While talking of making things from clothes pegs, we may as well give particulars of one or two things which will appeal rather more to our girl readers.
While talking of making things from clothes pegs, we may as well give particulars of one or two things which will appeal rather more to our girl readers.
A Key Racksuch as that shown in Fig. 43 is just such an article as a girl would take a delight in making, because of its simplicity and its prettiness.Fig. 43.The only materials required are two pegs, some hooks, anda length of ribbon. Take the two pegs—which should be nicely turned ones—and wedge the prongs one within the other so that the pegs remain fixed at right angles. In doing this, push the pegs in tightly, but take care not to split the pegs in so doing. Using a bradawl, make a hole through the junction of the prongs, and screw in a hook: the common sort as used on dressers, &c., will do quite well. Now bore holes midway between the junction and the knobs, and screw in two more hooks.If now a coat of enamel be given to the pegs—say green in colour—and if ribbons (pale blue) be tastily arranged as shown in the sketch, then a very pretty and useful little article will result.
A Key Racksuch as that shown in Fig. 43 is just such an article as a girl would take a delight in making, because of its simplicity and its prettiness.
Fig. 43.
The only materials required are two pegs, some hooks, anda length of ribbon. Take the two pegs—which should be nicely turned ones—and wedge the prongs one within the other so that the pegs remain fixed at right angles. In doing this, push the pegs in tightly, but take care not to split the pegs in so doing. Using a bradawl, make a hole through the junction of the prongs, and screw in a hook: the common sort as used on dressers, &c., will do quite well. Now bore holes midway between the junction and the knobs, and screw in two more hooks.
If now a coat of enamel be given to the pegs—say green in colour—and if ribbons (pale blue) be tastily arranged as shown in the sketch, then a very pretty and useful little article will result.
Yet another splendid little article from pegs is aPicture Postcard Stand, for which the only necessities will be two pegs and a piece of wood for a base (Fig. 44).Fig. 44.This base should be about 4-1/2 in. long and about 2-1/2 in. wide. It can be cut from wood of any thickness, but a piece about 3/8 in. thick is the most suitable. Find the centre of each end edge of the base, and draw a line right across the wood. If now you measure in one inch from each end you will get the two spots to which to affix the pegs.These last must first of all have one prong removed, or rather enough of a prong to leave a quarter-inch stump projecting. This stump should be rounded with a sharp knife, and then the whole peg should be finished off with glass-paper. These pegs must then be fixed knob downwards on to the base. Fig. 39 on page 34 shows a suitable method for this.If you are at all skilful with your tools you will be able to cut a nice moulding round the edge of the base, and so improve the artistic effect of your model.Two thin coats of varnish, or of good enamel, will complete this attractive little article.
Yet another splendid little article from pegs is a
Picture Postcard Stand, for which the only necessities will be two pegs and a piece of wood for a base (Fig. 44).
Fig. 44.
This base should be about 4-1/2 in. long and about 2-1/2 in. wide. It can be cut from wood of any thickness, but a piece about 3/8 in. thick is the most suitable. Find the centre of each end edge of the base, and draw a line right across the wood. If now you measure in one inch from each end you will get the two spots to which to affix the pegs.
These last must first of all have one prong removed, or rather enough of a prong to leave a quarter-inch stump projecting. This stump should be rounded with a sharp knife, and then the whole peg should be finished off with glass-paper. These pegs must then be fixed knob downwards on to the base. Fig. 39 on page 34 shows a suitable method for this.
If you are at all skilful with your tools you will be able to cut a nice moulding round the edge of the base, and so improve the artistic effect of your model.
Two thin coats of varnish, or of good enamel, will complete this attractive little article.
One little wooden toy, quite interesting in itself, and very useful when playing with "soldiers," isThe Windlass.—Some odd pieces of lath or cigar-box wood, a cotton reel, a length of string, some stout wire, and some glue and pins, provide all the necessaries. The cotton reel should be the largest obtainable.Fig. 45 shows the completed work. First of all, make a square base for the windlass. If the reel is 3 in. long, cut off four lengths of lath (or four inch-strips of cigar-wood box) each 4 in. long, and glue these into a hollow square, two under and two over. Now cut off two more lengths, 3 in. long, for theupright supports—making the top ends pointed to hold the slanting covers.Fig. 45.Before these side-pieces are glued and pinned into position, it will be necessary to insert the reel. Get a piece of skewer, or lead pencil, 4 in. long, and glue it into the hole in the reel. At one end of the axle so formed will be placed the handle. This can be made in several ways, either with wood or wire, or a mixture of the two (Figs. 46, 47, 48 show some varieties, which may also be useful in making other toys). Holes just large enough to allow the axle to turn freely must then be cut in the side supports.The two slanting covers should be about 4 in. long, so as to allow a trifle to project at each end, and should be from 3/4 in. to 1 in. wide. The two edges which meet to form the apex of the cover should be bevelled off so as to form a clean join.In making this model it would perhaps be as well to use carpenter's glue in place of the prepared stuff.Fig. 46.Fig. 47.Fig. 48.
One little wooden toy, quite interesting in itself, and very useful when playing with "soldiers," is
The Windlass.—Some odd pieces of lath or cigar-box wood, a cotton reel, a length of string, some stout wire, and some glue and pins, provide all the necessaries. The cotton reel should be the largest obtainable.
Fig. 45 shows the completed work. First of all, make a square base for the windlass. If the reel is 3 in. long, cut off four lengths of lath (or four inch-strips of cigar-wood box) each 4 in. long, and glue these into a hollow square, two under and two over. Now cut off two more lengths, 3 in. long, for theupright supports—making the top ends pointed to hold the slanting covers.
Fig. 45.
Before these side-pieces are glued and pinned into position, it will be necessary to insert the reel. Get a piece of skewer, or lead pencil, 4 in. long, and glue it into the hole in the reel. At one end of the axle so formed will be placed the handle. This can be made in several ways, either with wood or wire, or a mixture of the two (Figs. 46, 47, 48 show some varieties, which may also be useful in making other toys). Holes just large enough to allow the axle to turn freely must then be cut in the side supports.
The two slanting covers should be about 4 in. long, so as to allow a trifle to project at each end, and should be from 3/4 in. to 1 in. wide. The two edges which meet to form the apex of the cover should be bevelled off so as to form a clean join.
In making this model it would perhaps be as well to use carpenter's glue in place of the prepared stuff.
Fig. 46.
Fig. 47.
Fig. 48.
From the material supplied by one or two empty cigar boxes, many interesting things can be made, especially articles for use with dolls—cradles, carts, furniture, &c. If these articles are of no use to you, they come in very handy for presents to little sisters and friends, especially when well made and carefully finished.
From the material supplied by one or two empty cigar boxes, many interesting things can be made, especially articles for use with dolls—cradles, carts, furniture, &c. If these articles are of no use to you, they come in very handy for presents to little sisters and friends, especially when well made and carefully finished.
A Doll's Cradleis perhaps one of the simplest to commence with. To a box from which the lid has been removed, it is only necessary to add two rockers. These can be cut out from the lid by means of a fret saw, and then smoothed down with glass-paper. Fig. 49 shows the best shape for the rockers, which should be glued on about an inch from each end of the box (Fig. 50). Great care should be taken that the two rockers are as nearly alike as possible, otherwise the cradle will not swing to and fro freely.Fig. 49.Fig. 50.
A Doll's Cradleis perhaps one of the simplest to commence with. To a box from which the lid has been removed, it is only necessary to add two rockers. These can be cut out from the lid by means of a fret saw, and then smoothed down with glass-paper. Fig. 49 shows the best shape for the rockers, which should be glued on about an inch from each end of the box (Fig. 50). Great care should be taken that the two rockers are as nearly alike as possible, otherwise the cradle will not swing to and fro freely.
