Chapter 8

Illustration: Suppose that when the cyclone juice is all added to the tank the contents of which are vigorously boiling so that they are doubtless of uniform composition, the volume is found by the gauge stick to be 815 gallons. A sample of this partially evaporated pulp is withdrawn and filtered and the filtrate is found to have a Brix reading of 6.90. Let us suppose that the product is to be evaporated to a pulp having a specific gravity of 1.035 and the operator desires to know at what point to turn off the steam. By referring toTable 9in the column headed by the figure 1.035, we find opposite the Brix reading 6.90 the factor .834. Multiplying the volume of the pulp (815 gallons) by this factor, we obtain 680 gallons. It follows, therefore, that the steam should be turned off when the evaporation has reached such a point that the gauge stick shows the volume of pulp to be 680 gallons.Table 9may be used in the same way for calculating the volume of any pulp, hot or cold, of any specified specific gravity equivalent to a certain volume of pulp of any other stated specific gravity when held at the same temperature. For instance, the illustration given above serves equally well to illustrate how the relative value of two finished pulps of different specific gravities may be calculated. It also shows directly the relative value (based on tomato solids alone) of the same volume of two pulps of different gravity.Illustration: Suppose a shipment contains 1,000 cases of No. 10 cans of pulp thought to have a specific gravity of 1.040 but found on examination to have a specific gravity of 1.0365. What is the value of the pulp in comparison with pulp of specific gravity of 1.040? Turning inTable 9to the figure 1.0365 in the left-hand column we follow the horizontal line containing that figure to the column headed by specific gravity 1.040. Here we find that .907 is the factor by which to multiply the volume of pulp of a specific gravity 1.0365 to obtain the equivalent volume of pulp of specific gravity 1.040. The answer to our question therefore is 1000 × .907 = 907. In other words pulp of a gravity of 1.0365 judged by the tomato solids it contains, has 90.7 per cent of the value of pulp of the gravity of 1.040.Table 9is based on the results obtained from a series of samples of whole tomato pulp and cyclone juice varying in specific gravity from 1.02 to 1.05. The table was extended by calculation to give corresponding values for more dilute cyclone juices and more concentrated products. The lower portion of the table has been repeatedly confirmed by results obtained in the examination of cyclone juice and pulp, but the figures in the higher portion of the table are based on calculation from lower concentrations.This table is only applicable to pulp to which no other substance, such as salt, has been added. Salt if present to the extent of more than 0.25 per cent can be recognized by the taste. The amount of salt, when any has been added, may be determined by the method given on page 33 and the specific gravity corrected by subtracting from the apparent specific gravity 0.007 for each per cent of salt present. This gives the specific gravity of the salt-free pulp and the corresponding per cent of solids may be obtained fromTable 9.

Illustration: Suppose that when the cyclone juice is all added to the tank the contents of which are vigorously boiling so that they are doubtless of uniform composition, the volume is found by the gauge stick to be 815 gallons. A sample of this partially evaporated pulp is withdrawn and filtered and the filtrate is found to have a Brix reading of 6.90. Let us suppose that the product is to be evaporated to a pulp having a specific gravity of 1.035 and the operator desires to know at what point to turn off the steam. By referring toTable 9in the column headed by the figure 1.035, we find opposite the Brix reading 6.90 the factor .834. Multiplying the volume of the pulp (815 gallons) by this factor, we obtain 680 gallons. It follows, therefore, that the steam should be turned off when the evaporation has reached such a point that the gauge stick shows the volume of pulp to be 680 gallons.

Illustration: Suppose that when the cyclone juice is all added to the tank the contents of which are vigorously boiling so that they are doubtless of uniform composition, the volume is found by the gauge stick to be 815 gallons. A sample of this partially evaporated pulp is withdrawn and filtered and the filtrate is found to have a Brix reading of 6.90. Let us suppose that the product is to be evaporated to a pulp having a specific gravity of 1.035 and the operator desires to know at what point to turn off the steam. By referring toTable 9in the column headed by the figure 1.035, we find opposite the Brix reading 6.90 the factor .834. Multiplying the volume of the pulp (815 gallons) by this factor, we obtain 680 gallons. It follows, therefore, that the steam should be turned off when the evaporation has reached such a point that the gauge stick shows the volume of pulp to be 680 gallons.

Table 9may be used in the same way for calculating the volume of any pulp, hot or cold, of any specified specific gravity equivalent to a certain volume of pulp of any other stated specific gravity when held at the same temperature. For instance, the illustration given above serves equally well to illustrate how the relative value of two finished pulps of different specific gravities may be calculated. It also shows directly the relative value (based on tomato solids alone) of the same volume of two pulps of different gravity.

Illustration: Suppose a shipment contains 1,000 cases of No. 10 cans of pulp thought to have a specific gravity of 1.040 but found on examination to have a specific gravity of 1.0365. What is the value of the pulp in comparison with pulp of specific gravity of 1.040? Turning inTable 9to the figure 1.0365 in the left-hand column we follow the horizontal line containing that figure to the column headed by specific gravity 1.040. Here we find that .907 is the factor by which to multiply the volume of pulp of a specific gravity 1.0365 to obtain the equivalent volume of pulp of specific gravity 1.040. The answer to our question therefore is 1000 × .907 = 907. In other words pulp of a gravity of 1.0365 judged by the tomato solids it contains, has 90.7 per cent of the value of pulp of the gravity of 1.040.

Illustration: Suppose a shipment contains 1,000 cases of No. 10 cans of pulp thought to have a specific gravity of 1.040 but found on examination to have a specific gravity of 1.0365. What is the value of the pulp in comparison with pulp of specific gravity of 1.040? Turning inTable 9to the figure 1.0365 in the left-hand column we follow the horizontal line containing that figure to the column headed by specific gravity 1.040. Here we find that .907 is the factor by which to multiply the volume of pulp of a specific gravity 1.0365 to obtain the equivalent volume of pulp of specific gravity 1.040. The answer to our question therefore is 1000 × .907 = 907. In other words pulp of a gravity of 1.0365 judged by the tomato solids it contains, has 90.7 per cent of the value of pulp of the gravity of 1.040.

Table 9is based on the results obtained from a series of samples of whole tomato pulp and cyclone juice varying in specific gravity from 1.02 to 1.05. The table was extended by calculation to give corresponding values for more dilute cyclone juices and more concentrated products. The lower portion of the table has been repeatedly confirmed by results obtained in the examination of cyclone juice and pulp, but the figures in the higher portion of the table are based on calculation from lower concentrations.

This table is only applicable to pulp to which no other substance, such as salt, has been added. Salt if present to the extent of more than 0.25 per cent can be recognized by the taste. The amount of salt, when any has been added, may be determined by the method given on page 33 and the specific gravity corrected by subtracting from the apparent specific gravity 0.007 for each per cent of salt present. This gives the specific gravity of the salt-free pulp and the corresponding per cent of solids may be obtained fromTable 9.


Back to IndexNext