body of the Moonis surrounded by an enveloping atmosphere
This may be understood more clearly from the adjoining figure, in which the body of the Moon,A B C, is surrounded by an enveloping atmosphere,D E G. An eye atFpenetrates to the middle parts of the Moon, as atA, through a thickness,D A, of the atmosphere; but towards the extreme parts a mass of atmosphere of greater depth,E B, shuts out its boundary from our sight. An argument in favour of thisis, that the illuminated portion of the Moon appears of larger circumference than the rest of the orb which is in shadow.
Perhaps also some will think that this same cause affords a very reasonable explanation why the greater spots on the Moon are not seen to reach to the edge of the circumference on any side, although it might be expected that some would be found about the edge as well as elsewhere; and it seems credible that there are spots there, but that they cannot be seen because they are hidden by a mass of atmosphere too thick and too bright for the sight to penetrate.
Calculation to show that the height of some lunar mountains exceeds four Italian miles10(22,000 British feet).I think that it has been sufficiently made clear, from the explanation of phenomena which have been given, that the brighter part of the Moon’s surface is dotted everywhere with protuberances and cavities; it only remains for me to speak about their size, and to show that the ruggednesses of the Earth’s surface are far smaller than those of the Moon’s; smaller, I mean, absolutely, so to say, and not only smaller in proportion to the size of the orbs on which they are. And this is plainly shown thus:—As I often observed in various positions of the Moon with reference to theSun, that some summits within the portion of the Moon in shadow appeared illumined, although at some distance from the boundary of the light (the terminator), by comparing their distance with the complete diameter of the Moon, I learnt that it sometimes exceeded the one-twentieth (1/20th) part of theMoon’s orbdiameter. Suppose the distance to be exactly 1/20th part of the diameter, and let the diagram represent the Moon’s orb, of whichC A Fis a great circle,Eits centre, andC Fa diameter, which consequently bears to the diameter of the Earth the ratio 2:7; and since the diameter of the Earth, according to the most exact observations, contains 7000 Italian miles,C Fwill be 2000, andC E1000, and the 1/20th part of the whole,C F, 100 miles. Also letC Fbe a diameter of the great circle which divides the bright part of the Moon from the dark part (for, owing to the very great distance of the Sun from the Moon this circle does not differ sensibly from a great one), and let the distance ofAfrom the pointCbe 1/20th part of that diameter; let the radiusE Abe drawn, and let it be produced to cut the tangent lineG C D, which represents the ray that illumines the summit, in the pointD. Then the arcC Aor the straight lineC Dwill be 100 of such units, asC Econtains 1000. The sum of the squares ofD C,C Eis therefore 1,010,000, and the square ofD Eis equal to this; therefore the wholeE Dwill be more than 1004; andA Dwill be more than 4 of such units, asC Econtained 1000. Therefore the height ofA Din the Moon, which represents a summit reaching up to the Sun’s ray,G C D, and separated from the extremityCby the distanceC D, is more than 4 Italian miles; but in the Earth there are no mountains which reach to the perpendicular height even of one mile. We are therefore left to conclude that it is clear that the prominences of the Moon are loftier than those of the Earth.
The faint illumination of the Moon’s disc about new-moon explained to be due to earth-light.I wish in this place to assign the cause of another lunar phenomenon well worthy of notice, and although this phenomenon was observed by me not lately, but many years ago, and has been pointed out to some of my intimate friends and pupils, explained, and assigned to its true cause, yet as the observation of it is rendered easier and more vivid by the help of a telescope, I have considered that it would not be unsuitably introduced in this place, but I wish to introduce it chiefly in order that the connection andresemblance between the Moon and the Earth may appear more plainly.
When the Moon, both before and after conjunction, is found not far from the Sun, not only does its orb show itself to our sight on the side where it is furnished with shining horns, but a slight and faint circumference is also seen to mark out the circle of the dark part, that part, namely, which is turned away from the Sun, and to separate it from the darker background of the sky. But if we examine the matter more closely, we shall see that not only is the extreme edge of the part in shadow shining with a faint brightness, but that the entire face of the Moon, that side, that is, which does not feel the Sun’s glare, is illuminated with a pale light of considerable brightness. At the first glance only a fine circumference appears shining, on account of the darker part of the sky adjacent to it; whereas, on the contrary, the rest of the surface appears dark, on account of the contiguity of the shining horns, which destroys the clearness of our sight. But if any one chooses such a position for himself, that by the interposition of a roof, or a chimney, or some other object between his sight and the Moon, but at a considerable distance from his eye, the shining horns are hidden, and the rest of the Moon’s orb is left exposed to his view,then he will find that this tract of the Moon also, although deprived of sunlight, gleams with considerable light, and particularly so if the gloom of the night has already deepened through the absence of the Sun; for with a darker background the same light appears brighter. Moreover, it is found that this secondary brightness of the Moon, as I may call it, is greater in proportion as the Moon is less distant from the Sun; for it abates more and more in proportion to the Moon’s distance from that body, so much so that after the first quarter, and before the end of the second, it is found to be weak and very faint, although it be observed in a darker sky; whereas, at an angular distance of 60° or less, even during twilight, it is wonderfully bright, so bright indeed that, with the help of a good telescope, the great spots may be distinguished in it.