Fig. 49.
Fig. 50.
A Doll's Cartis also comparatively easy to make, the only really trying part being the cutting of the four wheels.For the body of the cart use a cigar box which has been deprived of its lid, and planed down level round the edges. To the under side of this body, and about one inch from each end, glue two pieces of wood to which to fix the wheels. Strengthen these joins by means of short pins driven through. Fix the wheels to these pieces by means of pins (Fig. 51). In order to support these two wheel-holders, stretch another piece across the space between them, at right angles to each, gluing it firmly to the two centres.Fig. 51.The wheels should be cut with a fret saw, if you possess one. If you do not possess one, then draw out the circle on the wood, and cut the square containing the circle. Then saw off the corners to form an eight-sided figure, and go on cutting off corners until you get down to the circle, which you can finish off with glass-paper (Fig. 52).Fig. 52.A little hook or ring should be attached at the bottom of one end, in order that a string may be tied on, and the vehicle drawn along.
A Doll's Cartis also comparatively easy to make, the only really trying part being the cutting of the four wheels.
For the body of the cart use a cigar box which has been deprived of its lid, and planed down level round the edges. To the under side of this body, and about one inch from each end, glue two pieces of wood to which to fix the wheels. Strengthen these joins by means of short pins driven through. Fix the wheels to these pieces by means of pins (Fig. 51). In order to support these two wheel-holders, stretch another piece across the space between them, at right angles to each, gluing it firmly to the two centres.
Fig. 51.
The wheels should be cut with a fret saw, if you possess one. If you do not possess one, then draw out the circle on the wood, and cut the square containing the circle. Then saw off the corners to form an eight-sided figure, and go on cutting off corners until you get down to the circle, which you can finish off with glass-paper (Fig. 52).
Fig. 52.
A little hook or ring should be attached at the bottom of one end, in order that a string may be tied on, and the vehicle drawn along.
A Jack-in-the-Box.—One of the most old-fashioned of toys, this never loses its interest. The box required for it is practically cubical: therefore 6 four-inch squares of cigar-box wood must be cut out. Two of these will need to be cut down to 3-3/4 in. in width, so that the four-inch bottom and lid will fit: so from two squares cut a strip 1/4 in. wide. Glue and pin together thetwo 3-3/4 pieces and two of the four-inch pieces to form a hollow square. To this will be fixed one of the other four-inch pieces to form a bottom; and at the other end the remaining four-inch piece will be hinged (or wired on like the lid of a chocolate box).Before the bottom is finally put on, it will be necessary to attach the mechanism. For this you will require a strong piece of spring about 6 in. long when released, and a doll's head. One end of the spring must be fixed to the centre of the base. You can do this by means of tiny wire staples (bent pins with the heads nipped off) hammered over the wire into the base, and then bent back on the opposite side of the wood (Fig. 53). At the other end of the spring a piece of cardboard must be fixed, and to it the doll's head must be firmly glued. When the mechanism is complete, nail on the bottom, and fix the lid.Fig. 53.Into the centre of the front edge of the lid drive a small nail, or stout pin, and on the box just below fix a revolving catch hook. This you can quite easily cut from an old piece of fairly thick tin (Fig. 54). In this way an effective means is provided of releasing the lid and enabling the "Jack" to shoot out suddenly.Fig. 54.
A Jack-in-the-Box.—One of the most old-fashioned of toys, this never loses its interest. The box required for it is practically cubical: therefore 6 four-inch squares of cigar-box wood must be cut out. Two of these will need to be cut down to 3-3/4 in. in width, so that the four-inch bottom and lid will fit: so from two squares cut a strip 1/4 in. wide. Glue and pin together thetwo 3-3/4 pieces and two of the four-inch pieces to form a hollow square. To this will be fixed one of the other four-inch pieces to form a bottom; and at the other end the remaining four-inch piece will be hinged (or wired on like the lid of a chocolate box).
Before the bottom is finally put on, it will be necessary to attach the mechanism. For this you will require a strong piece of spring about 6 in. long when released, and a doll's head. One end of the spring must be fixed to the centre of the base. You can do this by means of tiny wire staples (bent pins with the heads nipped off) hammered over the wire into the base, and then bent back on the opposite side of the wood (Fig. 53). At the other end of the spring a piece of cardboard must be fixed, and to it the doll's head must be firmly glued. When the mechanism is complete, nail on the bottom, and fix the lid.
Fig. 53.
Into the centre of the front edge of the lid drive a small nail, or stout pin, and on the box just below fix a revolving catch hook. This you can quite easily cut from an old piece of fairly thick tin (Fig. 54). In this way an effective means is provided of releasing the lid and enabling the "Jack" to shoot out suddenly.
Fig. 54.
The Jig-saw Puzzlewas at one time a very popular toy, and there are signs that its popularity is being revived. If it does not interest you particularly, it will provide a little brother or sister with endless amusement.In reality the puzzle consists merely of a picture (generally an interesting coloured one) glued very firmly to a piece of fretwood or cigar-box wood. This is then by means of a fret saw cut into a great many pieces, shaped as quaintly and awkwardly as possible (see Fig. 55). These pieces are then jumbled up into disorder, and passed on to the little one in order that the shapes may be fitted into place and the original picture reconstructed.Fig. 55.
The Jig-saw Puzzlewas at one time a very popular toy, and there are signs that its popularity is being revived. If it does not interest you particularly, it will provide a little brother or sister with endless amusement.
In reality the puzzle consists merely of a picture (generally an interesting coloured one) glued very firmly to a piece of fretwood or cigar-box wood. This is then by means of a fret saw cut into a great many pieces, shaped as quaintly and awkwardly as possible (see Fig. 55). These pieces are then jumbled up into disorder, and passed on to the little one in order that the shapes may be fitted into place and the original picture reconstructed.
Fig. 55.
Somewhat after the style of the "jig-saw" puzzle just described is theGeometrical Puzzleshown in Fig. 56. Each of these consists of a capital letter divided up by one or two straight lines into right-angled triangles and other geometrical shapes. While very simple to look at when completed, these little puzzles are by no means easy to solve when the odd pieces are given in a jumbled state. The capital letters should be drawn on a piece of cigar-box wood, and then carefully cut out with a fret saw, or, better still, with a tenon saw if you have one. If you cannot manage wood, then the puzzle can be done in stout cardboard and cut out with a sharp thin knife.Fig. 56.
Somewhat after the style of the "jig-saw" puzzle just described is the
Geometrical Puzzleshown in Fig. 56. Each of these consists of a capital letter divided up by one or two straight lines into right-angled triangles and other geometrical shapes. While very simple to look at when completed, these little puzzles are by no means easy to solve when the odd pieces are given in a jumbled state. The capital letters should be drawn on a piece of cigar-box wood, and then carefully cut out with a fret saw, or, better still, with a tenon saw if you have one. If you cannot manage wood, then the puzzle can be done in stout cardboard and cut out with a sharp thin knife.
Fig. 56.
Of other cheaply made puzzlesThe Reels and String Puzzleis highly entertaining. The only materials required for it are the lid of a cigar box, twocotton reels, two beads, and a length of smooth string or thin silk cord. The making is simplicity itself. All you need do is cut the lid in halves and bore three holes in a line in one of the halves. Of course you can ornament your wood as much as you like, but that will in no way increase or decrease the effectiveness of the puzzle.When you have cut it out and finished it off nicely with glass-paper, thread the beads and reels as shown in Fig. 57. Take special care that you do not make any mistake in the arrangement, or your solution will result in a hopeless tangle.Fig. 57.The object of the puzzle is to get the two cotton reels, which, as you see, are now on quite separate loops, on to one loop. To solve it proceed as follows: Take hold of the centre loop, and pull it down to its full extent. Now pass the right-hand reel through the loop. Taking care not to twist the cord, pass this loop through the hole on the right-hand side, over the bead, and then draw it back again.Now if you follow the same procedure with the left-hand reel you will find that the centre loop is released and can be pulled through the centre hole. Then will the two reels slide down side by side.
