CHAPTER IIWORSTED MANUFACTURE
When the wool has been graded it is sold either to worsted manufacturers or to makers of woolen goods. The two industries are entirely distinct and separate.
The first cog in the worsted machine is the wool comber, or top-maker. Sometimes he buys assorted grades, known as matchings, from a wool merchant; sometimes he buys and sorts his own wool; but most frequently he sorts and combs the wool on a commission basis. Many of the big worsted mills do their own sorting and combing.
Blending
Tops are usually made from blends of various kinds of wool, and this blending is done after sorting, before the wool is scoured.
Scouring
Scouring is nothing more or less than a glorified washing. A machine closely akin to a gigantic laundry machine removes first the yolk orgrease in an alkaline solution, and then rinses out the dirt and suint in a series of soap and water baths. The last bath is pure water, and from this the wool is taken on a belt through the drier. From the drier it is usually blown through tubes to the carding room.
Worsted carding Machine
Worsted carding Machine
Worsted carding Machine
Approximately 20% of the moisture is allowed to remain in the wool in order to facilitate subsequent processes. If the wool is still warm it is easier to card.
Opens Fibres
The purpose of the carding operation is to open out the fibres in the wool. Originally, carding was done by hand with two leather surfaces, much like butter pats, the inner faces of which were studded with wire nails. Between these two surfaces the wool was rubbed until all the fibres were opened out. In woolen manufacture carding is more violent and seeks to lay the fibres in all directions. Worsted carding aims to separate the fibres, but also to keep them as closely parallel as possible.
Woolen card. Feed end
Woolen card. Feed end
Woolen card. Feed end
Woolen card. Condenser end
Woolen card. Condenser end
Woolen card. Condenser end
Back Washing
Back Washing
Back Washing
The Card
The carding machine is somewhat similar to that used for cotton (see page22). The wool is automatically fed between the feed rollers, which revolve in opposite directions and are armed with heavy teeth. From the feed a roller known as the licker-in starts the wool on its course over a number of cylinders, each of which is surrounded by several toothed rollers known as workers. Each worker has a smaller companion roller, revolving at a higher speed, which derives its name of stripper from the fact that its function is to take the wool off the worker and deliver it to the next worker. The last roller, known as the fancy, raises the wool off the cylinder to be caught by the doffer. The doffing-comb lifts the wool in a filmy sheet of fibres, which is condensed into a thick untwisted rope by passing through a funnel on to the balling-head. This rope, which is about an inch and a half in diameter, is known as a sliver. A certain length of it is automatically rolled into balls and these are taken into the back-wash room. From a loose unrelated mass the wool has now been transformed into a continuous strand of more or less uniform diameter.
Gilling before combing
Gilling before combing
Gilling before combing
A back-wash machine takes several of the carded slivers and combines them into one. The slivers pass through several baths which rinse them thoroughly and are then slowly drawn through a drier. The process is quite similar to scouring, except that it is very much less violent.
Combining and Drawing Slivers
As the slivers come out of the drier they are fed through a number of gill boxes. The gill box is the first of a long series of drawing operations. In this, and all the following stages of open drawing, there are always several slivers being combined into one and drawn out until the resulting sliver has about the same or a smaller diameter than the ones fed into the machine. The principle of the gill box is quite simple. Several slivers are fed in between rollers revolving at a comparatively low rate of speed. As they pass through they are flattened out over what is known as a faller. This is armed with very fine close wire teeth which come up through the fibres and the draft is imparted when the wool is taken off the faller by a final pair of rollers which are revolving considerably faster. The sheet of wool which emerges from these rollers isagain passed through a funnel and thereby condensed once more into a sliver. This operation is repeated from two to four times, according to the quality of the top desired, and the methods employed by the particular mill.
Gilling the top
Gilling the top
Gilling the top
Where very coarse long fibred wool is to be worked there is no carding, and the wool is prepared by straightening the fibres into a sliver through a series of gill-boxes.
At some point during the gilling process a slight amount of oil is usually dropped onto the sliver, as this facilitates combing.
Removes Short Fibres
The next operation, namely that of combing, is again simple when viewed as the primitive manufacturing process. The old comber would take a short length of sliver, hang it on a nail by tying one end together and then proceed to comb out the short fibres much as one may comb out the dead short hairs from a dog’s coat. Combing is simply the removal from the sliver of the short fibres which would not spin properly.These short fibres are known as noils and are the waste product of top-making. The top is a continuous untwisted strand of long wool fibres made parallel by the comb. (By long fibres we mean fibres which are relatively long. Some tops consist of fibres less than an inch and a half in length. In this case, which is very infrequent, the noil would be even shorter.)
The Noble Comb
The Noble Comb
The Noble Comb
Noils
Noils are sold either to woolen or knitting mills direct by the top-maker, or else to a merchant who disposes of them.
