DEFINITION I.

DEFINITIONS.

DEFINITIONS.

APointis that which has noParts.

That geometry, according to the transition which takes place from things more composite to such as are more simple, runs from body, which is diffused into distance by three dimensions, to a superficies by which it is bounded; but from superficies to a line, the boundary of superficies; and from a line to a point destitute of all dimension, has been often said, and is perfectly manifest. But because these terms, in many places, on account of their simplicity, appear to be more excellent than the nature of composites; but in many, as when they subsist in things which they terminate, they are similar to accidents, it is necessary to determine in what genera of beings each of these may be beheld[125]. I say then, that such things as are destitute of matter, which subsist in separate reasons, and in those forms which are placed under themselves, are always allotted a subsistence of more simple essences, superior to the subsistence of such as are more composite. On this account, both in intellect, and in the ornaments, as well of the middle kind as among those peculiar to the soul, and in natures themselves, the terms which proximately vivify bodies, excel according to essence the things which are terminated; and are more impartible, more uniform, and more primary than these. For in immaterial forms, unity is more perfect than multitude; that whichis impartible, than that which is endued with unbounded progression; and that which terminates, than that which receives bound from another. But such things as are indigent of matter, and abide in others, and degenerate from the perfection of their essence, which are scattered about subjects, and have an unnatural union, are allotted more composite reasons, prior to such as are more simple. Hence, things which appear in the phantasy invested with form, and the matter of the figures which the phantasy contains, and whatever in sensibles is generated by nature, have, in a preceding order, the reasons of the things terminated; but the reasons which terminate, in a following and adventitious rank[126].] For lest that which is distributed into three dimensions, should be extended into infinite magnitude, either according to intelligence or sense, it was every way terminated by superficies. And lest a plane superficies should conceal itself in an infinite progression, a line approaching opposed its diffusion, and gave bound to its indefinite extension. And, in like manner, a point limited the progressions of a line; composite natures deriving their subsistence from such as are simple. For this also is again manifest, that in separate forms the reasons of terms subsist in themselves, but not in those which are terminated; and abiding such as they are in reality, possess a power of constituting secondary natures. But, in inseparable forms they give themselves up to things which are terminated, reside in them, become, as it were, their parts, and are replenished with baser natures. On which account, that which is impartible is there endued with a partible essence, and that which is void of latitude is diffused into breadth. And terms are no longer able to preserve their simplicity and purity. For since they abide in another, they necessarily change their own nature into the matter of their containing subject. Matter, indeed, disturbs the perfection of these, and causes the reason of a plane to become a profound plane; but obscuring the one dimension of a line, causes it to be every way partible; and gives corporeity to the indivisibility of a point, and separates it together with the natures which it terminates. For all these reasons falling into matter, the one kind from cogitation into intelligiblematter, but the other from nature into that which is sensible, are replenished with their containing subjects; and depart from their own simplicity, into foreign compositions and intervals. But here a doubt arises how all these, existing in intellect and soul in an impartible manner, and without any dimension, are distributed into matter, some indeed, principally, but others on account of its nature? Shall we say that there is a certain order in immaterial forms, so that some are allotted the first, some the middle, and others the last place; and that of forms some are more uniform, but that others are more multiplied; and that some have their powers collected together, but others tending into interval; and that some, again, border upon bound, but that others are proximate to infinity? For though all participate of these two principles, yet some originate from bound, but others from infinity, of which they more largely participate. Hence, a point is entirely impartible, since it subsists according to bound, yet it occultly contains an infinite power, by which it produces every interval, and the progression of all intervals, unfolds its infinite power. But body, and the reason of body, participates more of an infinite nature; on which account it is among the number of things terminated by another, and divisible in infinitum, according to all dimensions. But the mediums between these, according to the distance of the extremes, are either among the number of things which have an abundance of bound; or among such as have an affluence of infinity: on which account they both terminate and are terminated. For, indeed, so far as they consist from bound, they are able to terminate others; but so far as they participate of infinity, they are indigent of termination from others, Hence, since a point is also a bound, it preserves its proper power in participation: but since it likewise contains infinity occultly, and is compelled to be every where present with the natures which it terminates, it resides with them infinitely. And, because among immaterial forms there was a certain infinite power capable of producing things distant from each other by intervals, a point is present with its participants in capacity. For infinity in intelligibles is the primary cause and prolific power of the universe; but in material natures it is imperfect, and is alone all things in dormant capacity. And in short, those forms which, on account of