Of other cheaply made puzzles
The Reels and String Puzzleis highly entertaining. The only materials required for it are the lid of a cigar box, twocotton reels, two beads, and a length of smooth string or thin silk cord. The making is simplicity itself. All you need do is cut the lid in halves and bore three holes in a line in one of the halves. Of course you can ornament your wood as much as you like, but that will in no way increase or decrease the effectiveness of the puzzle.
When you have cut it out and finished it off nicely with glass-paper, thread the beads and reels as shown in Fig. 57. Take special care that you do not make any mistake in the arrangement, or your solution will result in a hopeless tangle.
Fig. 57.
The object of the puzzle is to get the two cotton reels, which, as you see, are now on quite separate loops, on to one loop. To solve it proceed as follows: Take hold of the centre loop, and pull it down to its full extent. Now pass the right-hand reel through the loop. Taking care not to twist the cord, pass this loop through the hole on the right-hand side, over the bead, and then draw it back again.
Now if you follow the same procedure with the left-hand reel you will find that the centre loop is released and can be pulled through the centre hole. Then will the two reels slide down side by side.
One thoroughly entertaining and, to a certain extent, bewildering puzzle isThe Three-hole Puzzle.—Really the puzzle consists of a piece of thin wood with three holes cut in it. These three holes are respectively circular, square, and triangular (Fig. 58). The problem is to cut one block of wood which will pass through each hole and at the same time fit the hole exactly.Fig. 58.Can it be done? At first it looks to be quite impossible; but there is a very neat solution to the difficulty.First cut out your holes. To do this get a cigar-box lid and draw out the three figures, taking care that the length of the side of the square and the length of the side of the triangle and the length of the diameter of the circle are equal. Now, using your fret saw, cut out these holes very neatly and precisely.For the block you need a small cylinder of wood: an odd piece of broken broom handle will do admirably. This must be cut and finished with glass-paper so that it will fit the circular hole exactly. Now saw a piece just as long as the cylinder is wide. This looked at in one way gives an exact square which will fit the second hole. Thus two holes are catered for.Finally, for the third hole the cylinder must be tapered on two sides. To do this draw a diameter at one end and then gradually pare away a flat surface till the triangular section is obtained.Fig. 59 shows how the block, when turned in different ways, fits the three holes.Fig. 59.
One thoroughly entertaining and, to a certain extent, bewildering puzzle is
The Three-hole Puzzle.—Really the puzzle consists of a piece of thin wood with three holes cut in it. These three holes are respectively circular, square, and triangular (Fig. 58). The problem is to cut one block of wood which will pass through each hole and at the same time fit the hole exactly.
Fig. 58.
Can it be done? At first it looks to be quite impossible; but there is a very neat solution to the difficulty.
First cut out your holes. To do this get a cigar-box lid and draw out the three figures, taking care that the length of the side of the square and the length of the side of the triangle and the length of the diameter of the circle are equal. Now, using your fret saw, cut out these holes very neatly and precisely.
For the block you need a small cylinder of wood: an odd piece of broken broom handle will do admirably. This must be cut and finished with glass-paper so that it will fit the circular hole exactly. Now saw a piece just as long as the cylinder is wide. This looked at in one way gives an exact square which will fit the second hole. Thus two holes are catered for.
Finally, for the third hole the cylinder must be tapered on two sides. To do this draw a diameter at one end and then gradually pare away a flat surface till the triangular section is obtained.
Fig. 59 shows how the block, when turned in different ways, fits the three holes.
Fig. 59.
Another toy which can be made quite easily from cigar-box wood isA Model Signal.—First cut two strips of wood, half an inch wide and as long as you can get them, which will be 8 or 9 in. These will stand upright on a base board, and form the sides of the standard. Now between these two you must glue shorter pieces of half-inch strip, so as to make the standard solid at the top and bottom, and leave a hollow slot, 1 in. long, in which the signal arm will fit and work up and down (Fig. 60).Fig. 60.Now cut out and paint a signal arm, about 2-1/2 in. long. Fix this by means of a pin passing through the two sides of the standard, and through the arm about 3/4 in. from the square end. If it does not move easily in the slot, take off the topsurface with glass-paper. Before fixing the signal arm in position, bore a small hole 1/4 in. from the square end, and knot in a piece of twine or thin wire to act as a connection between the movable arm and the controlling lever (Fig. 61).Fig. 61.At the base of the standard fix the controlling lever. This consists of a small strip, with a pin passing through one end into the standard. Adjust the length of the twine or wire, so that when the signal arm is down, the lever is horizontal; and when the lever is pressed down, the arm rises. You can make a little contrivance for fixing the lever by erecting a small post close to the standard, and gluing on two stops, under which to rest the free end of the lever in its two positions (Fig. 62).Fig. 62.If you prefer it, you can have the controlling lever at a distance from the signal post. You will then need a longer wire, and a little pulley wheel at the base of the standard. You must exercise your own ingenuity for this.
Another toy which can be made quite easily from cigar-box wood is
A Model Signal.—First cut two strips of wood, half an inch wide and as long as you can get them, which will be 8 or 9 in. These will stand upright on a base board, and form the sides of the standard. Now between these two you must glue shorter pieces of half-inch strip, so as to make the standard solid at the top and bottom, and leave a hollow slot, 1 in. long, in which the signal arm will fit and work up and down (Fig. 60).
Fig. 60.
Now cut out and paint a signal arm, about 2-1/2 in. long. Fix this by means of a pin passing through the two sides of the standard, and through the arm about 3/4 in. from the square end. If it does not move easily in the slot, take off the topsurface with glass-paper. Before fixing the signal arm in position, bore a small hole 1/4 in. from the square end, and knot in a piece of twine or thin wire to act as a connection between the movable arm and the controlling lever (Fig. 61).
Fig. 61.
At the base of the standard fix the controlling lever. This consists of a small strip, with a pin passing through one end into the standard. Adjust the length of the twine or wire, so that when the signal arm is down, the lever is horizontal; and when the lever is pressed down, the arm rises. You can make a little contrivance for fixing the lever by erecting a small post close to the standard, and gluing on two stops, under which to rest the free end of the lever in its two positions (Fig. 62).
Fig. 62.
If you prefer it, you can have the controlling lever at a distance from the signal post. You will then need a longer wire, and a little pulley wheel at the base of the standard. You must exercise your own ingenuity for this.
Another interesting little scientific toy, which has the additional advantage of being useful, is theWeather House, or theMan and Woman Barometer. This consists of a little house with two doorways, at which appear two figures, one in fine weather, and the other in dull (Fig. 63).Fig. 63.With patience and care this is not very difficult to make. For the house itself you can use an old cigar box, or, if you prefer it, you can make the entire house in cardboard. This is, of course, easier, but not very durable. If you are going to use the cigar box, you will need first to cut the lid and bottom into something like the shape of a house end. You will then have to nail the lid down, and add two slanting pieces for the sides of the roof: and that will complete the house.However, before you nail down the lid and put on the roof, you will need to understand the mechanism. First you will bore a round hole in the top of the roof, just behind the front gable. This hole is for a round peg to which the revolving base is attached.The actual mechanism of the toy consists of a piece of catgut (an old violin string, or a tennis-racket string). This passes through the centre of a small flat piece of wood on which the two figures are balanced. Just in front of the string a piece of wire (a bent hairpin will do admirably) is fixed, so as to form a loop through which the catgut can pass (see Fig. 64). The other end of the catgut is fixed to the peg which fits in the hole in the roof.Fig. 64.For the man and woman you can use two of the grotesque figures cut from clothes pegs. Screws passed through the revolving base will secure the figures firmly and at the same time add a little weight, and so improve the balance.When there is moisture in the air the catgut will twist. You must fit together the different parts and then, by turning the peg to right or left, adjust the position of the figures so that the lady appears in fine weather and the gentleman in wet.
