that she could chop herself into eighteen pieces.”Unsatisfactory.“Thinkthat she killed herself; theyknowshe did.” “They can’t be sure. Some one may have killed her.” “It was a foolish girl to kill herself.” “How can they tell who killed her?” “No girl would kill herself unless she was crazy.” “It ought to read: ‘They think that she committed suicide.’”(d) The railroad accidentSatisfactory.“That was very serious.” “I should like to know what you would call a serious accident!” “You could say it was not serious if two or three people were killed, but forty-eight,—that is serious.”Unsatisfactory.“It was a foolish mistake that made the accident.” “They couldn’t help it. It was an accident.” “It might have been worse.” “Nothing foolish; it’s just sad.”(e) The bicycle riderSatisfactory.“How could he get well after he was already killed?” “Why, he’s already dead.” “No use to take a dead man to the hospital.” “They ought to have taken him to a grave-yard!”Unsatisfactory.“Foolish to fall off of a bicycle. He should have known how to ride.” “They ought to have carried him home.(Why?) So his folks could get a doctor.” “He should have been more careful.” “Maybe they can cure him if he isn’t hurt very bad.” “There’s nothing foolish in that.”

Satisfactory.“If it was downhill to the city it would be uphill coming back.” “It can’t be downhill both directions.” “That could not be.” “That is foolish. (Explain.) Because it must be uphill one way or the other.” “That would be a funny road. (Explain.) No road can be like that. It can’t be downhill both ways.”

Unsatisfactory.“Perhaps he took a little different road coming back.” “I guess it is a very crooked road.” “Coming back he goes around the hill.” “The man lives down in a valley.” “The road was made that way so it would be easy.” “Just a road. I don’t see anything foolish.” “He should say, ‘a road which goes.’”

Satisfactory.“If he has more cars he will go slower.” “It is the other way. If he wants to go faster he mustn’t have so manycars.” “The man didn’t mean what he said, or else it was a slip of the tongue.” “That’s the way it would be if he was going downhill.” “Foolish, because the cars don’t help pull the train.” “He ought to sayslower, notfaster.”

Unsatisfactory.“A long train is nicer.” “The engine pulls harder if the train has lots of cars.” “That’s all right. I suppose he likes a big train.” “Nothing foolish; when I went to the city I saw a train that had lots of cars and it was going awfully fast.” “He should have said, ‘the faster I canrun.’”

Satisfactory.“She could not have cut herself into eighteen pieces.” “She would have been dead before that.” “She might have cut two or three pieces off, but she couldn’t do the rest.” (Laughing) “Well, she may have killed herself; but if she did it’s a sure thing that some one else came along after and chopped her up.” “That policeman must have been a fool. (Explain.) To think that she could chop herself into eighteen pieces.”

Unsatisfactory.“Thinkthat she killed herself; theyknowshe did.” “They can’t be sure. Some one may have killed her.” “It was a foolish girl to kill herself.” “How can they tell who killed her?” “No girl would kill herself unless she was crazy.” “It ought to read: ‘They think that she committed suicide.’”

Satisfactory.“That was very serious.” “I should like to know what you would call a serious accident!” “You could say it was not serious if two or three people were killed, but forty-eight,—that is serious.”

Unsatisfactory.“It was a foolish mistake that made the accident.” “They couldn’t help it. It was an accident.” “It might have been worse.” “Nothing foolish; it’s just sad.”

Satisfactory.“How could he get well after he was already killed?” “Why, he’s already dead.” “No use to take a dead man to the hospital.” “They ought to have taken him to a grave-yard!”

Unsatisfactory.“Foolish to fall off of a bicycle. He should have known how to ride.” “They ought to have carried him home.(Why?) So his folks could get a doctor.” “He should have been more careful.” “Maybe they can cure him if he isn’t hurt very bad.” “There’s nothing foolish in that.”

Remarks.The detection of absurdities is one of the most ingenious and serviceable tests of the entire scale. It is little influenced by schooling, and it comes nearer than any other to being a test of that species of mother-wit which we call common sense. Like the “comprehension questions,” it may be called a test of judgment, using this term in the colloquial and not in the logical sense. The stupid person, whether depicted in literature, proverb, or the ephemeral joke column, is always (and justly, it would seem) characterized by a huge tolerance for absurd contradictions and by a blunt sensitivity for the fine points of a joke. Intellectual discrimination and judgment are inferior. The ideas do not cross-light each other, but remain relatively isolated. Hence, the most absurd contradictions are swallowed, so to speak, without arousing the protest of the critical faculty. The latter, indeed, is only a name for the tendency of intellectually irreconcilable elements to clash. If there is no clash, if the elements remain apart, it goes without saying that there will be no power of criticism.

