CHAP. II.

CHAP. II.

What kind of Science Geometry is.

But let us now speak of that science which possesses a power of contemplating the universal forms participated by imaginative matter. Geometry, therefore, is endued with the knowledge of magnitudes and figures, and of the terms and reasons subsisting in these; together with the passions, various positions and motions which are contingent about these. For it proceeds, indeed, from an impartible point, but descends even to solids, and finds out their multiform diversities. And again, runs back from things more composite, to things more simple, and to the principles of these: since it uses compositions and resolutions, always beginning from suppositions, and assuming its principles from a previous science; but employing all the dialectic ways. In principles, by the divisions of forms from their genera, and by defining its orations. But in things posterior to principles, by demonstrations and resolutions. As likewise, it exhibits things more various, proceeding from such as are more simple, and returning to them again. Besides this, it separately discourses of its subjects; separately of its axioms; from which it rises to demonstrations; and separately of essential accidents, which it shews likewise are resident in its subjects. For every science has, indeed, a genus, about which it is conversant, and whose passions it proposes to consider: and besides this, principles, which it uses in demonstrations; and essential accidents. Axioms, indeed, are common to all sciences (though each employs them in its peculiar subject matter), but genus and essential accident vary according to the sciential variety. The subjects of geometry are therefore, indeed, triangles, quadrangles, circles, and universally figures and magnitudes, and the boundaries of these. But its essential accidents are divisions, ratios, contacts, equalities, applications, excesses, defects, and the like. But its petitions and axioms, by which it demonstrates every particular are, this, to draw a right line from any point to any point; and that, if from equals you take away equals, the remainders willbe equal; together with the petitions and axioms consequent to these. Hence, not every problem nor thing sought is geometrical, but such only as flow from geometric principles. And he who is reproved and convicted from these, is convinced as a geometrician. But whoever is convinced from principles different from these, is not a geometrician, but is foreign from the geometric contemplation. But the objects of the non-geometric investigation, are of two kinds. For the thing sought for, is either from entirely different principles, as we say that a musical enquiry is foreign from geometry, because it emanates from other suppositions, and not from the principles of geometry: or it is such as uses, indeed, geometrical principles, but at the same time perversely, as if any one should say, that parallels coincide. And on this account, geometry also exhibits to us instruments of judging, by which we may know what things are consequent to its principles, and what those are which fall from the truth of its principles: for some things attend geometrical, but others arithmetical principles. And why should we speak of others, since they are far distant from these? For one science is more certain than another (as Aristotle says[99]) that, indeed, which emanates from more simple suppositions, than that which uses more various principles; and that which tells thewhy, than that which knows only the simple existence of a thing; and that which is conversant about intelligibles, than that which touches and is employed about sensibles. And according to these definitions of certainty, arithmetic is, indeed, more certain than geometry, since its principles excel by their simplicity. For unity is void of position, with which a point is endued. And a point, indeed, when it receives position, is the principle of geometry: but unity, of arithmetic. But geometry is more certain than spherics; and arithmetic, than music. For these render universally the causes of those theorems, which are contained under them. Again, geometry is more certain than mechanics, optics, and catoptrics. Because these discourse only on sensible objects. The principles, therefore, of geometry and arithmetic, differ, indeed, from the principles of other sciences; but the hypotheses of these two,alternately differ and agree according to the difference we have already described. Hence, also, with respect to the theorems which are demonstrated in these sciences, some are, indeed, common to them, but others peculiar. For the theorem which says,every proportion may be expressed, alone belongs to arithmetic; but by no means to geometry: since this last science contains things which cannot be expressed[100]. That theorem also, which affirms, thatthe gnomons of quadrangles are terminated according to the least[101], is the property of arithmetic: for in geometry, a minimum cannot be given. But those things are peculiar to geometry, which are conversant about positions; for numbers have no position: which respect contacts; for contact is found in continued quantities: and which are conversant about ineffable proportions; for where division proceeds to infinity, there also that which is ineffable is found[102]. But things common to both these sciences, are such as respect divisions, which Euclid treats of in the second book; except that proposition which divides a right line into extreme and mean proportion[103]. Again, of these common theorems, some, indeed, are transferred from geometry into arithmetic; but others, on the contrary, from arithmetic into geometry: and others similarly accord with both, which are derived into them from the whole mathematical science. For the permutation, indeed,conversions, compositions, and divisions of ratios are, after this manner, common to both. But such things as are commensurable, arithmetic first beholds; but afterwards geometry, imitating arithmetic. From whence, also, it determines such things to be commensurables of this kind, which have the same mutual ratio to one another, as number to number; because commensurability principally subsists in numbers. For where number is, there also that which is commensurable is found; and where commensurable is, there also number. Lastly, geometry first inspects triangles and quadrangles: but, arithmetic, receiving these from geometry, considers them according to proportion. For in numbers, figures reside in a causal manner. Being excited, therefore, from effects, we pass to their causes, which are contained in numbers. And at one time, we indifferently behold the same accidents, as when every polygon is resolved by us into triangles[104]: but, at another time, we are content with what is nearest to the truth, as when we find in geometry one quadrangle the double of another, but not finding this in numbers, we say that one square is double of another, except by a deficience of unity. As for instance,the square from 7, is double the square from 5, wanting one. But we have produced our discussion to this length, for the purpose of evincing the communion and difference in the principles of these two sciences. Since it belongs to a geometrician to survey from what common principles common theorems are divided; and from what principles such as are peculiar proceed; and thus to distinguish between the geometrical, and non-geometrical, referring each of them to different sciences.


Back to IndexNext