This strange brightness has afforded no small perplexity to philosophical minds; and some have published one thing, some another, as the cause to be alleged for it. Some have said that it is the inherent and natural brightness of the Moon; some that it is imparted to that body by the planet Venus; or, as others maintain, by all the stars; while some have said that it comes from the Sun, whose rays, they say, find a way through the solid mass of theMoon. But statements of this kind are disproved without much difficulty, and convincingly demonstrated to be false. For if this kind of light were the Moon’s own, or were contributed by the stars, the Moon would retain it, particularly in eclipses, and would show it then, when left in an unusually dark sky, but this is contrary to experience. For the brightness which is seen on the Moon in eclipses is far less intense, being somewhat reddish, and almost copper-coloured, whereas this is brighter and whiter; besides, the brightness seen during an eclipse is changeable and shifting, for it wanders over the face of the Moon, so that that part which is near the circumference of the circle of shadow thrown by the Earth is bright, but the rest of the Moon is always seen to be dark. From which circumstance we understand without hesitation that this brightness is due to the proximity of the Sun’s rays coming into contact with some denser region which surrounds the Moon as an envelope; owing to which contact a sort of dawn-light is diffused over the neighbouring regions of the Moon, just as the twilight spreads in the morning and evening on the Earth:11but I willtreat more fully of this matter in my book upon theSystem of the Universe.12
Again, to assert that this sort of light is imparted to the Moon by the planet Venus is so childish as to be undeserving of an answer; for who is so ignorant as not to understand that at conjunction and within an angular distance of 60° it is quite impossible for the part of the Moon turned away from the Sun to be seen by the planet Venus?
But that this light is derived from the Sun penetrating with its light the solid mass of the Moon, and rendering it luminous, is equally untenable. For then this light would never lessen, since the hemisphere of the Moon is always illumined by the Sun, except at the moment of a lunar eclipse, yet really it quickly decreases while the Moon is drawing near to the end of her first quarter, and when she has passedher first quarter it becomes quite dull. Since, therefore, this kind of secondary brightness is not inherent and the Moon’s own, nor borrowed from any of the stars, nor from the Sun, and since there now remains in the whole universe no other body whatever except the Earth, what, pray, must we conclude? What must we assert? Shall we assert that the body of the Moon, or some other dark and sunless orb, receives light from the Earth? Why should it not be the Moon? And most certainly it is. The Earth, with fair and grateful exchange, pays back to the Moon an illumination like that which it receives from the Moon nearly the whole time during the darkest gloom of night. Let me explain the matter more clearly. At conjunction, when the Moon occupies a position between the Sun and the Earth, the Moon is illuminated by the Sun’s rays on her half towards the Sun which is turned away from the Earth, and the other half, with which she regards the Earth, is covered with darkness, and so in no degree illumines the Earth’s surface. When the Moon has slightly separated from the Sun, straightway she is partly illumined on the half directed towards us; she turns towards us a slender silvery crescent, and slightly illumines the Earth; the Sun’s illumination increases upon the Moon as she approaches her first quarter,and the reflexion of that light increases on the Earth; the brightness in the Moon next extends beyond the semicircle, and our nights grow brighter; at length the entire face of the Moon looking towards the Earth is irradiated with the most intense brightness by the Sun, which happens when the Sun and Moon are on opposite sides of the Earth; then far and wide the surface of the Earth shines with the flood of moonlight; after this the Moon, now waning, sends out less powerful beams, and the Earth is illumined less powerfully; at length the Moon draws near her first position of conjunction with the Sun, and forthwith black night invades the Earth. In such a cycle the moonlight gives us each month alternations of brighter and fainter illumination. But the benefit of her light to the Earth is balanced and repaid by the benefit of the light of the Earth to her; for while the Moon is found near the Sun about the time of conjunction, she has in front of her the entire surface of that hemisphere of the Earth which is exposed to the Sun, and vividly illumined with his beams, and so receives light reflected from the Earth. Owing to such reflexion, the hemisphere of the Moon nearer to us, though deprived of sunlight, appears of considerable brightness. Again, when removed from the Sun through a quadrant, the Moon sees only one-half ofthe Earth’s hemisphere illuminated, namely the western half, for the other, the eastern, is covered with the shades of night; the Moon is, therefore, less brightly enlightened by the Earth, and accordingly that secondary light appears fainter to us. But if you imagine the Moon to be set on the opposite side of the Earth to the Sun, she will see the hemisphere of the Earth, now between the Moon and the Sun, quite dark, and steeped in the gloom of night; if, therefore, an eclipse should accompany such a position of the Moon, she will receive no light at all, being deprived of the illumination of the Sun and Earth together. In any other position, with regard to the Earth and the Sun, the Moon receives more or less light by reflexion from the Earth, according as she sees a greater or smaller portion of the hemisphere of the Earth illuminated by the Sun; for such a law is observed between these two orbs, that at whatever times the Earth is most brightly enlightened by the Moon, at those times, on the contrary, the Moon is least enlightened by the Earth; and contrariwise. Let these few words on this subject suffice in this place; for I will consider it more fully in mySystem of the Universe, where, by very many arguments and experimental proofs, there is shown to be a very strong reflexion of the Sun’s light from the Earth, forthe benefit of those who urge that the Earth must be separated from the starry host, chiefly for the reason that it has neither motion nor light, for I will prove that the Earth has motion, and surpasses the Moon in brightness, and is not the place where the dull refuse of the universe has settled down; and I will support my demonstration by a thousand arguments taken from natural phenomena.
Stars. Their appearance in the telescope.Hitherto I have spoken of the observations which I have made concerning the Moon’s body; now I will briefly announce the phenomena which have been, as yet, seen by me with reference to the Fixed Stars. And first of all the following fact is worthy of consideration:—The stars, fixed as well as erratic, when seen with a telescope, by no means appear to be increased in magnitude in the same proportion as other objects, and the Moon herself, gain increase of size; but in the case of the stars such increase appears much less, so that you may consider that a telescope, which (for the sake of illustration) is powerful enough to magnify other objects a hundred times, will scarcely render the stars magnified four or five times. But the reason of this is as follows:—When stars are viewed with our natural eyesight they do not present themselves to us of their bare, real size, but beaming with a certain vividness, and fringed with sparklingrays, especially when the night is far advanced; and from this circumstance they appear much larger than they would if they were stripped of those adventitious fringes, for the angle which they subtend at the eye is determined not by the primary disc of the star, but by the brightness which so widely surrounds it. Perhaps you will understand this most clearly from the well-known circumstance that when stars rise just at sunset, in the beginning of twilight, they appear very small, although they may be stars of the first magnitude; and even the planet Venus itself, on any occasion when it may present itself to view in broad daylight, is so small to see that it scarcely seems to equal a star of the last magnitude. It is different in the case of other objects, and even of the Moon, which, whether viewed in the light of midday or in the depth of night, always appears of the same size. We conclude therefore that the stars are seen at midnight in uncurtailed glory, but their fringes are of such a nature that the daylight can cut them off, and not only daylight, but any slight cloud which may be interposed between a star and the eye of the observer. A dark veil or coloured glass has the same effect, for, upon placing them before the eye between it and the stars, all the blaze that surrounds them leaves them at once. A telescope also accomplishesthe same result, for it removes from the stars their adventitious and accidental splendours before it enlarges their true discs (if indeed they are of that shape), and so they seem less magnified than other objects, for a star of the fifth or sixth magnitude seen through a telescope is shown as of the first magnitude only.