Another interesting little scientific toy, which has the additional advantage of being useful, is theWeather House, or theMan and Woman Barometer. This consists of a little house with two doorways, at which appear two figures, one in fine weather, and the other in dull (Fig. 63).
Fig. 63.
With patience and care this is not very difficult to make. For the house itself you can use an old cigar box, or, if you prefer it, you can make the entire house in cardboard. This is, of course, easier, but not very durable. If you are going to use the cigar box, you will need first to cut the lid and bottom into something like the shape of a house end. You will then have to nail the lid down, and add two slanting pieces for the sides of the roof: and that will complete the house.
However, before you nail down the lid and put on the roof, you will need to understand the mechanism. First you will bore a round hole in the top of the roof, just behind the front gable. This hole is for a round peg to which the revolving base is attached.
The actual mechanism of the toy consists of a piece of catgut (an old violin string, or a tennis-racket string). This passes through the centre of a small flat piece of wood on which the two figures are balanced. Just in front of the string a piece of wire (a bent hairpin will do admirably) is fixed, so as to form a loop through which the catgut can pass (see Fig. 64). The other end of the catgut is fixed to the peg which fits in the hole in the roof.
Fig. 64.
For the man and woman you can use two of the grotesque figures cut from clothes pegs. Screws passed through the revolving base will secure the figures firmly and at the same time add a little weight, and so improve the balance.
When there is moisture in the air the catgut will twist. You must fit together the different parts and then, by turning the peg to right or left, adjust the position of the figures so that the lady appears in fine weather and the gentleman in wet.
A toy of unfailing attraction for boys—and girls as well—isThe Marble Board.—This may be quite a simple affair—such as a boy can carry in his pocket for use in the playground—just a piece of wood, such as a cigar-box lid, with a number of holes cut along one edge, and a handle added (Fig. 65); or it may be a much more elaborate form intended for use as a table game.Fig. 65.In this latter case there is a front board, similar to that in the simple form; but behind each hole there is a little compartment for the collection of the marbles (Fig. 66). To make this you need two pieces of wood, about 2 in. wide, andas long as the table is broad: any sort of wood will do. These are for the front and back of the contrivance. The front must next be marked out for the marble holes, allowing about 1 in. for the hole and 1 in. for the space between. Of course, the wider the spaces between the more difficult it becomes to score. These holes must then be cut out by means of a fret saw, or, if you do not possess one, by means of saw and chisel. The back and front must then be secured in position by means of end-pieces nailed or screwed on. These should be about 3 in. long.Fig. 66.The next piece of work is the adjustment of the partitions. For these cigar-box wood is best. You can either cut these partitions to the exact distance between the front and the back, and glue them into position; or else you can make them a little larger, and fit them into grooves cut into the front and back: but that is a nice little piece of carpentry for you.When you have done this, all that is necessary is to give the whole thing a coat of paint, and place numbers over the various holes—taking care that you do not put all the high numbers together.Boards similar to this are used in the Colonies for a game known as "Bobs." Larger balls are used, and propelled by means of a cue as in billiards. If you can obtain the balls, this is a delightful game, and one well worth making.
A toy of unfailing attraction for boys—and girls as well—is
The Marble Board.—This may be quite a simple affair—such as a boy can carry in his pocket for use in the playground—just a piece of wood, such as a cigar-box lid, with a number of holes cut along one edge, and a handle added (Fig. 65); or it may be a much more elaborate form intended for use as a table game.
Fig. 65.
In this latter case there is a front board, similar to that in the simple form; but behind each hole there is a little compartment for the collection of the marbles (Fig. 66). To make this you need two pieces of wood, about 2 in. wide, andas long as the table is broad: any sort of wood will do. These are for the front and back of the contrivance. The front must next be marked out for the marble holes, allowing about 1 in. for the hole and 1 in. for the space between. Of course, the wider the spaces between the more difficult it becomes to score. These holes must then be cut out by means of a fret saw, or, if you do not possess one, by means of saw and chisel. The back and front must then be secured in position by means of end-pieces nailed or screwed on. These should be about 3 in. long.
Fig. 66.
The next piece of work is the adjustment of the partitions. For these cigar-box wood is best. You can either cut these partitions to the exact distance between the front and the back, and glue them into position; or else you can make them a little larger, and fit them into grooves cut into the front and back: but that is a nice little piece of carpentry for you.
When you have done this, all that is necessary is to give the whole thing a coat of paint, and place numbers over the various holes—taking care that you do not put all the high numbers together.
Boards similar to this are used in the Colonies for a game known as "Bobs." Larger balls are used, and propelled by means of a cue as in billiards. If you can obtain the balls, this is a delightful game, and one well worth making.
A Wooden Wind Wheelfor the garden is a splendid little model to make—interesting in itself, but doubly desirable because so much can be done with it. Of course, it can be made quite small and very simple, and still provide unending amusement to smaller brothers and sisters; but for our own purpose it is just as well to make a larger and stronger specimen, one which can be employed as a power station for the working of smaller toys.The main parts are: (1) a circular hub, about 2-1/2 to 3 in. indiameter, and 1 to 1-1/4 in. in thickness (for the smaller varieties a cotton reel will do admirably); (2) six or eight sails, each about 6 or 7 in. long and 3 in. wide at the extreme end, tapering down to a little more than the width of the hub at the other; (3) a hardwood axle; and (4) a driving wheel. For this last a cotton reel will do splendidly, especially one of those with wide flanges and a slender centre. The general arrangement is shown in Fig. 67.Fig. 67.The cutting of the hub is not a very difficult matter if you have a fret saw. It should be cut across the grain if you can get a suitable piece of wood. The sails also are quite easy to make. For these you cannot beat cigar-box wood. The cutting of the grooves in the hub for the insertion of the sails is the most trying piece of work. These grooves should be just large enough to allow the sails to fit tightly, and should be cut at an angle of 45° across the hub. The sails should then be glued in with carpenter's glue.For the axle secure a piece of round wood, such as an odd length of half-inch dowel-rod. This should be cut to a length of about 4-1/2 to 5 in. On this should be fixed the wheel itself, and, at a sufficient distance to prevent the sails catching the string, the bearing wheel. A French nail in each end of theaxle will then secure it in position between the side supports and secure an easy running.If you have a play shed in the garden, this apparatus can be erected at the top of a high post projecting through or at the side of the roof. The driving strings can then pass through a hole in the roof or the wall, and the power can be transmitted by a double pulley wheel and another driving string. If you have no play shed, it is not at all difficult to rig it up outside a window. You can try that, and prove your own inventive abilities.
A Wooden Wind Wheelfor the garden is a splendid little model to make—interesting in itself, but doubly desirable because so much can be done with it. Of course, it can be made quite small and very simple, and still provide unending amusement to smaller brothers and sisters; but for our own purpose it is just as well to make a larger and stronger specimen, one which can be employed as a power station for the working of smaller toys.
The main parts are: (1) a circular hub, about 2-1/2 to 3 in. indiameter, and 1 to 1-1/4 in. in thickness (for the smaller varieties a cotton reel will do admirably); (2) six or eight sails, each about 6 or 7 in. long and 3 in. wide at the extreme end, tapering down to a little more than the width of the hub at the other; (3) a hardwood axle; and (4) a driving wheel. For this last a cotton reel will do splendidly, especially one of those with wide flanges and a slender centre. The general arrangement is shown in Fig. 67.
