DEFINITIONV.
ASuperficiesis that which has only Length and Breadth.
After a point and a line, a superficies is placed, which is distant by a twofold interval, length and breadth. But this also remaining destitute of thickness or bulk, possesses a nature more simple than body, which is distant by a triple dimension. On which account the geometrician adds to the two intervals the particleonly,because the third interval does not exist in superficies. And this is equivalent to a negation of bulk, as here also he shews the excellency of superficies compared to a solid with respect to simplicity, by negation, or by an addition equivalent to negation: but the diminution which it possesses, if compared with the preceding terms, by the affirmations themselves. But others define a superficies to be the boundary of body, which is almost affirming the same as the definition of Euclid; since that which terminates is exceeded in one dimension, by that which is terminated. And others, a magnitude different by two intervals. Lastly, others declaring the same affection, form its assignation in a somewhat different manner. But they say we have a knowledge of superficies when we measure fields, and distinguish their extremities according to length and breadth; but that we receive a certain sensation of it, when we behold shadows. For as they are without bulk, because they cannot penetrate into the interior part of the earth, they have only length and breadth. But the Pythagoreans say, that it is assimilated to the triad; because the ternary is by far the first cause to all the figures; which a superficies contains. For a circle, which is the principle of orbicular figures, occultly possesses the ternary, by its centre, interval, and circumference. But a triangle, which ranks as the first among all right-lined figures, on every side evinces that it is enclosed by the triad, and receives its form from its perfect nature.