theirsimplicity and impartibility, hold a superior rank among principles, preserve, indeed, (in conformity to their nature,) their own property in their participations, but become worse than more composite reasons. For matter is able to participate these more clearly, and to be prepared for their reception, rather than that of the most simple causes of beings. On which account, the vestigies of separate principles descend into matter; but the participations of those in a second and third order, become more conspicuous. Hence, matter participates more of the cause of body, than of a plane; and of this more than the form of a line; and of this still more than that of a point, which contains all these, and is the boundary of them all. For the reason of a point presides over this whole series, unites and contains all partible natures, terminates their progressions, produces them all by its infinite power, and comprehends them in its indivisible bound. On which account also, in the images of immaterial forms, some are the boundaries of others; but a point is the limit of them all. But that we must not think with the Stoics, that these boundaries of bodies alone subsist from cogitation; but that there are certain natures of this kind among beings, which previously contain the demiurgical reasons of things, we shall be enabled to remember, if we regard the whole world, the convolutions of its parts, the centres of those convolutions, and the axes which penetrate through the whole of these revolving circles. For the centres subsist in energy, since they contain the spheres, preserve them in their proper state, unite their intervals, and bind and establish to themselves the powers which they possess. But the axes themselves being in an immoveable position, evolve the spheres, give them a circular motion, and a revolution round their own abiding nature. And the poles of the spheres, which both terminate the axes, and bind in themselves the other convolutions, do they not perspicuously evince, that points are endued with demiurgical and capacious powers, that they are perfective of every thing distant by intervals, and are the sources of union, and an unceasing motion? From whence, indeed, Plato[127]also says, that they have an adamantine subsistence; shewing by this, the immutable, eternal, and stable powerof their essence, ever preserving itself in the same uniform mode of existence. He adds too, that the whole spindle of the Fates, is turned about these, and leaps round their coercive union. But other more recondite and abstruse discourses affirm, that the demiurgus presides over the world, seated in the poles, and, by his divine love, converting the universe to himself. But the Pythagoreans thought that the pole should be called the Seal of Rhea[128]; because the zoogonic, or vivific goddess, pours through these into the universe, an inexplicable and efficacious power. And the centre they called the prison of Jupiter; because, since Jupiter has placed a demiurgical guard in the bosom of the world, he has firmly established it in the midst. For, indeed, the centre abiding, the universe possesses its immoveable ornament, and unceasing convolution: and the gods who preside over the poles, obtain a power collective of divisible natures, and unific of such as are multiplied: and those who are allotted the government of the axes, restrain and eternally evolve their perpetual convolutions. And, if it is lawful to offer our own opinion on this subject, the centres and poles of all the spheres are the symbols of the conciliating gods, shadowing forth their imperceptible and unifying composition. But the axes express the coherencies of the universal ornaments; and are endued with a power of comprehending the mundane integrities and periods, in the same manner as their presiding deities, of such as are intellectual. But the spheres themselves are images of the gods, called perfectors of works, copulating the principle with the end, and excelling all figures in simplicity, similitude, and perfection. But we have been thus prolix, that we might evince the power of impartibles, and of the terms which the world contains, and that so far as they bear an image of primary and most principal causes, they are allotted the most excellent order in the universe. For centres and poles are not of the same kind with things which are terminated; but they subsist in energy, and possess an essence, and perfect power, which pervades through all partible natures. But many beholding those terms which imperfectly subsist in terminated essences, consider them as endued with a slender subsistence; and some indeed say, thatthey are alone separated from sensibles by thought; but others, that they have an essence no where but in our thoughts. However, since the forms of all these are found both in the nature of intellect, in the ornaments of soul, in the nature of things, and in inferior bodies, let us consider how, according to the order they contain, they subsist in the genera of beings. And indeed, all of them pre-exist in intellect, but in an impartible and uniform manner: so that they all subsist according to one form, the reason of a point, which exists occultly and impartibly. But they all subsist in soul according to the form of a line: on which account Timæus also composes the soul from right and circular lines: for every circle is a line alone[129]. But they all subsist in natures, according to the reason of a plane; and on this account, Plato commands us to manifest those natural reasons, which are endued with a power of constituting bodies by a plane. And the resolution of bodies into planes leads us to the proximate cause of appearances. Lastly, they all subsist in bodies, but in a corporeal manner; since all forms have their being in these, according to the partible nature of bodies. Hence, all of them appear every where, and each according to its proper order; and diversity arises from pre-dominating power. The point, indeed, is every where impartible, and when that which is divisible into parts, excels according to the diminution of beings, it vindicates to itself, an illustrious subsistence of partible natures. And sometimes the point is entirely