The furthest terrestrial planet from the sun is Mars, the “star of strength.” No other heavenly body, except the moon, is so well placed for observation from our position in space.
The diameter of Mars is 4,200 miles; its surface is equal to two-sevenths, its volume to one-seventh those of the earth. But, in consequence of its inferior mean density, nine such spheres would go tomake up the mass of our world. The superficial force of gravity on Mars, compared with its terrestrial value, is as thirty-eight to a hundred. A man could leap there a wall eight feet four inches in height with no more effort than it would cost him here to spring over a two-foot fence.
The planet’s rotation is performed in 24 hours, 37 minutes, on an axis deviating from the vertical by 24° 50′. Hence its seasons resemble our own, except in being nearly twice as long, for the Martian year is of 687 days.
The disk of Mars is diversified with three shades of color—reddish, or dull orange, dark grayish-green, and pure white. The last shows mainly in two diametrically opposite patches. Each pole is surrounded by a brilliant cap, suggesting the deposition of ice or snow over the chilly spaces corresponding to our arctic and antarctic regions. Nor is this all. Each of the polar hoods shrinks to a mere remnant as the local summer advances, but regains its original size when wintry influences are again in the ascendant. Here, and nowhere else in the planetary system, we meet evidence of seasonal change; and seasonal change is associated with vital possibilities. Again, a globe upon which snow visibly melts must contain water; hence the green markings can not but image to our minds seas and inlets subdividing continents, the blond complexion of which may be caused by some native peculiarity of the soil. It is in no way connected with vegetation, since it neither fades nor flushes with the advent of spring; and an atmospheric origin is excluded by the circumstancethat it becomes effaced by a whitish haze near the limb, just where the densest atmospheric strata are traversed by the line of sight.
The spots on Mars are by no means so sharply defined as lunar craters andmaria; yet they are fundamentally permanent. Some can be recognized from drawings made over two hundred years ago; and these antique records have served modern astronomers to determine with minute accuracy the rotation-period of the planet. Continents are somewhat vaguely outlined. Great tracts of them are of an uncertain and variable hue, as if subject to inundations. This peculiarity, thoroughly certified during the favorable opposition of 1892, makes a strong distinction between Mars and the Earth. Terrestrial oceans keep within the limits assigned to them. On the neighboring planet—as M. Faye observed in 1892—“water seems to march about at its ease,” flooding from time to time regions as wide as France. The imperfect separation of the two elements recalls the conditions prevailing during the terrestrial carboniferous era.
The main part of the land of Mars is situated in the Northern Hemisphere. It covers two-thirds of the entire globular surface. Rather than land, indeed, it should be called a network of land and water. The great continental block—so its orange tint declares it to be—is cut up in all possible directions by an intricate system of what appear to be waterways, running in perfectly straight lines—that is, along great circles of the globe—for distances varying from 350 to upward of 4,000 miles. They are frequentlyseen in duplicate, strictly parallel companions developing thirty to three hundred miles apart from the original formations. This mysterious phenomenon is evanescent, or rather periodical.
The canals invariably connect two bodies of water; hence they need no locks or hydraulic machinery; their course is on a dead level. The broadest of them are comparable with the Adriatic; those at the limit of visibility, stretching like the finest spider-threads across the disk, have a width of eighteen miles. “The canals,” Schiaparelli says, “may intersect among themselves at all possible angles, but by preference they converge toward the small spots to which we have given the name of lakes. For example, seven are seen to converge in Lacus Phœnicis, eight in Trivium Charontis, six in Lunæ Lacus, and six in Ismenius Lacus.”
These “lakes” evidently form an integral part of the canal system. They resemble huge railway junctions; and the largest of them—the “Eye of Mars” (Schiaparelli’s Lacus Solis)—seems, in Mr. Lowell’s phrase, like the hub of a five-spoked wheel. Mr. W. H. Pickering in 1892, and Mr. Percival Lowell in 1894, were amazed at their extraordinary abundance.
“Scattered over the orange-ochre groundwork of the continental regions of the planet,” the latter wrote, “are any number of dark, round spots. How many there may be it is not possible to state, as the better the seeing, the more of them there seem to be. In spite, however, of their great number, there is no instance of one occurring unconnected with a canal. What is more, there is apparently none which doesnot lie at the junction of several canals. Reversely, all the junctions appear to be provided with spots.”
Most of these foci are about 120 miles in diameter, and appear most precisely circular when most clearly seen. “Plotted upon a globe,” Mr. Lowell continues, “they and their connecting canals make a most curious network over all the orange-ochre equatorial parts of the planet, a mass of lines and knots, the one marking being as omnipresent as the other. Indeed, the spots are as peculiar and distinctive a feature of Mars as the canals themselves.”