Fig. 67.
The cutting of the hub is not a very difficult matter if you have a fret saw. It should be cut across the grain if you can get a suitable piece of wood. The sails also are quite easy to make. For these you cannot beat cigar-box wood. The cutting of the grooves in the hub for the insertion of the sails is the most trying piece of work. These grooves should be just large enough to allow the sails to fit tightly, and should be cut at an angle of 45° across the hub. The sails should then be glued in with carpenter's glue.
For the axle secure a piece of round wood, such as an odd length of half-inch dowel-rod. This should be cut to a length of about 4-1/2 to 5 in. On this should be fixed the wheel itself, and, at a sufficient distance to prevent the sails catching the string, the bearing wheel. A French nail in each end of theaxle will then secure it in position between the side supports and secure an easy running.
If you have a play shed in the garden, this apparatus can be erected at the top of a high post projecting through or at the side of the roof. The driving strings can then pass through a hole in the roof or the wall, and the power can be transmitted by a double pulley wheel and another driving string. If you have no play shed, it is not at all difficult to rig it up outside a window. You can try that, and prove your own inventive abilities.
How to use the Wind Power Machine.—One thing which this mechanism will drive in good fashion is an overhead tramway system—a very pretty little toy when in working order.For this all that is required is a number of cotton reels, a length of stout cord, and one or two of the model trams described on page 21. If you care to, you can make proper "standards" for the cotton reels. Fig. 68 shows such anarrangement. The flat base is for heavy weights when the system is rigged up on a table or other place where nails cannot be used. These reels must turn freely to allow the easy passage of the cable. In one place there must be a double reel (Fig. 69) for the transmission of the power. The lower reel will act as the ordinary cable wheel, while the other, glued firmly to it, will carry the driving belt from the wind machine described above.Fig. 68.Fig. 69.The model trams must be fixed to the cable. This is done by means of two wires, fixed to the pole of the tram and twined round the cable. When this is connected up and the cable drawn tightly round the standard reels, the vehicles circulate rapidly on what is really a complete model tramway system.
How to use the Wind Power Machine.—One thing which this mechanism will drive in good fashion is an overhead tramway system—a very pretty little toy when in working order.
For this all that is required is a number of cotton reels, a length of stout cord, and one or two of the model trams described on page 21. If you care to, you can make proper "standards" for the cotton reels. Fig. 68 shows such anarrangement. The flat base is for heavy weights when the system is rigged up on a table or other place where nails cannot be used. These reels must turn freely to allow the easy passage of the cable. In one place there must be a double reel (Fig. 69) for the transmission of the power. The lower reel will act as the ordinary cable wheel, while the other, glued firmly to it, will carry the driving belt from the wind machine described above.
Fig. 68.
Fig. 69.
The model trams must be fixed to the cable. This is done by means of two wires, fixed to the pole of the tram and twined round the cable. When this is connected up and the cable drawn tightly round the standard reels, the vehicles circulate rapidly on what is really a complete model tramway system.
Another interesting contrivance to which the wind power can be harnessed isA Roundabout.—This attractive little toy can be made quite readily from one or two reels, and four ordinary wooden skewers.The first thing required is a base board, for which any tolerably smooth and heavy piece of wood will suffice. Now in the centre of this fix an upright piece of thick wire (a knitting needle will do); and glue on a cotton reel at the base of this.In order to secure the absolutely smooth running of the roundabout it will be necessary to improvise some sort of "bearings." For this there is nothing better than two hard glass beads. If one of these beads be sunk into the top of thereel just mentioned, and the other fixed in the bottom of another loose reel, the upper one will revolve freely on the lower (Fig. 70). This loose reel will be the driving wheel of the contrivance and will hold the power band from the wind wheel. Fixed to this running wheel, and immediately above, will be another reel for the actual merry-go-round. Into the sides of this uppermost reel bore four holes, and insert the pointed ends of the four skewers, arranging them so that all four are at right angles. The running will be facilitated if another glass bead is sunk in the top of this reel.Fig. 70.All that remains now to complete the roundabout is to fix four figures—horses, boats, or similar—at one end of each skewer. These figures can be drawn on cardboard and cut out; or they can be sawn from fretwood.
Another interesting contrivance to which the wind power can be harnessed is
A Roundabout.—This attractive little toy can be made quite readily from one or two reels, and four ordinary wooden skewers.
The first thing required is a base board, for which any tolerably smooth and heavy piece of wood will suffice. Now in the centre of this fix an upright piece of thick wire (a knitting needle will do); and glue on a cotton reel at the base of this.
In order to secure the absolutely smooth running of the roundabout it will be necessary to improvise some sort of "bearings." For this there is nothing better than two hard glass beads. If one of these beads be sunk into the top of thereel just mentioned, and the other fixed in the bottom of another loose reel, the upper one will revolve freely on the lower (Fig. 70). This loose reel will be the driving wheel of the contrivance and will hold the power band from the wind wheel. Fixed to this running wheel, and immediately above, will be another reel for the actual merry-go-round. Into the sides of this uppermost reel bore four holes, and insert the pointed ends of the four skewers, arranging them so that all four are at right angles. The running will be facilitated if another glass bead is sunk in the top of this reel.
Fig. 70.
All that remains now to complete the roundabout is to fix four figures—horses, boats, or similar—at one end of each skewer. These figures can be drawn on cardboard and cut out; or they can be sawn from fretwood.
Another interesting variation of this toy is theFairy Light Wheel.—For this, instead of fixing figures at the ends of the skewers, obtain four egg shells, and suspend them by means of wires from the ends of the arms (Fig. 71). Now if little night-lights or odd ends of candle be placed in the egg shells and lighted, a very pretty effect is obtained when the whole is made to revolve.Fig. 71.
Another interesting variation of this toy is the
Fairy Light Wheel.—For this, instead of fixing figures at the ends of the skewers, obtain four egg shells, and suspend them by means of wires from the ends of the arms (Fig. 71). Now if little night-lights or odd ends of candle be placed in the egg shells and lighted, a very pretty effect is obtained when the whole is made to revolve.
Fig. 71.
