COMMENTARIES
OF
PROCLUS.
BOOK I.
On the Middle Nature of the Mathematical Essence.
It is necessary that the mathematical essence should neither be separated from the first nor last genera of things, nor from that which obtains a simplicity of essence; but that it should obtain a middle situation between substances destitute of parts, simple, incomposite and indivisible, and such as are subject to partition, and are terminated in manifold compositions and various divisions. For since that which subsists in its inherent reasons remains perpetually the same, is firm and durable, and cannot be confuted, it evidently declares it is superior to the forms existing in matter. But that power of progression which apprehends, and which besides uses the dimensions of subjects, and prepares different conclusions from different principles, gives it an order inferior to that nature which is allotted an indivisible essence, perfectly constituted in itself. Hence (as it appears to me)[71]Platoalso divides the knowledge of things which are, into first, middle, and last substances. And to indivisible natures, indeed, he attributes anintelligence, which, in a collective manner, and by a certain simple power, divides the objects of intellectual perception; so that being divested of matter, and endued with the greatest purity, it apprehends things themselves, by a certain unifying perception, and excels the other kinds of knowledge. But to divisible essences, and such as are allotted the lowest nature, and to all sensible beings, he attributes opinion, which obtains an obscure and imperfect truth. But to middle essences (and such are mathematical forms), and to things inferior to an indivisible and superior to a divisible nature, he attributes cogitation. For this, indeed, is inferior to intellect, and the supreme science dialectic; but is more perfect than opinion, and more certain and pure. For it advances by a discursive procession, expands the indivisibility of intellect, and unfolds that which was involved in the unity of intellectual apprehension: but it collects things which are divided, and brings them back to mind. Hence, as knowledges differ among themselves, so the objects of knowledge are distinguished by nature. So that intelligible essences having an uniform subsistence,evidently excel all others. But sensibles are entirely excelled by primary essences: and mathematical natures, and whatever falls under cogitation, are allotted a middle order: for they are excelled by the division of intelligibles; but because destitute of matter, they are superior to sensible natures; and by a certain simple power, they are excelled by the first; but by a certain reason are more exalted than the last. Hence they possess notions of an intellectual essence, which are more manifest than sensibles, but which are, at the same time, only the images of an intellectual nature; and they imitate divisibly the indivisible, and, in a multiform manner, the uniform exemplars of things. And, that I may sum up the whole in a few words, they are placed in the vestibules or entrances of primary forms, and disclose their indivisible and prolific subsistence collected into one, but they do not yet excel the division and composition of reasons, and an essence accommodated to the obscurity of images; nor are they capable of passing beyond the various notions of the soul, endued with a discursive power, and of adhering to intellections perfectly simple, and purified from all material imperfection. After this manner then, is the middle nature of mathematical genera and forms to be understood; as filling up the medium between essences entirely indivisible, and such as are divisible about matter.