The Noble Comb
The Noble circular comb is the most generally used combing machine. Other types are the Lister, the Holden, and the Heilmann. The Noble comb is a compact circular structure standing at a height of about three feet from the floor, with a steam box underneath it. (Heat greatly facilitates the process.) There are two smaller circles inside the main circumference which are tangent to the outer circle at opposite points of its diameter. All rotate in the same direction. Seventy-two slivers are rolled up in creels on the outside of the main circle and are automatically fed on to the tangental points. A dabbing brush pushes the sliversdown between the points of the two circles. As the circles draw apart the long fibres are left protruding from the inner edge of the outer circle and the outer edge of the inner circles. They travel thus until they are gripped by vertical rollers set to catch them. After passing the rollers the wool is lifted off the pins of the circles by knives. The four ribbons of combed fibres (two from the outer and one from each of the inner circles) are condensed into a single beautiful even band which coils itself softly into a revolving can. What remains is the waste or noil.
Gilling the Top
The top, as it comes from the comb, is again put through a series of several gill boxes with the object of further drawing it out. Once again several slivers are combined into one in each process. At the end of this gilling the top is coiled in balls and allowed to rest.
We have now reduced the wool to its real worsted basis. The noils have been taken out, and the balls of top are ready to be sent to the spinner to be spun into worsted yarn.
Drawing
The first processes in a spinning mill very closely approximate the last operations in the combing plant. The tops are usually gilled several times before weighing, and then are put through several drawing machines in which, as heretofore, several slivers are condensed into one. In the last of these machines there are no fallers, the entire process consisting of two sets of rollers revolving at different speed. Each operation results in a slightly finer sliver, and the number of machines through which the material is drawn is determined by the fineness of the yarn desired.
French
English
The last of the drawing processes is the so-called roving box, which, in most cases is a cone-drawing process. There is a difference here between French spinning and English spinning. According to the French system, which is employed in this country only for very soft fine yarns, no twist is given to the sliver until the actual spinning begins; and the spinning is then usually done on mules, which in this country are rarely used in the manufacture of worsted yarn. We shall discuss these machines when we come to woolens. According to the most common procedure in this country, the roving box not only draws, but imparts a certain amount of twist to the yarn. This is done by winding the yarn from horizontal spools on to vertical spindles. These spindles are set on long frames, similar to spinning frames, one frame containing about 200 spindles. The yarn is guided on the bobbin by an arm, known as the flyer, which draws the bobbin around after it.
Spinning
There is very little difference between this last drawing operation and the actual spinning which immediately succeeds it. In both cases theyarn is unwound from horizontal spools placed at the top of the frame through the inevitable two rollers going at different speeds, and guided on to the revolving spindle. Since the spindle revolves vertically the yarn is twisted. The amount of twist is regulated, as is also the amount of tension, and these two factors, together with the quality of the material, determine the quality of the yarn. Worsted yarn is graded according to the number of counts, which, as we have seen, is the number of hanks of 560 yards that make a pound avoirdupois.
Drawing
Drawing
Drawing
Flyer
Cap
Ring
Roughly speaking, there are three modern methods of spinning, namely, the flyer, cap, and ring frames. All of them are derived from Arkwright’s original water throstle, and, if we want to go further back, from the old-fashioned spinning wheel. The chief difference between thethree types lies in the method of driving the spindle and guiding the yarn on to the bobbin. The flyer arm we have described briefly above. In the cap system, the bobbin is moved up and down in a fixed metal cap, something like the front end of a two-inch shell-casing, and this method of guiding the yarn has the advantage that, because of its lower vibration, the spindles may be driven faster. It also causes considerably more friction on the yarn. For worsted spinning it is probably the most commonly employed. Ring spinning, the most frequently used for cotton, and described briefly on page28, is very similar (to the layman) except that the spindle revolves in a metal sleeve, and that the yarn is guided by a metal ring with a traveller, instead of by the end of the cap.
Reducing
Reducing
Reducing
Twisting
What follows now is merely an auxiliary process of spinning. The yarn has been completed, but it is rarely used for weaving, as it comes off the spindle. Several strands are usually twisted together, both to make it stronger and to give various effects of body and color. The number of strands in a yarn are designated as plys. Yarn consisting of two strands is called two-ply, three strands are three-ply, and so on. Yarnsof two or more colors, or yarns of varying counts, are frequently twisted together. It is possible also to twist worsted and cotton yarns.
Cap spinning
Cap spinning
Cap spinning
Spindlage
Twisting is done in a manner similar to spinning. A worsted spinning mill usually has about a third as many twisting spindles as spinning spindles, but it is important to remember that when speaking of a mill’s capacity in terms of spindles, it is only the spinning spindles that are counted.