The difference between the appearance of the planets and the fixed stars seems also deserving of notice. The planets present their discs perfectly round, just as if described with a pair of compasses, and appear as so many little moons, completely illuminated and of a globular shape; but the fixed stars do not look to the naked eye bounded by a circular circumference, but rather like blazes of light, shooting out beams on all sides and very sparkling, and with a telescope they appear of the same shape as when they are viewed by simply looking at them, but so much larger that a star of the fifth or sixth magnitude seems to equal Sirius, the largest of all the fixed stars.13
Orion’s Belt and Sword; 83 StarsOrion’s Belt and Sword; 83 Stars
Orion’s Belt and Sword; 83 Stars
Pleiades; 36 StarsPleiades; 36 StarsGalileo: “Sidereus Nuncius.”
Pleiades; 36 Stars
Galileo: “Sidereus Nuncius.”
Telescopic Stars: their infinite multitude. As examples, Orion’s Belt and Sword and the Pleiades are described as seen by Galileo.But beyond the stars of the sixth magnitude you will behold through the telescope a host of other stars,which escape the unassisted sight, so numerous as to be almost beyond belief, for you may see more than six other differences of magnitude, and the largest of these, which I may call stars of the seventh magnitude, or of the first magnitude of invisible stars, appear with the aid of the telescope larger and brighter than stars of the second magnitude seen with the unassisted sight. But in order that you may see one or two proofs of the inconceivable manner in which they are crowded together, I have determined to make out a case against two star-clusters, that from them as a specimen you may decide about the rest.
As my first example I had determined to depict the entire constellation of Orion, but I was overwhelmed by the vast quantity of stars and by want of time, and so I have deferred attempting this to another occasion, for there are adjacent to, or scattered among, the old stars more than five hundred new stars within the limits of one or two degrees. For this reason I have selected the three stars in Orion’s Belt and the six in his Sword, which have been long well-known groups, and I have added eighty other stars recently discovered in their vicinity, and I have preserved as exactly as possible the intervals between them. The well-known or old stars, for the sake of distinction, I have depicted of larger size, and I haveoutlined them with a double line; the others, invisible to the naked eye, I have marked smaller and with one line only. I have also preserved the differences of magnitude as much as I could.
As a second example I have depicted the six stars of the constellation Taurus, called the Pleiades (I saysixintentionally, since the seventh is scarcely ever visible), a group of stars which is enclosed in the heavens within very narrow precincts. Near these there lie more than forty others invisible to the naked eye, no one of which is much more than half a degree off any of the aforesaid six; of these I have noticed only thirty-six in my diagram. I have preserved their intervals, magnitudes, and the distinction between the old and the new stars, just as in the case of the constellation Orion.
The Milky Way consists entirely of stars in countless numbers and of various magnitudes.The next object which I have observed is the essence or substance of the Milky Way. By the aid of a telescope any one may behold this in a manner which so distinctly appeals to the senses that all the disputes which have tormented philosophers through so many ages are exploded at once by the irrefragable evidence of our eyes, and we are freed from wordy disputes upon this subject, for the Galaxy is nothing else but a mass of innumerable stars planted together in clusters. Upon whatever part of it you direct thetelescope straightway a vast crowd of stars presents itself to view; many of them are tolerably large and extremely bright, but the number of small ones is quite beyond determination.
Star-cluster in Orion’s HeadStar-cluster in Orion’s Head
Star-cluster in Orion’s Head
Star-cluster of Praesepe in CancerStar-cluster of Praesepe in CancerGalileo: “Sidereus Nuncius,” Venice, 1610.
Star-cluster of Praesepe in Cancer
Galileo: “Sidereus Nuncius,” Venice, 1610.
Nebulæ resolved into clusters of stars: as examples, the nebulæ in Orion’s Head and Præsepe.And whereas that milky brightness, like the brightness of a white cloud, is not only to be seen in the Milky Way, but several spots of a similar colour shine faintly here and there in the heavens, if you turn the telescope upon any of them you will find a cluster of stars packed close together. Further—and you will be more surprised at this,—the stars which have been called by every one of the astronomers up to this daynebulous, are groups of small stars set thick together in a wonderful way, and although each one of them on account of its smallness, or its immense distance from us, escapes our sight, from the commingling of their rays there arises that brightness which has hitherto been believed to be the denser part of the heavens, able to reflect the rays of the stars or the Sun.
I have observed some of these, and I wish to subjoin the star-clusters of two of these nebulæ. First, you have a diagram of the nebula called that of Orion’s Head, in which I have counted twenty-one stars.
The second cluster contains the nebula called Præsepe, which is not one star only, but a mass of morethan forty small stars. I have noticed thirty-six stars, besides the Aselli, arranged in the order of the accompanying diagram.
Discovery of Jupiter’s satellites, Jan. 7, 1610: record of Galileo’s observations during two months.I have now finished my brief account of the observations which I have thus far made with regard to the Moon, the Fixed Stars, and the Galaxy. There remains the matter, which seems to me to deserve to be considered the most important in this work, namely, that I should disclose and publish to the world the occasion of discovering and observing fourPLANETS, never seen from the very beginning of the world up to our own times, their positions, and the observations made during the last two months about their movements and their changes of magnitude; and I summon all astronomers to apply themselves to examine and determine their periodic times, which it has not been permitted me to achieve up to this day, owing to the restriction of my time. I give them warning however again, so that they may not approach such an inquiry to no purpose, that they will want a very accurate telescope, and such as I have described in the beginning of this account.