Like the canals, too, they emerge periodically, and in the same but a retarded succession. They “are, therefore, in the first place, seasonal phenomena, and, in the second place, phenomena that depend for their existence upon the prior existence of the canals.”
Mr. Lowell terms them “oases,” and does not shrink from the full implication of the term.
The most important result of the numerous observations of Mars, made during the oppositions of 1892 and 1894, was the recognition of a regular course of change dependent upon the succession of its seasons. Schiaparelli had long anticipated this result; he is commonly in advance of his time. These changes, moreover, when closely watched, are really self-explanatory. The alternate melting of the northern and southern snow-caps initiates and to some extent determines them. As summer advances in either hemisphere, the wasting of the corresponding white calotte can be followed in every minute particular. “The snowy regions are then seen to be successively notched at their edges; black holes and huge fissuresare formed in their interiors; great isolated fragments many miles in extent stand out from the principal mass, dissolve, and disappear a little later. In short, the same divisions and movements of these icy fieldspresent themselvesto us at a glance that occur during the summer of our own arctic regions.”
Indeed, glaciation on Mars is much less durable than on the earth. In 1894 the southern snow-cap vanished to the last speck 59 days after the solstice and the remnant usually left looks scarcely enough to make a comfortable cap for Ben Nevis. An immense quantity of water is thus set free. The polar seas overflow; gigantic inundations reinforced, doubtless, from other sources, spread to the tropics; Syrtis regions of marsh or bog deepen in hue, and become distinctly aqueous; canals dawn on the sight, and grow into undeniable realities. We seem driven to believe that they discharge the function of flood-emissaries.
Mr. Lowell does not hesitate to pronounce them of artificial formation, and, on that large assumption, the purpose of their connection with his “oases” becomes transparently clear. They bring to these Tadmors in the wilderness the water supply by which they are made to “blossom as the rose.” The junction-spots, we are told, do not enlarge when the vernal freshet reaches them; they only darken through the sudden development of vegetation. These circular “districts, artificially fertilized by the canal system,” are strewn broadcast over vast desert areas, the orange-ochreous sections of Mars, covering the greater part of its surface, but deep buried inthe millennial dust of disintegrated red sandstone strata.
“Here, then,” Mr. Lowellremarks,“we have an end and reason for the existence of canals, and the most natural conceivable—namely, that the canals are constructed for the express purpose of fertilizing the oases. When we consider the amazing system of the canal lines, we are carried to this conclusion as forthright as is the water itself; what we see being not the canal itself, indeed, but the vegetation along its banks.”
The proportion of water to land is much smaller on Mars than on the earth. Only two-sevenths of the disk are covered by the dusky areas, and of late the aqueous nature of some, if not all, of these has been seriously called in question. Professor Pickering was convinced by his observations, in 1892 and 1894, “that the permanent water area upon Mars, if it exist at all, is extremely limited in its dimensions.” He estimated it at about half the size of the Mediterranean. Professor Schaeberle is similarly incredulous. If the dark markings are seas, he asks, how explain the irregular gradations of shade in them? How, above all, explain their apparent intersection by well-marked canals? Professor Barnard, observing with the Lick thirty-six inch in 1894, discerned on the Martian surface an astonishing wealth of detail, “so intricate, small, and abundant, that it baffled all attempts to properly delineate it.” It was embarrassing to find these minute features belonging more characteristically to the “seas” than to the “continents.” Under the best conditions, thedark regions lost all trace of uniformity. Their appearance resembled that of a mountainous country, broken by cañon, rift, and ridge, seen from a great elevation. These effects were especially marked in the “ocean” area of the Hour-Glass Sea.
Evidently the relations of solid and liquid in that remote orb are abnormal; they can not be completely explained by terrestrial analogies. Yet a series of well-attested phenomena are intelligible only on the supposition that Mars is, in some real sense, a terraqueous globe. Where snows melt there must be water; and the origin of the Rhone from a great glacier is scarcely more evident to our senses than the dissolution of Martian ice-caps into pools and streams.
The testimony of the spectroscope is to the same effect. Dr. Huggins found, in 1867, the spectrum of Mars impressed with the distinct traces of aqueous absorption, and the fact, although called in question by Professor Campbell of Lick, in 1894, has been reaffirmed both at Tulse Hill and at Potsdam. That clouds form and mists rise in the thin Martian air, admits of doubt. During the latter half of October, 1894, an area much larger than Europe remained densely obscured. Whether or no actual rain was at that time falling over the Maraldi Sea and the adjacent continent it would be useless to conjecture. We only know that with the low barometric pressure at the surface of Mars, the boiling point of water must be proportionately depressed (Flammarion puts it at 115° Fahrenheit), which implies that it evaporates rapidly, and can be transported easily.
