3.MEASUREMENTS IN THE QUANTUM THEORY.

3.MEASUREMENTS IN THE QUANTUM THEORY.

In his investigations already mentioned on the consistency of the quantum theoretical methods, Heisenberg has given the relation (2) as an expression for the maximum precision with which the space-time co-ordinates and momentum-energy components of a particle can be measured simultaneously. His view was based on the following consideration: On one hand, the co-ordinates of a particle can be measured with any desired degree of accuracy by using, for example, an optical instrument, provided radiation of sufficiently short wave-length is used for illumination. According to the quantum theory, however, the scattering of radiation from the object is always connected with a finite change in momentum, which is the larger the smaller the wave-length of the radiation used. The momentum of a particle, on the other hand, can be determined with any desired degree of accuracy by measuring, for example, the Doppler effect of the scattered radiation, provided the wave-length of the radiation is so large that the effect of recoil can be neglected, but then the determination of the space co-ordinates of the particle becomes correspondingly less accurate.

The essence of this consideration is the inevitability of the quantum postulate in the estimation of the possibilities of measurement. A closer investigation of the possibilities of definition would still seem necessary in order to bring out the general complementary character of the description. Indeed, a discontinuous change of energy and momentum during observation could not prevent us from ascribing accurate values to the space-time co-ordinates, as well as to the momentum-energy components before and after the process. The reciprocal uncertainty which always affects the values of these quantities is, as will be clear from the preceding analysis, essentially an outcome of the limited accuracy with which changes in energy and momentum can be defined, when the wave-fields used for the determination of the space-time co-ordinates of the particle are sufficiently small.

In using an optical instrument for determinations of position, it is necessary to remember that the formation of the image always requires a convergent beam of light. Denoting bythe wave-length of the radiation used, and bythe so-called numerical aperture, that is, the sine of half the angle of convergence, the resolving power of a microscope is given by the well-known expression.Even if the object is illuminated by parallel light, so that the momentumof the incident light quantum is known both as regards magnitude and direction, the finite value of the aperture will prevent an exact knowledge of the recoil accompanying the scattering. Also, even if the momentum of the particle were accurately known before the scattering process, our knowledge of the component of momentum parallel to the focal plane after the observation would be affected by an uncertainty amounting to.The product of the least accuracies with which the positional co-ordinate and the component of momentum in a definite direction can be ascertained is therefore just given by formula (2). One might perhaps expect that in estimating the accuracy of determining the position, not only the convergence but also the length of the wave-train has to be taken into account, because the particle could change its place during the finite time of illumination. Due to the fact, however, that the exact knowledge of the wave-length is immaterial for the above estimate, it will be realised that for any value of the aperture the wave-train can always be taken so short that a change of position of the particle during the time of observation may be neglected in comparison to the lack of sharpness inherent in the determination of position due to the finite resolving power of the microscope.

In measuring momentum with the aid of the Doppler effect—with due regard to the Compton effect—one will employ a parallel wave-train. For the accuracy, however, with which the change in wave-length of the scattered radiation can be measured the extent of the wave-train in the direction of propagation is essential. If we assume that the directions of the incident and scattered radiation are parallel and opposite respectively to the direction of the position co-ordinate and momentum component to be measured, thencan be taken as a measure of the accuracy in the determination of the velocity, wheredenotes the length of the wave-train. For simplicity, we here have regarded the velocity of light as large compared to the velocity of the particle. Ifrepresents the mass of the particle, then the uncertainty attached to the value of the momentum after observation is.In this case the magnitude of the recoil,,is sufficiently well defined in order not to give rise to an appreciable uncertainty in the value of the momentum of the particle after observation. Indeed, the general theory of the Compton effect allows us to compute the momentum components in the direction of the radiation before and after the recoil from the wave-lengths of the incident and scattered radiation. Even if the positional co-ordinates of the particle were accurately known in the beginning, our knowledge of the position after observation nevertheless will be affected by an uncertainty. Indeed, on account of the impossibility of attributing a definite instant to the recoil, we know the mean velocity in the direction of observation during the scattering process only with an accuracy.The uncertainty in the position after observation hence is.Here, too, the product of the inaccuracies in the measurement of position and momentum is thus given by the general formula (2).