On the 7th day of January in the present year, 1610, in the first14hour of the following night, when Iwas viewing the constellations of the heavens through a telescope, the planet Jupiter presented itself to my view, and as I had prepared for myself a very excellent instrument, I noticed a circumstance which I had never been able to notice before, owing to want of power in my other telescope, namely, that three little stars, small but very bright, were near the planet; and although I believed them to belong to the number of the fixed stars, yet they made me somewhat wonder, because they seemed to be arranged exactly in a straight line, parallel to the ecliptic,15and to be brighter than the rest of the stars, equal to them in magnitude. The position of them with reference to one another and to Jupiter was as follows (Fig. 1).
On the east side there were two stars, and a single one towards the west. The star which was furthest towards the east, and the western star, appeared rather larger than the third.
I scarcely troubled at all about the distance between them and Jupiter, for, as I have already said, at first I believed them to be fixed stars; but when on January 8th, led by some fatality, I turned again to lookat the same part of the heavens, I found a very different state of things, for there were three little stars all west of Jupiter, and nearer together than on the previous night, and they were separated from one another by equal intervals, as the accompanying illustration (Fig. 2) shows.
At this point, although I had not turned my thoughts at all upon the approximation of the stars to one another, yet my surprise began to be excited, how Jupiter could one day be found to the east of all the aforesaid fixed stars when the day before it had been west of two of them; and forthwith I became afraid lest the planet might have moved differently from the calculation of astronomers, and so had passed those stars by its own proper motion. I therefore waited for the next night with the most intense longing, but I was disappointed of my hope, for the sky was covered with clouds in every direction.
But on January 10th the stars appeared in the following position with regard to Jupiter; there were two only, and both on the east side of Jupiter, the third, as I thought, being hidden by the planet (Fig. 3). They were situated just as before, exactly in the same straight line with Jupiter, and along the Zodiac.
When I had seen these phenomena, as I knew thatcorresponding changes of position could not by any means belong to Jupiter, and as, moreover, I perceived that the stars which I saw had been always the same, for there were no others either in front or behind, within a great distance, along the Zodiac,—at length, changing from doubt into surprise, I discovered that the interchange of position which I saw belonged not to Jupiter, but to the stars to which my attention had been drawn, and I thought therefore that they ought to be observed henceforward with more attention and precision.
Accordingly, on January 11th I saw an arrangement of the following kind (Fig. 4), namely, only two stars to the east of Jupiter, the nearer of which was distant from Jupiter three times as far as from the star further to the east; and the star furthest to the east was nearly twice as large as the other one; whereas on the previous night they had appeared nearly of equal magnitude. I therefore concluded, and decided unhesitatingly, that there are three stars in the heavens moving about Jupiter, as Venus and Mercury round the Sun; which at length was established as clear as daylight by numerous other subsequent observations. These observations also established that there are not only three, but four, erratic sidereal bodies performing their revolutions roundJupiter, observations of whose changes of position made with more exactness on succeeding nights the following account will supply. I have measured also the intervals between them with the telescope in the manner already explained. Besides this, I have given the times of observation, especially when several were made in the same night, for the revolutions of these planets are so swift that an observer may generally get differences of position every hour.
Jan. 12.—At the first hour of the next night I saw these heavenly bodies arranged in this manner (Fig. 5). The satellite16furthest to the east was greater than the satellite furthest to the west; but both were very conspicuous and bright; the distance of each one from Jupiter was two minutes. A third satellite, certainly not in view before, began to appear at the third hour; it nearly touched Jupiter on the east side, and was exceedingly small. They were all arranged in the same straight line, along the ecliptic.
Jan. 13.—For the first time four satellites were in view in the following position with regard to Jupiter (Fig. 6).
There were three to the west, and one to the east; they made a straight line nearly, but the middle satellite of those to the west deviated a little from the straight line towards the north. The satellite furthest to the east was at a distance of 2´ from Jupiter; there were intervals of 1´ only between Jupiter and the nearest satellite, and between the satellites themselves, west of Jupiter. All the satellites appeared of the same size, and though small they were very brilliant, and far outshone the fixed stars of the same magnitude.
Jan. 14.—The weather was cloudy.
Jan. 15.—At the third hour of the night the four satellites were in the state depicted in the next diagram (Fig. 7) with reference to Jupiter.
All were to the west, and arranged nearly in the same straight line; but the satellite which counted third from Jupiter was raised a little to the north. The nearest to Jupiter was the smallest of all; the rest appeared larger and in order of magnitude; the intervals between Jupiter and the three nearest satellites were all equal, and were of the magnitude of 2´ each; but the satellite furthest to the west was distant 4´ from the satellite nearest to it. They were very brilliant, and not at all twinkling, as they have always appeared both before and since. But at the seventh hour there were onlythree satellites, presenting with Jupiter an appearance of the following kind (Fig. 8). They were, that is to say, in the same straight line to a hair; the nearest to Jupiter was very small, and distant from the planet 3´; the distance of the second from this one was 1´; and of the third from the second 4´ 30´´. But after another hour the two middle satellites were still nearer, for they were only 30´´, or less, apart.
Jan. 16.—At the first hour of the night I saw three satellites arranged in this order (Fig. 9). Jupiter was between two of them, which were at a distance of 0´ 40´´ from the planet on either side, and the third was west of Jupiter at a distance of 8´. The satellites near to Jupiter appeared brighter than the satellite further off, but not larger.
