DEFINITIONXXIV.

DEFINITIONXXIV.

Of three-sidedFigures: anEquilateral Triangleis that which has three equal Sides.

AnIsosceles Triangle, is that which has only two Sides equal.

AScalene Triangle, is that which has three unequal Sides.

ARight-angled Triangleis that which has a Right Angle.

AnObtuse-angled Triangleis that which has an Obtuse Angle.

AnAcute-angled Triangleis that which has three Acute Angles.

The division of triangles sometimes commences from angles, but sometimes from sides. And that, indeed, which originates from sides, precedes as known; but that from angles follows as a proper distribution. For these three angles alone belong to right-lined figures, viz. the right, the obtuse, and the acute: but the equality and inequality of sides subsist also in non-rectilinear figures. Euclid says, therefore, that of triangles, some are equilateral, othersisosceles, and others scalene: for they have either all their sides equal, or all unequal, or only two equal. And again, that of triangles some are right-angled, others obtuse-angled, and others acute-angled. And he defines a right-angled triangle, that which has one right angle, as likewise an obtuse-angled triangle, that which has one obtuse angle: for it is impossible that a triangle can have more than one right, or obtuse angle[178]. But he defines an acute-angled triangle, that which has all its angles acute. For here it is not sufficient that it should have only one acute; since, in this case, all triangles would be acute-angled, as every triangle has necessarily two acute angles[179]. But, to possess three acute angles, is the property of an acute-angled triangle alone. But Euclid appears to me to have made a separate division into angles and sides, from considering this alone, that every triangle is not also trilateral. For there are quadrilateral triangles, which are called by mathematicians themselves (ἀκιδοειδῆ) that is, similar to the point of a spear[180]: but by Zenodorus (κοιλογώνια) that is, having an hollow angle. For on one of the sides of a trilateral figure, constitute two right-lines inwardly; by this means a certain space will be enclosed, which is comprehended by external and internal right-lines, and which has three angles; one, indeed, contained by the external lines; but two comprehended by these and the internal lines, at the extremities in which these lines are conjoined. A figure of this kind, therefore, is a quadrilateral triangle. And hence, it does not immediately follow, that because a figure has three angles (whether theyare all acute, or one right, or one obtuse), we shall find it trilateral; for it may be, perhaps, quadrilateral. In like manner, you may also find quadrangles having more than four sides. And therefore, we must not rashly determine the number of sides from the multitude of angles. But of this enough. But the Pythagoreans affirm that the triangle is simply the principle of generation, and of the formation of generable natures. On which account, Timæus says, that natural reasons, as well as those of the construction of the elements, are triangular. For they are distant by a triple interval, are on all sides collective of partible, and variously mutable natures, are replete with material infinity, and bear before themselves the conjunctions of material bodies, loosened and free: as, indeed, triangles also are comprehended by three right-lines, but they possess angles which collect the multitude of lines, and afford to them an adventitious angle and conjunction. With great propriety, therefore, Philolaus has consecrated the angle of a triangle to four gods, Saturn, Pluto, Mars, and Bacchus, comprehending in these the whole quadripartite ornament of the elements descending from the heavens, or from the four segments of the zodiac. For Saturn constitutes an essence wholly humid and frigid; but Mars a nature totally fiery; and Pluto contains the whole terrestrial life; but Bacchus governs a humid and hot generation; of which wine also is a symbol, for this is humid and hot. Hence, all these gods differ according to their operations in inferior concerns: but they are mutually united according to their proper natures. And on this account, Philolaus collects their union according to one angle. But if the differences of triangles contribute to generation, we shall very properly confess that a triangle is the principle and author of the constitution of sublunary natures. For a right angle, indeed, affords them essence, and determines the measure of being; and the reason of a right-angled triangle produces the essence of the elements of generable natures; but an obtuse angle assigns to them universal distance; and the reason of an obtuse-angled triangle increases material forms in magnitude, and in mutation of every kind. But an acute angle effects their divisible nature; and the reason of an acute-angled triangle prepares them to receive infinite division. But simply, a triangular reason constitutes the essence of material bodies distant with interval, and onall sides divisible. And thus much should we speculate concerning the nature of triangles. But from these divisions you may understand, that all the species of triangles are neither more nor less than seven. For the equilateral triangle is one, since it is acute-angled only; but each of the rest is triple. For the isosceles is either right-angled, or obtuse-angled, or acute-angled; and, in like manner, the scalene triangle possesses this triple difference. If then, these have a triple distinction, but the equilateral has but one mode of existence, all the species of triangles will be seven. But again, you will understand the proportion of triangles to the things whichare, according to the division of sides; for the equilateral, entirely excelling in equality and simplicity, is allied to divine souls; since it is the measure and equality of things unequal, in the same manner as divinity of all inferior concerns. But the isosceles triangle is allied to the better genera, which govern a material nature, the greater part of which genera is held by the limitation of measure; but their extremes extend to inequality and material immoderation; for the two sides of an isosceles triangle are equal, but the base is unequal. But a scalene triangle symbolizes with partible lives, which are on all sides lame and defective, which prepare themselves for generation, and are replete with matter and material imperfection.


Back to IndexNext