Just as in the case of the determination of position, the time of the process of observation for the determination of momentum may be made as short as is desired if only the wave-length of the radiation used is sufficiently small. The fact that the recoil then gets larger does not, as we have seen, affect the accuracy of measurement. It should further be mentioned, that in referring to the velocity of a particle as we have here done repeatedly, the purpose has only been to obtain a connexion with the ordinary space-time description convenient in this case. As it appears already from the considerations of de Broglie mentioned above, the concept of velocity must always in the quantum theory be handled with caution. It will also be seen that an unambiguous definition of this concept is excluded by the quantum postulate. This is particularly to be remembered when comparing the results of successive observations. Indeed, the position of an individual at two given moments can be measured with any desired degree of accuracy; but if, from such measurements, we would calculate the velocity of the individual in the ordinary way, it must be clearly realised that we are dealing with an abstraction, from which no unambiguous information concerning the previous or future behaviour of the individual can be obtained.

According to the above considerations regarding the possibilities of definition of the properties of individuals, it will obviously make no difference in the discussion of the accuracy of measurements of position and momentum of a particle if collisions with other material particles are considered instead of scattering of radiation. In both cases we see that the uncertainty in question equally affects the description of the agency of measurement and of the object. In fact, this uncertainty cannot be avoided in a description of the behaviour of individuals with respect to a co-ordinate system fixed in the ordinary way by means of solid bodies and unperturbable clocks. The experimental devices—opening and closing of apertures, etc.—are seen to permit only conclusions regarding the space-time extension of the associated wave-fields.

In tracing observations back to our sensations, once more regard has to be taken to the quantum postulate in connexion with the perception of the agency of observation, be it through its direct action upon the eye or by means of suitable auxiliaries such as photographic plates, Wilson clouds, etc. It is easily seen, however, that the resulting additional statistical element will not influence the uncertainty in the description of the object. It might even be conjectured that the arbitrariness in what is regarded as object and what as agency of observation would open up a possibility of avoiding this uncertainty altogether. In connexion with the measurement of the position of a particle, one might, for example, ask whether the momentum transmitted by the scattering could not be determined by means of the conservation theorem from a measurement of the change of momentum of the microscope—including light source and photographic plate—during the process of observation. A closer investigation shows, however, that such a measurement is impossible, if at the same time one wants to know the position of the microscope with sufficient accuracy. In fact, it follows from the experiences which have found expression in the wave theory of matter, that the position of the centre of gravity of a body and its total momentum can only be defined within the limits of reciprocal accuracy given by relation (2).

Strictly speaking, the idea of observation belongs to the causal space-time way of description. Due to the general character of relation (2), however, this idea can be consistently utilised also in the quantum theory, if only the uncertainty expressed through this relation is taken into account. As remarked by Heisenberg, one may even obtain an instructive illustration to the quantum theoretical description of atomic (microscopic) phenomena by comparing this uncertainty with the uncertainty, due to imperfect measurements, inherently contained in any observation as considered in the ordinary description of natural phenomena. He remarks on that occasion that even in the case of macroscopic phenomena we may say, in a certain sense, that they are created by repeated observations. It must not be forgotten, however, that in the classical theories any succeeding observation permits a prediction of future events with ever-increasing accuracy, because it improves our knowledge of the initial state of the system. According to the quantum theory, just the impossibility of neglecting the interaction with the agency of measurement means that every observation introduces a new uncontrollable element. Indeed, it follows from the above considerations that the measurement of the positional co-ordinates of a particle is accompanied not only by a finite change in the dynamical variables, but also the fixation of its position means a complete rupture in the causal description of its dynamical behaviour, while the determination of its momentum always implies a gap in the knowledge of its spatial propagation. Just this situation brings out most strikingly the complementary character of the description of atomic phenomena which appears as an inevitable consequence of the contrast between the quantum postulate and the distinction between object and agency of measurement, inherent in our very idea of observation.


Back to IndexNext