A toy which is always welcome to boys and girls isA Pair of Scales.—Moreover this is a toy which can be made quite accurately with the aid of a few quite ordinary materials. To a pair of scales—or a balance, as it is sometimes called--there are generally these parts: (1) a balancing arm, generally called the beam; (2) an upright standard on which the beam is supported; (3) two scale pins, and chains (or strings) to suspend them; (4) a base board to which the upright standard is fixed. Fig. 72 shows the sort of thing we mean.Fig. 72.Now of these things not one presents any real difficulty. For the base board any piece of wood about a foot long, 5 in. wide, and 3/4 in. thick will do quite well. For the upright standard you require a piece of wood about 9 in. long and 1 in. square—one end of which must be fixed to the base board. The method of doing this will depend very largely on your degree of proficiency in the art of carpentry. If you know how to make a mortise and tenon joint, that will be the most suitable. If you cannot attain to that, then perhaps you can make a hole just as large as the standard, and sink the standard in the base. If you are not at all an expert,then you must just nail or screw your standard to the centre of the base.Before you do this, however, there is something to be done to the other end. You must cut a slot 1/2 in. wide and 1-1/2 in. deep (Fig. 73a); then you must cut away small triangular pieces from the centres of the tongues left (Fig. 73b); and finally you must nail to the sides of theVso formed two little strips of tin (Fig. 73c).Fig. 73.The next thing to be constructed is the "beam." For this you will need a piece of fretwood (or other thin wood) about 9 or 10 in. long and about 1 in. wide. To support this on the metalVpieces you will need a thin piece of steel—such as a piece of an old pocket-knife blade. This will be driven through the centre of the beam, and will project equally on either side (Fig. 74). Remember, it must fit tightly; so when you cut the slot for it, do not make it too wide.Fig. 74.For the scale pans two canister lids will do quite well. Bore three holes in each of the rims—measuring off the distanceswith a compass, so that the holes are equally far apart, and suspend the pans by means of three strings passing into holes in the ends of the beam. If, when you have completed the work, the beam does not hang perfectly horizontal, then you must add weight or subtract weight from one side or the other. You can do this by paring off tiny pieces from the end of the beam, or you can stick on dabs of sealing wax till the correct balance is obtained.If you cannot get any properweights, then it is not a very difficult matter to make some. To do this, all that you need is to get some cardboard and a supply of sand, and to borrow a complete set of weights. First of all make a number of little cardboard cubes, having sides varying from 3/4 in. to 3 in. Draw each one out on cardboard (Fig. 75); cut it out; and bind up with gummed tape—leaving one side ungummed. On one pan of the balance put this thing, and on the other panput a proper weight (say 1/2 oz). Now pour in sand into the little cube until it exactly balances the correct weight. When it does, wet the binding, and stick down the remaining side. Finally print the correct weight on one face of the cube.Fig. 75.In similar fashion you can proceed to make all the different weights that you are likely to require, from 1/2 oz. upwards. While not very substantial, these little weights will last quite a long time, if they are handled with care.
A toy which is always welcome to boys and girls is
A Pair of Scales.—Moreover this is a toy which can be made quite accurately with the aid of a few quite ordinary materials. To a pair of scales—or a balance, as it is sometimes called--there are generally these parts: (1) a balancing arm, generally called the beam; (2) an upright standard on which the beam is supported; (3) two scale pins, and chains (or strings) to suspend them; (4) a base board to which the upright standard is fixed. Fig. 72 shows the sort of thing we mean.
Fig. 72.
Now of these things not one presents any real difficulty. For the base board any piece of wood about a foot long, 5 in. wide, and 3/4 in. thick will do quite well. For the upright standard you require a piece of wood about 9 in. long and 1 in. square—one end of which must be fixed to the base board. The method of doing this will depend very largely on your degree of proficiency in the art of carpentry. If you know how to make a mortise and tenon joint, that will be the most suitable. If you cannot attain to that, then perhaps you can make a hole just as large as the standard, and sink the standard in the base. If you are not at all an expert,then you must just nail or screw your standard to the centre of the base.
Before you do this, however, there is something to be done to the other end. You must cut a slot 1/2 in. wide and 1-1/2 in. deep (Fig. 73a); then you must cut away small triangular pieces from the centres of the tongues left (Fig. 73b); and finally you must nail to the sides of theVso formed two little strips of tin (Fig. 73c).
Fig. 73.
The next thing to be constructed is the "beam." For this you will need a piece of fretwood (or other thin wood) about 9 or 10 in. long and about 1 in. wide. To support this on the metalVpieces you will need a thin piece of steel—such as a piece of an old pocket-knife blade. This will be driven through the centre of the beam, and will project equally on either side (Fig. 74). Remember, it must fit tightly; so when you cut the slot for it, do not make it too wide.
Fig. 74.
For the scale pans two canister lids will do quite well. Bore three holes in each of the rims—measuring off the distanceswith a compass, so that the holes are equally far apart, and suspend the pans by means of three strings passing into holes in the ends of the beam. If, when you have completed the work, the beam does not hang perfectly horizontal, then you must add weight or subtract weight from one side or the other. You can do this by paring off tiny pieces from the end of the beam, or you can stick on dabs of sealing wax till the correct balance is obtained.
If you cannot get any properweights, then it is not a very difficult matter to make some. To do this, all that you need is to get some cardboard and a supply of sand, and to borrow a complete set of weights. First of all make a number of little cardboard cubes, having sides varying from 3/4 in. to 3 in. Draw each one out on cardboard (Fig. 75); cut it out; and bind up with gummed tape—leaving one side ungummed. On one pan of the balance put this thing, and on the other panput a proper weight (say 1/2 oz). Now pour in sand into the little cube until it exactly balances the correct weight. When it does, wet the binding, and stick down the remaining side. Finally print the correct weight on one face of the cube.
Fig. 75.
In similar fashion you can proceed to make all the different weights that you are likely to require, from 1/2 oz. upwards. While not very substantial, these little weights will last quite a long time, if they are handled with care.
Engines of all sorts are always fascinating to boys and girls, and later on we shall describe some excellent ones. At this point we wish to describe what is possibly one of the simplest forms of engine known, and certainly one of the earliest. It is the engine driven by a flanged wheel, which itself is made to turn by the weight of something falling on the flanges. The commonest form of this wheel is the water wheel, where the weight of the water falling on the wheel causes the revolution.As water is generally a "messy" thing to operate with, especially on such a contrivance as this, we have substituted something else.For the working of very light toys, sand provides an alternative motive power. If a flanged wheel be made after the fashion of a water wheel, and a steady stream of sand allowed to descend on to the flanges, then the wheel will rotate as long as the supply of sand lasts, and the power may be transmitted by pulley wheels for the working of some simple mechanism.
Engines of all sorts are always fascinating to boys and girls, and later on we shall describe some excellent ones. At this point we wish to describe what is possibly one of the simplest forms of engine known, and certainly one of the earliest. It is the engine driven by a flanged wheel, which itself is made to turn by the weight of something falling on the flanges. The commonest form of this wheel is the water wheel, where the weight of the water falling on the wheel causes the revolution.
As water is generally a "messy" thing to operate with, especially on such a contrivance as this, we have substituted something else.
For the working of very light toys, sand provides an alternative motive power. If a flanged wheel be made after the fashion of a water wheel, and a steady stream of sand allowed to descend on to the flanges, then the wheel will rotate as long as the supply of sand lasts, and the power may be transmitted by pulley wheels for the working of some simple mechanism.
Fig. 76 showsA Sand-power Engine.—The large driving wheel consists of two circles of thick cardboard, each about 6 in. across, firmly glued together. These two circles are bevelled, andfixed facing inwards, so that a groove is left in which the power band can run.Fig. 76.Through the centre of the driving wheel thus fashioned a piece of dowelling or old lead pencil is fixed, projecting 1/4 in. on one side, and about 1-1/2 in. on the other. Nails are driven in the two ends of this axle, and the wheel is suspended between supports, glued and screwed firmly to a base board.The flanged sand wheel is next constructed. For this, four oblong pieces of cardboard, 1-1/4 in. wide and about 2 in. long, are cut out. A line is scratched along each of these about 1/2 in. from the end, and the cardboard bent so as to form ascoop to hold the sand for an instant. These four flanges are then glued to the axle, and the side of the driving wheel. If the sand wheel so made is not sufficiently firm, then another small cardboard circle can be glued to the flanges, on the side remote from the driving wheel: this will strengthen the wheel and in no way interfere with the running.All that is necessary now is to erect some sort of sand supply: for this a large canister will do. A tiny hole must be punched in the bottom of the tin, and a revolving trap made with another piece of tin. This is simple enough: all you need to do is cut a piece of tin about 3/4 in. long and 1/2 in. wide, and punch a hole in one end. This pierced tin should then be placed so that the unbroken end of the slip covers the supply hole. A forked rivet should then be passed through the hole in the slip and through the bottom of the canister and fixed in place (Fig. 77); the trap can then be made to revolve, and the sand supply started or stopped at will. The canister should be placed above the wheel so that a thin stream falls on the flanges and turns the wheel.Fig. 77.If a string be now passed round the outside edge of the driving wheel, the mechanism can be harnessed to any toy and the motive power supplied. For instance, the contrivance can be erected on a flat hull similar to that shown in Fig. 83, page 70; and the power band, passing through a hole in the centre of the hull, can be connected with the propeller by means of a rod (in place of the elastic). The resultant machine, though not highly efficient, is yet quite attractive.