The critical faculty begins its development in the early years and strengthenspari passuwith the growing wealth of inter-associations among ideas; but in the average child it is not until the age of about 10 years that it becomes equal to tasks like those presented in this test. Eight-year intelligence hardly ever scores more than two or three correct answers out of five. By 12, the critical ability has so far developed that the test is nearly always passed. It is an invaluable test for the higher grades of mental deficiency.

As a test of the critical powers Binet first used “trap questions”; as, for example, “Is snow red or black?”The results were disappointing, for it was found that owing to timidity, deference, and suggestibility normal children often failed on such questions. Deference is more marked in normal than in feeble-minded children, and it is because of the influence of this trait that it is necessary always to forewarn the subject that the sentence to be given contains nonsense.

Binet located the test in year XI of the 1908 scale, but changed it to year X in 1911. Goddard and Kuhlmann retain it in year XI. The large majority of the statistics, including those of Goddard and Kuhlmann, warrant the location of the test in year X. Not all have used the same absurdities, and these have not been worded uniformly. Most have required three successes out of five, but Bobertag and Kuhlmann require three out of four; Bobertag’s procedure is also different in that he does not forewarn the child that an absurdity is to follow.

The present form of the test is the result of three successive refinements. It will be noted that we have made two substitutions in Binet’s list of absurdities. Those omitted from the original scale are: “I have three brothers—Paul, Ernest, and myself,” and, “If I were going to commit suicide I would not choose Friday, because Friday is an unlucky day and would bring me misfortune.” The last has a puzzling feature which makes it much too hard for year X, and the other is objectionable with children who are accustomed to hear a foreign language in which the form of expression used in the absurdity is idiomatically correct.

The two we have substituted for these objectionable absurdities are, “The road downhill” and “What the engineer said.” The five we have used, though of nearly equal difficulty, are here listed in the order from easiest to hardest. Our series as a whole is slightly easier than Binet’s.

Procedure.Use the designs shown on the accompanying printed form. If copies are used they must be exact in size and shape. Before showing the card say: “This card has two drawings on it. I am going to show them to you for ten seconds, then I will take the card away and let you draw from memory what you have seen. Examine both drawings carefully and remember that you have only ten seconds.”

Provide pencil and paper and then show the card for ten seconds, holding it at right angles to the child’s line of vision and with the designs in the position given in the plate. Have the child draw the designs immediately after they are removed from sight.

Scoring.The test is passed ifone of the designs is reproduced correctly and the other about half correctly. “Correctly” means that theessential planof the design has been grasped and reproduced. Ordinary irregularities due to lack of motor skill or to hasty execution are disregarded. “Half correctly” means that some essential part of the design has been omitted or misplaced, or that parts have been added.

The sample reproductions shown on the scoring card will serve as a guide. It will be noted that an inverted design, or one whose right and left sides have been transposed, is counted only half correct, however perfect it many be in other respects; also that designbis counted only half correct if the inner rectangle is not located off center.

Remarks.Binet states that the main factors involved in success are “attention, visual memory, and a little analysis.” The power of rapid analysis would seem to be the most important, for if the designs are analyzed they may be reproduced from a verbal memory of the analysis. Without some analysis it would hardly be possible to rememberthe designs at all, as one of them contains thirteen lines and the other twelve. The memory span for unrelated objects is far too limited to permit us to grasp and retain that number of unrelated impressions. Success is possible only by grouping the lines according to their relationships, so that several of them are given a unitary value and remembered as one. In this manner, the design to the right, which is composed of twelve lines, may be reduced to four elements: (1) The outer rectangle; (2) the inner rectangle; (3) the off-center position of the inner rectangle; and (4) the joining of the angles. Of course the child does not ordinarily make an analysis as explicit as this; but analysis of some kind, even though it be unconscious, is necessary to success.

Ability to pass the test indicates the presence, in a certain definite amount, of the tendency for the contents of consciousness to fuse into a meaningful whole. Failure indicates that the elements have maintained their unitary character or have fused inadequately. It is seen, therefore, that the test has a close kinship with the test of memory for sentences. The latter, also, permits the fusion or grouping of impressions according to meaning, with the result that five or six times as many meaningful syllables as nonsense syllables or digits can be retained.