Jan. 17, after sunset 0 hours 30 minutes, the configuration was of this kind (Fig. 10). There was one satellite only to the east, at a distance of 3´ from Jupiter; to the west likewise there was only one satellite, distant 11´ from Jupiter. The satellite on the east appeared twice as large as the satellite to the west; and there were no more than these two. But four hours after, that is, nearly at the fifth hour, a third satellite began to emerge on the east side, which, before its appearance, as I think, had been joined with the former of the two other satellites, and the positionwas of this kind (Fig. 11). The middle satellite was very near indeed to the satellite on the east, and was only 20´´ from it; and was a little towards the south of the straight line drawn through the two extreme satellites and Jupiter.
Jan. 18, at 0 h. 20 m. after sunset, the appearance was such as this (Fig. 12). The satellite to the east was larger than the western one, and was at a distance from Jupiter of 8´, the western one being at a distance of 10´.
Jan. 19.—At the second hour of the night the relative position of the satellites was such as this (Fig. 13); that is, there were three satellites exactly in a straight line with Jupiter, one to the east, at a distance of 6´ from Jupiter; between Jupiter and the first satellite to the west in order, there was an interval of 5´; this satellite was 4´ off the other one more to the west. At that time I was doubtful whether or no there was a satellite between the satellite to the east and Jupiter, but so very close to Jupiter as almost to touch the planet; but at the fifth hour I saw this satellite distinctly, by that time occupying exactly the middle position between Jupiter and the eastern satellite, so that the configuration was thus (Fig. 14). Moreover, the satellite which had just come into view was very small; yet at the sixth hour it was nearly as large as the rest.
Jan. 20: 1 h. 15 m.—A similar arrangement was seen (Fig. 15). There were three satellites, so small as scarcely to be distinguishable; their distances from Jupiter, and from one another, were not more than 1´. I was doubtful whether on the western side there were two satellites or three. About the sixth hour they were grouped in this way (Fig. 16). The eastern satellite was twice as far away from Jupiter as before, that is 2´; on the western side, the satellite in the middle was distant from Jupiter 0´ 40´´, and from the satellite still further to the west 0´ 20´´; at length, at the seventh hour, three satellites were seen on the western side (Fig. 17). The satellite nearest to Jupiter was distant from the planet 0´ 20´´; between this one and the satellite furthest to the west there was an interval of 40´´, but between these another satellite was in view slightly southward of them, and not more than 10´´ off the most westerly satellite.
Jan. 21: 0 h. 30 m.—There were three satellites on the east side; the satellites and Jupiter were at equal distances apart (Fig. 18). The intervals were by estimation 50´´ each. There was also one satellite on the west, distant 4´ from Jupiter. The satellite on the east side nearest to Jupiter was the least of all.
Jan. 22: 2 h.—The grouping of the satellites was similar (Fig. 19). There was an interval of 5´ fromthe satellite on the east to Jupiter; from Jupiter to the satellite furthest to the west 7´. The two interior satellites on the western side were 0´ 40´´ apart, and the satellite nearer to Jupiter was 1´ from the planet. The inner satellites were smaller than the outer ones, but they were situated all in the same straight line, along the ecliptic, except that the middle of the three western satellites was slightly to the south of it, but at the sixth hour of the night they appeared in this position (Fig. 20). The satellite on the east was very small, at a distance from Jupiter of 5´ as before; but the three satellites on the west were separated by equal distances from Jupiter and from each other; and the intervals were nearly 1´ 20´´ each. The satellite nearest Jupiter appeared smaller than the other two on the same side, but they all appeared arranged exactly in the same straight line.
Jan. 23, at 0 h. 40 m. after sunset, the grouping of the satellites was nearly after this fashion (Fig. 21). There were three satellites with Jupiter in a straight line along the ecliptic, as they always have been; two were on the east of the planet, one on the west; the satellite furthest to the east was 7´ from the next one, and this satellite 2´ 40´´ from Jupiter; Jupiter was 3´ 20´´ from the satellite on the west; and they were all of nearly the same size. But at the fifth hour thetwo satellites which had been previously near Jupiter were no longer visible, being, as I suppose, hidden behind Jupiter, and the appearance presented was such as this (Fig. 22).
Jan. 24.—Three satellites, all on the east side, were visible, and nearly, but not quite, in the same straight line with Jupiter, for the satellite in the middle was slightly to the south of it (Fig. 23). The satellite nearest to Jupiter was 2´ distant from the planet; the next in order 0´ 30´´ from this satellite, and the third was 9´ further off still; they were all very bright. But at the sixth hour two satellites only presented themselves to view in this position, namely in the same straight line with Jupiter exactly, and the distance of the nearest to the planet was lengthened to 3´; the next was 2´ further off, and unless I am mistaken, the two satellites previously observed in the middle had come together, and appeared as one.
Jan. 25, at 1 h. 40 m., the satellites were grouped thus (Fig. 24). There were only two satellites on the east side, and these were rather large. The satellite furthest to the east was 5´ from the satellite in the middle, and it was 6´ from Jupiter.
Jan. 26, at 0 h. 40 m., the relative positions of the satellites were thus (Fig. 25). Three satelliteswere in view, of which two were east and the third west of Jupiter; this one was distant 3´ from the planet. On the east side the satellite in the middle was at a distance of 5´ 20´´; the further satellite was 6´ beyond; they were arranged in a straight line, and were of the same size. At the fifth hour the arrangement was nearly the same, with this difference only, that the fourth satellite was emerging on the east side near Jupiter. It was smaller than the rest, and was then at a distance of 0´ 30´´ from Jupiter; but was raised a little above the straight line towards the north, as the accompanying figure shows (Fig. 26).
Jan. 27, 1 h. after sunset, a single satellite only was in view, and that on the east side of Jupiter in this position (Fig. 27). It was very small, and at a distance of 7´ from Jupiter.
Jan. 28 and 29.—Owing to the intervention of clouds, I could make no observation.
Jan. 30.—At the first hour of the night the satellites were in view, arranged in the following way (Fig. 28). There was one satellite on the east side, at a distance of 2´ 30´´ from Jupiter; and there were two satellites on the west, of which the one nearer to Jupiter was 3´ off the planet, and the other satellite 1´ further. The places of the outer satellites and Jupiter were in the same straight line; but the satellite inthe middle was a little above it to the north. The satellite furthest to the west was smaller than the rest.
