DEFINITIONIII.

DEFINITIONIII.

But the Extremities of a Line are Points.

Every composite receives its bound from that which is simple, and every thing partible from that which is impartible; and the images of these openly present themselves in mathematical principles. For when it is said that a line is terminated by points, it seems manifestly to make it of itself infinite, because, on account of its proper progression, it has no extremity. As, therefore, the duad is terminated by unity, and reduces its own intolerable boldness under bound, when it is restrained in its comprehensive embrace: so a line also is limited by the points which it contains. For, since it is similar to the duad, it participates of a point having the relation of unity, according to the nature of the duad. Indeed, in imaginative, as well as in sensible forms, the points themselves terminate the lines in which they reside. But in immaterial forms, the reason of the impartible point pre-exists separate and apart; but when proceeding from thence by far the first of all, by determining itself with interval, moving itself, and flowingin infinite progression, and imitating the indefinite duad, it is restrained indeed, by its proper principle, is united by its power, and on every side seized by its coercive bound. Hence it is, at the same time, both infinite and finite: infinite, indeed, according to its progression; but finite according to its participation of a terminating cause. So that, when it approaches to this cause, it is detained in its comprehension, and is terminated according to its union. Hence too, in the images of incorporeal forms, a point is said to terminate a line, by occupying its beginning and end. Bound, therefore, in immaterials, is separated from that which is bounded: but here it is twofold; for it subsists in that which is terminated. And this affords a wonderful symptom, that forms; indeed, abiding in themselves, precede their participants according to cause; but when giving themselves up to their subordinate natures, subsist according to their diversified properties: since they are multiplied and distributed together with these, and receive the division of their subjects. Besides, this also must be previously received concerning a line, that our geometrician uses it in a threefold acceptation. As terminated on both sides, and finite; as in the problem[137]which says, Upon a given terminated right line to construct an equilateral triangle. And as partly infinite and partly finite; as in the problem which commands us from three right lines, which are equal to three given right lines, to construct a triangle; for in the construction of the problem, he says, Let there be placed a certain right line, on one part finite, but on the other part infinite. And again, a line is received by Euclid as on both sides infinite; as in the problem which says, Upon a given infinite right line, from a given point, which is not in that line, to let fall a perpendicular. But, besides this, the following doubts, since they are worthy of solution, mustnot be omitted. How are points called the extremities of a line? and of what line, since they can neither be the bounds of one that is infinite, nor of every finite? For there is a certain line, which is both finite, and has not points for its extremities. And such is a circular line, which returns into itself, and is not bounded by points, like a right line. And such also is the ellipsis, or line like a shield. Is it therefore requisite to behold a line, considered as a line? for we must receive a certain circumference, which is terminated by points, and a part of the elliptic line; having, in like manner, its extremities bounded by points. But every circular and elliptic line, assumes to itself another certain property, by which it is not line alone, but is also endued with a power of perfecting figure[138]. Lines, themselves, therefore, have their extremities terminated by points; but those which are effective of such like figures, return into themselves. And, indeed, if you conceive them to be described, you will also find how they are bounded by points; but if you receive them already described, and connect the end with the beginning, you can no longer behold their extremes.


Back to IndexNext