Binet had many more failures on designathan on designb. This was probably due to the fact that he showed the designs with ourbto the left. A majority of subjects, probably because of the influence of reading habits, examine first the figure to the left, and because of the short time allowed for the inspection are unable to devote much time to the design at the right. We have placed the design of greater intrinsic difficulty at the left, with the result that the failures are almost equally divided between the two.

Binet used this test in his unstandardized series of 1905, omitted it in 1908, but included it in the 1911 revision, locating it in year X. Except for Goddard, who recommends year XI, there is rather general agreement that the test belongs at year X. Our own data show that it may be placed either at year X or year XI, according as the grading is rigid or lenient.

Material.We use Binet’s selection, slightly adapted, as follows:—

New York, September 5th. A fire last night burned three houses near the center of the city. It took some time to put it out. The loss was fifty thousand dollars, and seventeen families lost their homes. In saving a girl, who was asleep in a bed, a fireman was burned on the hands.

New York, September 5th. A fire last night burned three houses near the center of the city. It took some time to put it out. The loss was fifty thousand dollars, and seventeen families lost their homes. In saving a girl, who was asleep in a bed, a fireman was burned on the hands.

The copy of the selection used by the subject should be printed in heavy type and should not contain the bars dividing it into memories. The Stanford record booklet contains the selection in two forms, one suitable for use in scoring, the other in heavy type to be read by the subject.

Procedure.Hand the selection to the subject, who should be seated comfortably in a good light, and say: “I want you to read this for me as nicely as you can.” The subject must read aloud.

Pronounce all the words which the subject is unable to make out, not allowing more than five seconds’ hesitation in such a case.

Record all errors made in reading the selection, and the exact time. By “error” is meant the omission, substitution, transposition, or mispronunciation of one word.

The subject is not warned in advance that he will be asked to report what he has read, but as soon as he hasfinished reading, put the selection out of sight and say: “Very well done. Now, I want you to tell me what you read. Begin at the first and tell everything you can remember.” After the subject has repeated everything he can recall and has stopped, say: “And what else? Can you remember any more of it?” Give no other aid of any kind. It is of course not permissible, when the child stops, to prompt him with such questions as, “And what next? Where were the houses burned? What happened to the fireman?” etc. The report must be spontaneous.

Now and then, though not often, a subject hesitates or even refuses to try, saying he is unable to do it. Perhaps he has misunderstood the request and thinks he is expected to repeat the selection word for word, as in thetests of memoryfor sentences. We urge a little and repeat: “Tell me in your own words all you can remember of it.” Others misunderstand in a different way, and thinking they are expected to tell merely what the story is about, they say: “It was about some houses that burned.” In such cases we repeat the instructions with special emphasis on the wordsall you can remember.

Scoring.The test is passedif the selection is read in thirty-five seconds with not more than two errors, and if the report contains at least eight “memories.”By underscoring the memories correctly reproduced, and by interlineations to show serious departures from the text, the record can be made complete with a minimum of trouble.

The main difficulty in scoring is to decide whether a memory has been reproduced correctly enough to be counted. Absolutely literal reproduction is not expected. The rule is to count all memories whose thought is reproduced with only minor changes in the wording. “It took quite a while” instead of “it took some time” is satisfactory; likewise, “got burnt” for “was burned”;“who was sleeping” for “who was asleep”; “are homeless” for “lost their homes”; “in the middle” for “near the center”; “a big fire” for “a fire,” etc.

Memories as badly mutilated as the following, however, are not counted: “A lot of buildings” for “three houses;” “a man” for “a fireman”; “who was sick” for “who was asleep”; etc. Occasionally we may give half credit, as in the case of “was seventeen thousand dollars” for “was fifty thousand dollars”; “and fifteen families” for “and seventeen families,” etc.

Remarks.Are we warranted in using at all as a measure of intelligence a test which depends as much on instruction as this one does? Many are inclined to answer this question in the negative. The test has been omitted from the revisions of Goddard, Kuhlmann, and Binet himself. As regards Binet’s earlier test of reading for two memories, in year VIII, there could hardly be any difference of opinion. The ability to read at that age depends so much on the accident of environment that the test is meaningless unless we know all about the conditions which have surrounded the child.

The use of the test in year X, however, is a very different matter. There are comparatively few children of that age who will fail to pass it for lack of the requisite school instruction. Children of 10 years who have attended school with reasonable regularity for three years are practically always able to read the selection in thirty-five seconds and without over two mistakes unless they are retarded almost to the border-line of mental deficiency. Of our 10-year-olds who failed to meet the test, only a fourth did so because of inability to meet the reading requirements as regards time or mistakes. The remaining failures were caused by inadequate report, and most of these subjects were of the distinctly retarded group.