On the last day of the month, at the second hour, two satellites on the east side were visible, and one on the west (Fig. 29). Of the satellites east of the planet, the one in the middle was 2´ 20´´ distant from Jupiter; and the satellite further to the east was 0´ 30´´ from the middle satellite; the satellite on the west was at a distance of 10´ from Jupiter. They were in the same straight line nearly, and would have been exactly so, only the satellite on the east nearest to Jupiter was raised a little towards the north. At the fourth hour, the two satellites on the east were still nearer together, for they were only 20´´ apart (Fig. 30). The western satellite appeared rather small in these two observations.
Feb. 1.—At the second hour of the night the arrangement was similar (Fig. 31). The satellite furthest to the east was at a distance of 6´ from Jupiter, and the western satellite 8´. On the east side there was a very small satellite, at a distance of 20´´ from Jupiter. They made a perfectly straight line.
Feb. 2.—The satellites were seen arranged thus (Fig. 32). There was one only on the east, at a distance of 6´ from Jupiter. Jupiter was 4´ from the nearest satellite on the west; between this satellite and the satellite further to the west there was an interval of 8´; they were in the same straight line exactly, and were nearly of the same magnitude. But at the seventh hour four satellites were there—two on each side of Jupiter (Fig. 33). Of these satellites, the most easterly was at a distance of 4´ from the next; this satellite was 1´ 40´´ from Jupiter; Jupiter was 6´ from the nearest satellite on the west, and this one from the satellite further to the west, 8´; and they were all alike in the same straight line, drawn in the direction of the Zodiac.
Feb. 3: 7 h.—The satellites were arranged in the following way (Fig. 34):—The satellite on the east was at a distance of 1´ 30´´ from Jupiter; the nearest satellite on the west, 2´, and there was a long distance, 10´, from this satellite to the satellite further to the west. They were exactly in the same straight line, and of equal magnitude.
Feb. 4: 2 h.—Four satellites attended Jupiter, two on the east and two on the west, arranged in one perfectly straight line, as in the adjoining figure (Fig. 35). The satellite furthest to the east was at a distance of 3´ from the next satellite. This one was 0´ 40´´ from Jupiter; Jupiter 4´ from the nearest satellite on thewest; and this one from the satellite further to the west 6´. In magnitude they were nearly equal; the satellite nearest to Jupiter was rather smaller in appearance than the rest. But at the seventh hour (Fig. 36) the eastern satellites were at a distance of only 0´ 30´´ apart. Jupiter was 2´ from the nearest satellite on the east; and from the satellite on the west, next in order, 4´; this one was distant 3´ from the satellite further to the west. They were all equal in magnitude, and in a straight line, drawn in the direction of the ecliptic.
Feb. 5.—The sky was cloudy.
Feb. 6.—Two satellites only appeared, with Jupiter between them, as is seen in the accompanying figure (Fig. 37). The satellite on the east was 2´ from Jupiter, and that on the west 3´. They were in the same straight line with Jupiter, and were equal in magnitude.
Feb. 7.—There were two satellites by the side of Jupiter, and both of them on the east of the planet, arranged in this manner (Fig. 38). The intervals between the satellites and Jupiter were equal, and of 1´ each; and a straight line would go through them and the centre of Jupiter.
Feb. 8: 1 h.—Three satellites were there, all on the east side of Jupiter, as in the diagram (Fig. 39).The nearest to Jupiter, a rather small one, was distant from the planet 1´ 20´´; the middle one was 4´ from this satellite, and was rather large; the satellite furthest to the east, a very small one, was at a distance of 0´ 20´´ from this satellite. It was doubtful whether there was one satellite near to Jupiter or two, for sometimes it seemed that there was another satellite by its side towards the east, wonderfully small, and only 10´´ from it. They were all situated at points in a straight line drawn in the direction of the Zodiac. At the third hour the satellite nearest to Jupiter was almost touching the planet, for it was only distant 10´´ from it; but the others had become further off, for the middle one was 6´ from Jupiter. At length, at the fourth hour, the satellite which was previously the nearest to Jupiter joined with the planet and disappeared.
Feb. 9: 0 h. 30 m.—There were two satellites on the east side of Jupiter, and one on the west, in an arrangement such as this (Fig. 40). The satellite furthest to the east, which was a rather small one, was distant 4´ from the next satellite; the satellite in the middle was larger, and at a distance of 7´ from Jupiter. Jupiter was distant 4´ from the western satellite, which was a small one.
Feb. 10: 1 h. 30 m.—A pair of satellites, very small, and both on the east of the planet, werevisible, in the following position (Fig. 41). The further satellite was distant from Jupiter 10´, the nearer 0´ 20´´, and they were in the same straight line; but at the fourth hour the satellite nearest to Jupiter no longer appeared, and the other seemed so diminished that it could scarcely be kept in sight, although the atmosphere was quite clear, and the satellite was further from Jupiter than before, since its distance was now 12´.
Feb. 11: 1 h.—There were two satellites on the east, and one on the west (Fig. 42). The western satellite was at a distance of 4´ from Jupiter. The satellite on the east, nearest to the planet, was likewise 4´ from Jupiter; but the satellite further to the east was at a distance from this one of 8´; they were fairly clear to view, and in the same straight line; but at the third hour the fourth satellite was visible near to Jupiter on the east, less in magnitude than the rest, separated from Jupiter by a distance of 0´ 30´´, and slightly to the north out of the straight line drawn through the rest (Fig. 43). They were all very bright and extremely distinct, but at 5 h. 30 m. the satellite on the east nearest to Jupiter had moved further away from the planet, and was occupying a position midway between the planet and the neighbouring satellite further to theeast. They were all in the same straight line exactly, and of the same magnitude, as may be seen in the accompanying diagram (Fig. 44).