Winding or Skeining
After the twisting is completed the finished yarn is wound on small spools, known as cheesers, to be weighed. Next it is wound on large spools in such a way that the large spool holds the contents of from ten to twenty cheesers, each wound in an adjacent space at the same time. Some of the yarn is shipped to weaving mills on these large spools; and some of it is taken off them and skeined.
Waste
We are now ready to weave the cloth, but there are a considerable number of very interesting details which we have been forced to omit. All the processes we have discussed produce a certain amount of waste material. The combing waste, known as noils, is the largest by-productof the worsted industry, but there is also a considerable amount of yarn waste produced in the various drawing and spinning operations. Practically all of this material finds its way back, in one form or another, into the woolen industry. The subject of reclaiming waste is in itself so comprehensive that we can do no more than touch upon it here.
Wool and Piece and Double Dyeing
Some yarns are dyed after they have been spun. In most cases, however, woolen yarns receive their color after the wool is scoured and before it goes into the carding machine. In worsted manufacture the common procedure is to dye the top after it has been combed. In this way a uniform color is obtained, whereas it is exceedingly difficult to obtain the same color from two vats in piece-dyeing. Some materials are both wool and piece-dyed, the second dye being given to the cloth. This is done in cases where a peculiarly fast color is desired, or where the cloth contains separate materials such as wool and cotton.
The operation of the loom has already been described in connection with the manufacture of cotton, but the preparatory processes, although somewhat similar, vary considerably because of the difference in the nature of the materials. In worsted manufacture the work which has to be done before the loom can begin to operate is usually referred to as loom-mounting, and consists of five stages.
Warping
1. Warping is the arranging of the warp threads in the order necessary to produce the desired cloth. This was formerly, and still is to a great extent, done entirely by hand on a sort of rack known as the woof. In the larger mills, however, warping is now done either on a sectional warping machine or on the warping mill. Both these devices are only partly automatic, and require highly-skilled labor.
Sizing
2. The mechanical structure of woolen or worsted yarns necessitates the application of some glutinous substance to their surfaces before subjecting them to the weaving process. No matter how even the worsted yarn, a microscopic examination would show certain fibres protruding from the surface. Sizing has the effect of smoothing the surface of the yarn, and at the same time distributing more evenly the strain of weaving. The sizing machine is rather like the back-washer used in the manufacturing of worsted yarn. The warp is run through the sizing bath and then compressed between rollers, after which it is dried by steam or fan.
Beaming
3. Beaming is the term applied to winding the warp upon the beam of the loom. (The beam is the roller from which the warp threads are unwound as the weaving progresses.) In order to keep the threads in their proper position an instrument known as a raddle is employed, and the raddling process is one which requires considerable care.
Drawing in the warp threads
Drawing in the warp threads
Drawing in the warp threads
Healding
4. The next step, healding, is the same as that described on page34and enables the warp threads to be lifted in sections in order that the shuttle may pass under some and over others. From the original weave of lifting alternate threads, a great many complicated designs have been evolved, which necessitate the lifting of the warp threads in many small series. In the elementary weave where there are only two groups, this work is done by heald-wires which raise the odd and depress the even threads, thus forming a V, known as the shed, through which the shuttle may pass. As the design becomes more intricate the healding process becomes more complicated, and the number of heald shafts increases.
Sleying
5. Sleying, or reeding, is the final preparatory process, and has the object of keeping the warp threads the proper distance apart during weaving. The sley is really nothing more than a fine comb with a strip across the ends of the teeth. The warp threads are passed between the wires (reeds) of the sley and are so compelled to keep their proper position.
Weaving
Weaving
Weaving
The sley is attached to the batten, or fly, and as in the cotton loom performs the additional function of driving home each weft thread after the shuttle has passed.
The Power Loom
Once these processes have been completed the remainder is almost entirely automatic. The shuttle flies back and forth without aid. The proper warp threads are raised and lowered to let it pass, and after each traverse, or pick, the batten automatically drives home the weft thread, into the growing stretch of cloth that is winding itself up on to the beam at one end, while the beam at the other end delivers the parallel warp threads. The average worsted loom makes about 100 picks per minute, which is only about half as fast as the calico loom, the reason being the lower tensile strength of the yarn.
While, as we shall see, finishing in the woolen industry is a very important stage of manufacture, worsted materials are practically unchanged after they come out of the loom. There is sometimes a certain amount of fulling and raising and cropping, but the net result does not in any way alter the cloth, except perhaps to impart a little smoother finish. We shall discuss finishing in a little more detail when we come to the last stage of woolen manufacture.
Our worsted cloth is now finished, and we have traced its origin, somewhat sketchily, from the back of the sheep up to the point where it takes only a tailor to put it on the back of a man.