We may conclude, therefore, that given anything approaching normal educational advantages, the test is really a measure of intelligence. Used with due caution, it is perhaps as valuable as any other test in the scale. It is only necessary, in case of failure, to ascertain the facts regarding the child’s educational opportunities. Even this precaution is superfluous in case the subject tests as low as 8 years by the remainder of the scale. A safe rule is to omit the test from the calculation of mental age if the subject has not attended school the equivalent of two or three years.

It has been contended by some that tests in which success depends upon language mastery cannot be real tests of intelligence. By such critics language tests have been set over against intelligence tests as contrasting opposites. It is easy to show, however, that this view is superficial and psychologically unsound. Every one who has an acquaintance with the facts of mental growth knows that language mastery of some degree is thesine qua nonof conceptual thinking. Language growth, in fact, mirrors the entire mental development. There are few more reliable indications of a subject’s stage of intellectual maturity than his mastery of language.

The rate of reading, for example, is a measure of the rate of association. Letters become associated together in certain combinations making words, words into word groups and sentences. Recognition is for the most part an associative process. Rapid and accurate association will mean ready recognition of the printed form. Since language units (whether letters, words, or word groups) have more or less preferred associations according to their habitual arrangement into larger units, it comes about that in the normal mind under normal conditions these preferred sequences arouse the apperceptive complex necessary to make a runningrecognition rapid and easy. It is reasonable to suppose that in the subnormal mind the habitual common associations are less firmly fixed, thus diminishing the effectiveness of the ever-changing apperceptive expectancy. Reading is, therefore, largely dependent on what James calls the “fringe of consciousness” and the “consciousness of meaning.” In reading connected matter, every unit is big with a mass of tendencies. The smaller and more isolated the unit, the greater is the number of possibilities. Every added unit acts as a modifier limiting the number of tendencies, until we have finally, in case of a large mental unit, a fairly manageable whole. When the most logical and suitable of these associations arise easily from subconsciousness to consciousness, recognition is made easy, and their doing so will depend on whether the habitual relations of the elements have left permanent traces in the mind.

The reading of the subnormal subject bears a close analogy to the reading of nonsense matter by the normal person. It has been ascertained by experiment that such reading requires about twice as much time as the reading of connected matter. This is true for the reason that out of thousands of associations possible with each word, no particular association is favored. The apperceptive expectancy, practicallynilin the reading of nonsense material, must be decidedly deficient in all poor reading.

Furthermore, in the case of the ordinary reader there is a feeling of rightness or wrongness about the thought sequences. That less intelligent subjects have this sense of fitness to a much less degree is evidenced by their passing over words so mutilated in pronunciation as to deprive them of all meaning. The transposition of letters and words, and the failure to observe marks of punctuation, point to the same thing. In other words, all the reading of thestupid subject is with material which to him is more or less nonsensical.[66]

A little observation will convince one that mentally retarded subjects, even when they possess a reasonable degree of fluency in recognizing printed words, do not sense shades of meaning. Their reading is by small units. Words and phrases do not fuse into one mental content, but remain relatively unconnected. The expression is monotonous and the voice has more of the unnatural “schoolroom” pitch. They read more slowly, more often misplace the emphasis, and miscall more words. In short, one who has psychological insight and is acquainted with reading standards can easily detect the symptoms of intellectual inferiority by hearing a dull subject read a brief selection.

The giving of memories is also significant. Feeble-minded adults who have been well schooled are sometimes able to read the words of the text fairly fluently, but are usually unable to give more than a scanty report of what has been read. The scope of attention has been exhausted in the mere recognition and pronouncing of words. In general, the greater the mechanical difficulties which a subject encounters, the less adequate is his report of memories.

The test has, however, one real fault. School children have a certain advantage in it over older personsof the same mental agewhose school experience is less recent. Adult subjects tend to give their report in less literal form. It is necessary, therefore, to give credit for the reproduction of the ideas of the passage rather than for strictly literal “memories.”

The selection we have used is, with minor changes, the same as Binet’s. His selection was divided into nineteen memories. The one here given has twenty-one memories.Binet used the test both in year VIII and year IX, requiring two memories at year VIII and six memories at year IX. When we require eight memories, as we have done, the test becomes difficult enough for non-selected school children of 10 years. Location in year X seems preferable, because it insures that the child will almost certainly have had the schooling requisite for learning to read a selection of this difficulty, even if he has started to school at a later age than is customary. Naturally, placing the test higher in the scale makes it more a test of report and less a test of ability to recognize and pronounce printed words.


Back to IndexNext