Feb. 12: 0 h. 40 m.—A pair of satellites on the east, a pair likewise on the west, were near the planet (Fig. 45). The satellite on the east furthest removed from Jupiter was at a distance of 10´, and the further of the satellites on the west was 8´ off. They were both fairly distinct. The other two were very near to Jupiter, and very small, especially the satellite to the east, which was at a distance of 0´ 40´´ from Jupiter. The distance of the western satellite was 1´. But at the fourth hour the satellite which was nearest to Jupiter on the east was visible no longer.
Feb. 13: 0 h. 30 m.—Two satellites were visible in the east, two also in the west (Fig. 46). The satellite on the east near Jupiter was fairly distinct; its distance from the planet was 2´. The satellite further to the east was less noticeable; it was distant 4´ from the other. Of the satellites on the west, the one furthest from Jupiter, which was very distinct, was parted from the planet 4´. Between this satellite and Jupiter intervened a small satellite close to the most westerly satellite, being not more than 0´ 3´´ off. They were all in the same straight line, corresponding exactly to the direction of the ecliptic.
Feb. 15 (for on the 14th the sky was covered with clouds), at the first hour, the position of the satellites was thus (Fig. 47); that is, there were three satellites on the east, but none were visible on the west. The satellite on the east nearest to Jupiter was at a distance of 0´ 50´´ from the planet; the next in order was 0´ 20´´ from this satellite, and the furthest to the east was 2´ from the second satellite, and it was larger than the others, for those nearer to Jupiter were very small. But about the fifth hour only one of the satellites which had been near to Jupiter was to be seen; its distance from Jupiter was 0´ 30´´. The distance of the satellite furthest to the east from Jupiter had increased, for it was then 4´ (Fig. 48). But at the sixth hour, besides the two situated as just described on the east, one satellite was visible towards the west, very small, at a distance of 2´ from Jupiter (Fig. 49).
Feb. 16: 6 h.—Their places were arranged as follows (Fig. 50); that is, the satellite on the east was 7´ from Jupiter, Jupiter 5´ from the next satellite on the west, and this 3´ from the remaining satellite still further to the west. They were all of the same magnitude nearly, rather bright, and in the same straight line, corresponding accurately to the direction of the Zodiac.
Feb. 17: 1 h.—Two satellites were in view, one onthe east, distant 3´ from Jupiter; the other on the west, distant 10´ (Fig. 51). The latter was somewhat less than the satellite on the east; but at the sixth hour the eastern satellite was nearer to Jupiter, being at a distance of 0´ 50´´, and the western satellite was further off, namely 12´. At both observations they were in the same straight line with Jupiter, and were both rather small, especially the eastern satellite in the second observation.
Feb. 18: 1 h.—Three satellites were in view, of which two were on the west and one on the east; the distance of the eastern satellite from Jupiter was 3´, and of the nearest satellite on the west 2´; the remaining satellite, still further to the west, was 8´ from the middle satellite (Fig. 52). They were all in the same straight line exactly, and of about the same magnitude. But at the second hour the satellites nearest to the planet were at equal distances from Jupiter, for the western satellite was now also 3´ from the planet. But at the sixth hour the fourth satellite was visible between the satellite on the east and Jupiter, in the following configuration (Fig. 53). The satellite furthest to the east was at a distance of 3´ from the next in order; this one was at a distance of 1´ 50´´ from Jupiter; Jupiter was at a distance of 3´ from the next satellite on the west, and this 7´ from the satellitestill further to the west. These were nearly equal in magnitude, only the satellite on the east nearest to Jupiter was a little smaller than the rest, and they were all in the same straight line parallel to the ecliptic.
Feb. 19: 0 h. 40 m.—Two satellites only were in view, west of Jupiter, rather large, and arranged exactly in the same straight line with Jupiter, in the direction of the ecliptic (Fig. 54). The nearer satellite was at a distance of 7´ from Jupiter and of 6´ from the satellite further to the west.
Feb. 20.—The sky was cloudy.
Feb. 21: 1 h. 30 m.—Three satellites, rather small, were in view, placed thus (Fig. 55). The satellite to the east was 2´ from Jupiter; Jupiter was 3´ from the next, which was on the west; and this one was 7´ from the satellite further to the west. They were exactly in the same straight line parallel to the ecliptic.
Feb. 25: 1 h. 30 m. (for on the three previous nights the sky was overcast).—Three satellites appeared, two on the east, which were at a distance of 4´ apart, the same as the distance of the nearer satellite from Jupiter; on the west there was one satellite at a distance of 2´ from Jupiter. They were exactly in the same straight line in the direction of the ecliptic (Fig. 56).
Feb. 26: 0 h. 30 m.—A pair of satellites onlywere present, one on the east, distant 10´ from Jupiter; the other was on the west, at a distance of 6´ (Fig. 57). The eastern satellite was slightly smaller than the western. At the fifth hour three satellites were visible; for, besides the two already noticed, a third satellite was in view, on the west, near Jupiter, very small, which previously had been hidden behind Jupiter, and it was at a distance of 1´ from the planet (Fig. 58).
But the satellite on the east was seen to be further off than before, being at a distance of 11´ from Jupiter. On this night, for the first time, I determined to observe the motion of Jupiter and the adjacent planets (his satellites) along the zodiac, by reference to some fixed star; for there was a fixed star in view, eastwards of Jupiter, at a distance of 11´ from the satellite on the east, and a little to the south, in the following manner (Fig. 59).
Feb. 27: 1 h. 4 m.—The satellites appeared in the following configuration. The satellite furthest to the east was at a distance of 10´ from Jupiter; the next in order was near Jupiter, being at a distance of 0´ 30´´ from the planet. The next satellite was on the western side, at a distance of 2´ 30´´ from Jupiter; and the satellite further to the west was at a distance of 1´ from this. The two satellites near to Jupiterappeared small, especially the satellite on the east; but the satellites furthest off were very bright, particularly that on the west, and they made a straight line in the direction of the ecliptic exactly. The motion of the planets towards the east was plainly seen by reference to the aforesaid fixed star, for Jupiter and his attendant satellites were nearer to it, as may be seen in the accompanying figure (Fig. 60). At the fifth hour the satellite on the east, near to Jupiter, was 1´ from the planet.