Fig. 76 shows
A Sand-power Engine.—The large driving wheel consists of two circles of thick cardboard, each about 6 in. across, firmly glued together. These two circles are bevelled, andfixed facing inwards, so that a groove is left in which the power band can run.
Fig. 76.
Through the centre of the driving wheel thus fashioned a piece of dowelling or old lead pencil is fixed, projecting 1/4 in. on one side, and about 1-1/2 in. on the other. Nails are driven in the two ends of this axle, and the wheel is suspended between supports, glued and screwed firmly to a base board.
The flanged sand wheel is next constructed. For this, four oblong pieces of cardboard, 1-1/4 in. wide and about 2 in. long, are cut out. A line is scratched along each of these about 1/2 in. from the end, and the cardboard bent so as to form ascoop to hold the sand for an instant. These four flanges are then glued to the axle, and the side of the driving wheel. If the sand wheel so made is not sufficiently firm, then another small cardboard circle can be glued to the flanges, on the side remote from the driving wheel: this will strengthen the wheel and in no way interfere with the running.
All that is necessary now is to erect some sort of sand supply: for this a large canister will do. A tiny hole must be punched in the bottom of the tin, and a revolving trap made with another piece of tin. This is simple enough: all you need to do is cut a piece of tin about 3/4 in. long and 1/2 in. wide, and punch a hole in one end. This pierced tin should then be placed so that the unbroken end of the slip covers the supply hole. A forked rivet should then be passed through the hole in the slip and through the bottom of the canister and fixed in place (Fig. 77); the trap can then be made to revolve, and the sand supply started or stopped at will. The canister should be placed above the wheel so that a thin stream falls on the flanges and turns the wheel.
Fig. 77.
If a string be now passed round the outside edge of the driving wheel, the mechanism can be harnessed to any toy and the motive power supplied. For instance, the contrivance can be erected on a flat hull similar to that shown in Fig. 83, page 70; and the power band, passing through a hole in the centre of the hull, can be connected with the propeller by means of a rod (in place of the elastic). The resultant machine, though not highly efficient, is yet quite attractive.
Another material from which some delightful toys can be contrived is "tin," or, as it is more correctly called, "tinned iron." This is the stuff cocoa tins and mustard tins and many other articles are made of. Perhaps the simplest toy we can commence with isA Rotating Snake.—For this secure a clean flat piece of thin tin—the piece which the little patent cutter removes from the top of a round cigarette tin will do admirably—and, using a soft lead pencil, draw on it a spiral snake, such as is shown in Fig. 78. Now cut along the lines with a stout pair of scissors, or else with a sharp-pointed knife. Pull out the resultant spiraltill it is stretched as in Fig. 79, and mount it by means of the tail on an upright piece of pointed stout wire. The serpent will rotate on this for a considerable time.Fig. 78.Fig. 79.If you are good at bent-wire work, you will be able to make a wire stand by which to fix it on a lamp chimney or gas globe: it will then revolve continuously, and with considerable speed.
Another material from which some delightful toys can be contrived is "tin," or, as it is more correctly called, "tinned iron." This is the stuff cocoa tins and mustard tins and many other articles are made of. Perhaps the simplest toy we can commence with is
A Rotating Snake.—For this secure a clean flat piece of thin tin—the piece which the little patent cutter removes from the top of a round cigarette tin will do admirably—and, using a soft lead pencil, draw on it a spiral snake, such as is shown in Fig. 78. Now cut along the lines with a stout pair of scissors, or else with a sharp-pointed knife. Pull out the resultant spiraltill it is stretched as in Fig. 79, and mount it by means of the tail on an upright piece of pointed stout wire. The serpent will rotate on this for a considerable time.
Fig. 78.
Fig. 79.
If you are good at bent-wire work, you will be able to make a wire stand by which to fix it on a lamp chimney or gas globe: it will then revolve continuously, and with considerable speed.
A Tin-can Steam Roller.—This is a nice piece of metal work, and, when finished well, provides a proper little toy. To construct it you need several tins—a round tin, such as a cocoa tin, about 2 in. across and 4 in. long; an oblong tin, about 3-1/2 in. by 3 in. by 2 in., such as the larger-sized mustard tins; a round cigarette tin, about 2-1/2 in. across and 3-1/4 in. deep; twoequal-sized tin lids from canisters, each about 4 in. across; and a cotton reel. These, the main items, when put together, yield a model similar to that shown in Fig. 80.Fig. 80.The fixing is quite a simple affair. With a pair of metal shears (or strong scissors) you cut away a portion of the top of the cocoa tin, so as to leave three tongues. Then on the side of the oblong mustard tin you mark three lines to correspond with the three tongues, and cut them through so as to form three slots into which the tongues may fit. Now, if the tongues be bent outwards or inwards, then the two tins will hold firmly together, and give the boiler and cab of the machine (Fig. 81).Before bending these, however, it is necessary to bore a hole in the under side of the boiler for the fixing of the front roller. This is attached to the boiler by means of a narrow strip of tin bent twice at right angles, and kept in place by means of a forked brass rivet or a strong brass paper fastener so that it will revolve freely. This narrow strip of tin just fits over thecigarette tin—a piece of knitting needle being used as axle, passing through holes bored in the centre of the bottom and lid of the tin, and through the ends of the slip.For the larger rear wheels the lids of two canisters can be used, or, if something is required giving a more definite impression of solidity, two flat boot-polish tins can be substituted. Another piece of knitting needle passes through the centre of these, and through holes in the sides of the cab, and so acts as axle. This is kept in place by means of dabs of sealing wax.For the stack you can use a long thin cotton reel, or, better still, you can fix on another small tin by the method shown in Fig. 81.Fig. 81.The turning of the front wheel can be regulated by means of two strings passing from the two right-angle strips through a hole into the cab. If you can fix the strings to a piece of wood as shown in Fig. 82, you will be able to steer properly. A hole in the bottom of the cab, and a piece of wood stretched tightlyacross the top, should enable you to set up the steering apparatus.Fig. 82.
A Tin-can Steam Roller.—This is a nice piece of metal work, and, when finished well, provides a proper little toy. To construct it you need several tins—a round tin, such as a cocoa tin, about 2 in. across and 4 in. long; an oblong tin, about 3-1/2 in. by 3 in. by 2 in., such as the larger-sized mustard tins; a round cigarette tin, about 2-1/2 in. across and 3-1/4 in. deep; twoequal-sized tin lids from canisters, each about 4 in. across; and a cotton reel. These, the main items, when put together, yield a model similar to that shown in Fig. 80.
Fig. 80.
The fixing is quite a simple affair. With a pair of metal shears (or strong scissors) you cut away a portion of the top of the cocoa tin, so as to leave three tongues. Then on the side of the oblong mustard tin you mark three lines to correspond with the three tongues, and cut them through so as to form three slots into which the tongues may fit. Now, if the tongues be bent outwards or inwards, then the two tins will hold firmly together, and give the boiler and cab of the machine (Fig. 81).
Before bending these, however, it is necessary to bore a hole in the under side of the boiler for the fixing of the front roller. This is attached to the boiler by means of a narrow strip of tin bent twice at right angles, and kept in place by means of a forked brass rivet or a strong brass paper fastener so that it will revolve freely. This narrow strip of tin just fits over thecigarette tin—a piece of knitting needle being used as axle, passing through holes bored in the centre of the bottom and lid of the tin, and through the ends of the slip.