If the Martian atmosphere be of the same proportionate mass as that of our earth, it can possess no more than one-seventh its superficial density. That is to say, it is more than twice as tenuous as the air at the summits of the Himalayas. The corresponding height of a terrestrial barometer would be four and a half inches. Owing, however, to the reduced strength of gravity on Mars, this slender envelope is exceedingly extensive. In the pure sky scarcely veiled by it, the sun, diminished to less than half his size at our horizons, probably exhibits his coronal streamers and prominences as a regular part of his noontide glory; atmospheric circulation proceeds so tranquilly as not to trouble the repose of a land “in which it seemeth always afternoon”; no cyclones traverse its surface, only mild trade-winds flow toward the equator, to supply for the volumes of air gently lifted by the power of the sun, to carry reinforcements of water-vapor north and south. Aerial movements are, in fact, by a very strong presumption, of the terrestrial type, but executed with greatly abated vigor.
Brilliant projections above the terminator of Mars were first distinctly perceived at the Lick Observatory in 1890. They have been reobserved at Nice, Arequipa, and Flagstaff (Mr. Lowell’s observatory), coming into view, as a rule, when circumstances concur to favor their visibility. They strictly resemble lunar peaks and craters, catching the first rays of the sun, while the ground about them is still immersed in darkness; and Professor Campbell connects them with “mountain chains lyingacrosstheterminator of the planet,” and in some cases possibly snow-covered. He calculates their height at about ten thousand feet. Their presence was unlooked for, since a flat expanse is a conditionsine quâ nonfor the minute intersection of land by water, which seems to prevail on Mars.
Although the sun is less than half as powerful on Mars as it is here, the Martian climate, to outward appearance, compares favorably with our own. Polar glaciation is less extensive and more evanescent, and little snow falls outside the arctic and antarctic regions. Yet the theoretical mean temperature is minus 4° C., or 61° of Fahrenheit below freezing. This means a tremendous ice-grip. The coldest spot on the earth’s surface is considerably warmer than this cruel average. Fortunately, it exists only on paper. Some compensatory store of warmth must then be possessed by Mars, and it can scarcely be provided by its attenuated air. Possibly, internal heat may still be effective, and we see exemplified in Mars the geological period when vines and magnolias flourished in Greenland, and date-palms ripened their fruit on the coast of Hampshire.
The climate of Mars, according to Schiaparelli, “must resemble that of a clear day upon a high mountain. By day a very strong solar radiation hardly at all mitigated by mist or vapor; by night a copious radiation from the soil toward celestial space, and hence a very marked refrigeration; consequently, a climate of extremes, and great changes of temperature from day to night, and from one season to another. And as on the earth, at altitudes of from17,000 to 20,000 feet, the vapor of the atmosphere is condensed only into the solid form, producing those whitish masses of suspended crystals which we call cirrus-clouds, so in the atmosphere of Mars it would be rarely possible to find collections of cloud capable of producing rain of any consequence. The variation of temperature from one season to another would be notably increased by their long duration, and thus we can understand the great freezing and melting of the snow, renewed in turn at the poles at each complete revolution of the planet round the sun.”
The German astronomer Mädler searched in 1830 for a Martian satellite, and although his telescope was of less than four inches aperture, he satisfied himself that none with a diameter of as much as twenty-three miles could be in existence. As it happened, he was right. The pair of moons detected by Professor Asaph Hall with the Washington twenty-six refractor, August 11 and 17, 1877, are unquestionably below that limit of size. Neither of them can well be more than ten miles across. Their names, “Deimos” and “Phobos,” are taken from theIliad, where Fear and Panic are introduced as attendants upon the God of War. Deimos revolves in 30 hours and 18 minutes at a distance of 14,600 miles from the centre of Mars. And since the planet rotates in 24 hours, 37 minutes, the diurnal motion of the sphere from east to west is so nearly neutralized by the orbital circulation of the satellite from west to east that nearly 132 hours elapse between its rising and its setting. During the interval, it changes four times from new to full, andvice versâ.
Phobos is more effective in illumination, both because it is larger and because it is less distant. At the Martian equator, its brightness is equal to1/60th that of our moon, but beyond 69° of latitude it ispermanently shutout from view by the curvature of the globe.