Feb. 28: 1 h.—Only two satellites were visible, one on the east, at a distance of 9´ from Jupiter, and another on the west, at a distance of 2´; they were both rather bright, and in the same straight line with Jupiter, and a straight line drawn from the fixed star perpendicular to this straight line fell upon the satellite on the east, as in the figure (Fig. 61). At the fifth hour a third satellite was seen at a distance of 2´ from Jupiter, on the east, in the position shown in the figure (Fig. 62).
March 1: 0 h. 40 m.—Four satellites, all on the east of the planet, were seen; the satellite nearest to Jupiter was 2´ from the planet; the next 1´ from this; the third was 0´ 20´´ from the second, and was brighter than the others; and the satellite still further to the east was at a distance of 4´ from it, and wassmaller than the others (Fig. 63). They made a straight line very nearly, only the satellite third from Jupiter was slightly above the line. The fixed star formed with Jupiter and the most easterly satellite an equilateral triangle, as in the figure.
March 2: 0 h. 40 m.—Three satellites were in attendance, two on the east and one on the west, in the configuration shown in the diagram (Fig. 64). The satellite furthest to the east was 7´ from Jupiter; from this satellite the next was distant 0´ 30´´, and the satellite on the west was separated from Jupiter by an interval of 2´. The satellites furthest off were brighter and larger than the remaining satellite, which appeared very small. The satellite furthest to the east seemed to be raised a little towards the north, out of the straight line drawn through the other satellites and Jupiter.
The fixed star already noticed was at a distance of 8´ from the western satellite, that is, from the perpendicular drawn from that satellite to the straight line drawn through all the system, as shown in the figure given.
These determinations of the motion of Jupiter and the adjacent planets (his satellites) by reference to a fixed star, I have thought well to present to the notice of astronomers, in order that any one may beable to understand from them that the movements of these planets (Jupiter’s satellites) both in longitude and in latitude agree exactly with the motions [of Jupiter] which are extracted from tables.
These are my observations upon the four Medicean planets, recently discovered for the first time by me; and although it is not yet permitted me to deduce by calculation from these observations the orbits of these bodies, yet I may be allowed to make some statements, based upon them, well worthy of attention.
Deductions from the previous observations concerning the orbits and periods of Jupiter’s satellites.And, in the first place, since they are sometimes behind, sometimes before Jupiter, at like distances, and withdraw from this planet towards the east and towards the west only within very narrow limits of divergence, and since they accompany this planet alike when its motion is retrograde and direct, it can be a matter of doubt to no one that they perform their revolutions about this planet, while at the same time they all accomplish together orbits of twelve years’ length about the centre of the world. Moreover, they revolve in unequal circles, which is evidently the conclusion to be drawn from the fact that I have never been permitted to see two satellites in conjunction when their distance from Jupiter was great, whereas near Jupiter two, three, and sometimes all (four), have been found closely packed together. Moreover, it may be detected that the revolutions ofthe satellites which describe the smallest circles round Jupiter are the most rapid, for the satellites nearest to Jupiter are often to be seen in the east, when the day before they have appeared in the west, and contrariwise. Also the satellite moving in the greatest orbit seems to me, after carefully weighing the occasions of its returning to positions previously noticed, to have a periodic time of half a month.17Besides, we have a notable and splendid argument to remove the scruples of those who can tolerate the revolution of the planets round the Sun in the Copernican system, yet are so disturbed by the motion of one Moon about the Earth, while both accomplish an orbit of a year’s length about the Sun, that they consider that this theory of the constitution of the universe must be upset as impossible; for now we have not one planet only revolving about another, while both traverse a vast orbit about the Sun, but our sense of sight presents to us four satellites circlingabout Jupiter, like the Moon about the Earth, while the whole system travels over a mighty orbit about the Sun in the space of twelve years.
Explanation of the variations in brightness of Jupiter’s satellites.Lastly, I must not pass over the consideration of the reason why it happens that the Medicean stars, in performing very small revolutions about Jupiter, seem sometimes more than twice as large as at other times. We can by no means look for the explanation in the mists of the Earth’s atmosphere, for they appear increased or diminished, while the discs of Jupiter and neighbouring fixed stars are seen quite unaltered. That they approach and recede from the Earth at the points of their revolutions nearest to and furthest from the Earth to such an extent as to account for so great changes seems altogether untenable, for a strict circular motion can by no means show those phenomena; and an elliptical motion (which in this case would be nearly rectilinear) seems to be both untenable and by no means in harmony with the phenomena observed. But I gladly publish the explanation which has occurred to me upon this subject, and submit it to the judgment and criticism of all true philosophers. It is certain that when atmospheric mists intervene the Sun and Moon appear larger, but the fixed stars and planets less than they really are; hence the former luminaries, when near the horizon, are larger than at other times, but stars appearsmaller, and are frequently scarcely visible; also they are still more diminished if those mists are bathed in light; so stars appear very small by day and in the twilight, but the Moon does not appear so, as I have previously remarked. Moreover, it is certain that not only the Earth, but also the Moon, has its own vaporous sphere enveloping it, for the reasons which I have previously mentioned, and especially for those which shall be stated more fully in mySystem; and we may consistently decide that the same is true with regard to the rest of the planets; so that it seems to be by no means an untenable opinion to place round Jupiter also an atmosphere denser than the rest of the ether,18about which, like the Moon about the sphere of the elements, the Medicean planets (Jupiter’s satellites) revolve; and that by the intervention of this atmosphere they appear smaller when they are in apogee; but when in perigee, through the absence orattenuation of that atmosphere, they appear larger. Want of time prevents my going further into these matters; my readers may expect further remarks upon these subjects in a short time.
Original Configurations of Jupiter’s Satellites observed by Galileo in the months of January, February, and March 1610, and published with the 1st edition of his bookSidereus Nuncius,Venice, 1610.