superior, according to the excellence of cause; but sometimes it is connected with divisibles, and sometimes it is allotted in them an adventitious existence; and, as if swallowed up by the partition of the lowest natures, loses its own proper impartibility. As, therefore, with respect to the monad, one[130]is the mother of number, but the other is asmatter spread under, and the receptacle of numbers; and each of them a principle, (yet neither of them is number), but in a different respect: in the same manner a point also, is partly the parent and author of magnitudes; but is partly a principle in another respect, and not according to a generative cause. But is a point, then, the only impartible? Or may we affirm this of the now in time, and of unity in numbers? Shall we not say, that to the philosopher, indeed, discoursing concerning the universality of things, it is proper to behold every thing, however falling under distribution; but that to him who is endued with the science of particulars, who produces his contemplation from certain definite principles, and runs back even to these, but very little scrutinizes the progressions of beings, it is requisite to attempt, consider, and treat concerning that impartible nature alone, which regards his first principles; and to behold that simplicity which presides over all the particular subjects of his knowledge? In consequence of this reasoning, therefore, a point alone, according to the geometric matter, is destitute of partition; but unity according to that which is arithmetical. And the reason of a point, however in some other respects it may be imperfect, yet is perfect in the present science. For, indeed, the physician also says, that the elements of bodies are fire and water, and things similar to these; and as far as to these the resolution of bodies proceeds. But the natural philosopher passes on to more simple elements; and the one defines an element simple as to sense, but the other simple as to reason; and both of them properly as to their peculiar science. We must not, therefore, think that the definition of a point is faulty, nor determine it as imperfect; for so far as pertains to the geometric matter, and its principles, it is sufficiently delivered. This alone, indeed, is wanting to its completion, that the definition does not clearly say,that which is impartible with me is a point; and my principle, and that which I contain as most simple, is nothing else than this. And after this manner it is proper to hear the geometrician addressing us. Euclid, therefore, from a negation of parts, declares to us a principle, leading to the theory of its whole subject nature. For negative discourses are proper to principles, as Parmenides teaches us, who delivers the doctrine concerning the first and last cause, by negations alone. Since every principle consists ofan essence different from its flowing consequents; and the negations of these exhibit to us the property of their source. For that it is, indeed, the cause of these, yet at the same time has nothing in common with these, becomes perspicuous from a doctrine of this kind. But here a doubt may arise, how, since the phantasy receives all things invested with forms, and in a partible manner, the geometrician beholds in it the point destitute of parts? For it is not because they are reasons existing in cogitation, but the phantasy receives the resemblances of intellectual and divine forms according to its own proper nature, exhibiting in its shadowy bosom the forms of formless natures, and clothing with figure things entirely free from the affections of figure. To this ambiguity we must say, that the species of imaginative motion is neither alone partible, nor impartible; but that it proceeds from the impartible to the partible, and from the formless nature to that which is expressed by form. For if it was partible alone, it could not preserve in itself many impressions of forms, since the subsequent would obscure the pre-existent figures: for no body can contain at once, and according to the same situation, a multitude of figures; but the former will be blotted out by the succession of the latter. But if it was alone impartible, it would not be inferior to cogitation, and to soul, which surveys all things in an impartible manner. Hence, it is necessary that it should indeed begin from an impartible according to its motion, and from thence draw forth the folded and scattered form of every thing falling under cogitation, and penetrating to its shadowy receptacle: but, that it should at length end in form, figure, and interval. And if it be allotted a nature of this kind, it will, after a certain manner, contain an impartible essence: and a point, according to this, must be said to have its principal subsistence: for the form of a line is contracted in the phantasy according to this. Hence, because it possesses a twofold power, impartible and partible, it will indeed contain a point in an impartible, and intervals in a partible manner. But as the Pythagoreans define a point to be unity having position, let us consider what they mean. That numbers, indeed, are more immaterial and more pure than magnitudes, and that the principle of numbers is more simple than the principle of magnitudes, is manifest to every one: but when they say that apoint is unity endued with position, they appear to me to evince that unity and number subsist in opinion: I mean monadic number[131]. On which account, every number, as the pentad and the heptad, is one in every soul, and not many; and they are destitute of figure and adventitious form. But a point openly presents itself in the phantasy, subsists, as it were, in place, and is material according to intelligible matter. Unity, therefore, has no position, so far as it is immaterial, and free from all interval and place: but a point has position, so far as it appears seated in the bosom of the phantasy, and has a material subsistence. But unity is still more simple than a point, on account of the community of principles. Since a point exceeds unity according to position; but appositions in incorporeals produce diminutions of those natures, by which the appositions are received.


Back to IndexNext