For the larger rear wheels the lids of two canisters can be used, or, if something is required giving a more definite impression of solidity, two flat boot-polish tins can be substituted. Another piece of knitting needle passes through the centre of these, and through holes in the sides of the cab, and so acts as axle. This is kept in place by means of dabs of sealing wax.
For the stack you can use a long thin cotton reel, or, better still, you can fix on another small tin by the method shown in Fig. 81.
Fig. 81.
The turning of the front wheel can be regulated by means of two strings passing from the two right-angle strips through a hole into the cab. If you can fix the strings to a piece of wood as shown in Fig. 82, you will be able to steer properly. A hole in the bottom of the cab, and a piece of wood stretched tightlyacross the top, should enable you to set up the steering apparatus.
Fig. 82.
A Working Motor Boat.—To construct a motor boat that will travel a considerable distance is not really a difficult matter. All that is necessary is a piece of board for a hull, a wood or metal propeller, and a yard or two of strong elastic: these, carefully adjusted, will do all that is necessary.For the hull, a piece of 5/8 in. or 3/4 in. board, about 18 in. long will do. This can be cut to the boat shape by means of a pocket knife or a spokeshave, and finished off with glass-paper. It should be sharp-pointed at the bows, about 3 in. to 4 in. at the centre, tapering down to a width of 2 in. at the stern. In the centre of the hull nail a block of wood, and to it glue two funnels (Fig. 83). For these, the odd lengths cut off from bamboo curtain poles will do admirably; or, if these be not obtainable, a couple of incandescent-mantle cases will suffice.Fig. 83.The adjustment of the motive power is the difficult task. First, you will need to purchase a couple of yards of suitable elastic: this is sold at most large toy shops, and costs usually a penny a yard. To fix this into place beneath the hull you will need to construct two metal supports. If you can get an old tin box made from metal sufficiently stout, that will do;if not, then you had better buy a piece of sheet brass, No. 20 gauge: 6 in. by 4 in. will be ample. Draw out these supports as shown in Figs. 84 and 85, and bend them into shape as in Figs. 86 and 87—one for the bow and one for the stern. Screw on the bow one about 1-1/2 in. or 2 in. from the point, and the stern one in the middle of the end.Fig. 84.Fig. 85.Fig. 86.Fig. 87.Now into the bow support fix a loop of stout wire to hold the rubber strands, making it sufficiently large to rest against the sides and so prevent turning. At the stern support adjust the propeller bearings. On the care with which these are adjusted depends largely the success of the model. Take a piece of wire (1/16-inch brass is best) and bend it as in Fig. 88, introducing a hard smooth glass bead. This "bead" runs more freely against the metal, and so facilitates the working. Now stretch the elastic between the two loops, arranging it so that there are six or eight strands. To work the model, turn the propeller round and round till the strands of elastic are very tightly twisted, place on the surface of the water, and then release the propeller. Fig. 83 shows the completed model.Fig. 88.
A Working Motor Boat.—To construct a motor boat that will travel a considerable distance is not really a difficult matter. All that is necessary is a piece of board for a hull, a wood or metal propeller, and a yard or two of strong elastic: these, carefully adjusted, will do all that is necessary.
For the hull, a piece of 5/8 in. or 3/4 in. board, about 18 in. long will do. This can be cut to the boat shape by means of a pocket knife or a spokeshave, and finished off with glass-paper. It should be sharp-pointed at the bows, about 3 in. to 4 in. at the centre, tapering down to a width of 2 in. at the stern. In the centre of the hull nail a block of wood, and to it glue two funnels (Fig. 83). For these, the odd lengths cut off from bamboo curtain poles will do admirably; or, if these be not obtainable, a couple of incandescent-mantle cases will suffice.
Fig. 83.
The adjustment of the motive power is the difficult task. First, you will need to purchase a couple of yards of suitable elastic: this is sold at most large toy shops, and costs usually a penny a yard. To fix this into place beneath the hull you will need to construct two metal supports. If you can get an old tin box made from metal sufficiently stout, that will do;if not, then you had better buy a piece of sheet brass, No. 20 gauge: 6 in. by 4 in. will be ample. Draw out these supports as shown in Figs. 84 and 85, and bend them into shape as in Figs. 86 and 87—one for the bow and one for the stern. Screw on the bow one about 1-1/2 in. or 2 in. from the point, and the stern one in the middle of the end.
Fig. 84.
Fig. 85.
Fig. 86.
Fig. 87.
Now into the bow support fix a loop of stout wire to hold the rubber strands, making it sufficiently large to rest against the sides and so prevent turning. At the stern support adjust the propeller bearings. On the care with which these are adjusted depends largely the success of the model. Take a piece of wire (1/16-inch brass is best) and bend it as in Fig. 88, introducing a hard smooth glass bead. This "bead" runs more freely against the metal, and so facilitates the working. Now stretch the elastic between the two loops, arranging it so that there are six or eight strands. To work the model, turn the propeller round and round till the strands of elastic are very tightly twisted, place on the surface of the water, and then release the propeller. Fig. 83 shows the completed model.
Fig. 88.
All boys love a toy that "goes"; and so a short account showing how to makeA Steamboatthat will actually travel on the water will be very welcome. Our boat, which in reality is not a "steam" boat, inasmuch as no steam is generated, is very simple in its construction and possesses neither wheels nor pistons nor cranks, nor any of the things that one associates with a steamer.The whole motive power is supplied by one or two candle ends, and a bent piece of strong metal tubing. This last can scarcely be called either "odds" or "ends"; and you will probably have to purchase it at a shop selling model-engine fittings, but a few pence will cover the cost. You must get an eight-inch piece of solid drawn copper or brass tubing, with an inside diameter of 1/8 in. (N.B.—Do not let the man sell you soldered tubing, for it will certainly crack when you bend it.)The next operation is the most difficult: it is bending thetube to the shape shown in Fig. 89. This must be done very gently, otherwise you will crack or dent it. The loop shown should have a diameter of about 5/8 to 3/4 of an inch.Fig. 89.The actual boat itself can be of any shape. If you happen to have an old wooden hull suitable to the purpose, use that; if not, then a flat hull similar to that described on page 70 will do quite well. Fix the bent tubing at the stern of the boat, so that the two open ends project over the edge and dip beneath the surface of the water (Fig. 90). Two pieces of wire bent as in Fig. 90awill hold the tubing in place.Fig. 90.All that you need do now is place the candles under the loop of the tube and heat it. (If you have a tiny spirit lamp, that will act more effectively, of course.) The heat from the candles makes the air in the tube very hot. This hot air is expelled from one arm of the tube; and a current of water rushes up one arm of the tube and down the other with considerable force. It is this current that causes the boat to move.
All boys love a toy that "goes"; and so a short account showing how to make
A Steamboatthat will actually travel on the water will be very welcome. Our boat, which in reality is not a "steam" boat, inasmuch as no steam is generated, is very simple in its construction and possesses neither wheels nor pistons nor cranks, nor any of the things that one associates with a steamer.
The whole motive power is supplied by one or two candle ends, and a bent piece of strong metal tubing. This last can scarcely be called either "odds" or "ends"; and you will probably have to purchase it at a shop selling model-engine fittings, but a few pence will cover the cost. You must get an eight-inch piece of solid drawn copper or brass tubing, with an inside diameter of 1/8 in. (N.B.—Do not let the man sell you soldered tubing, for it will certainly crack when you bend it.)
The next operation is the most difficult: it is bending thetube to the shape shown in Fig. 89. This must be done very gently, otherwise you will crack or dent it. The loop shown should have a diameter of about 5/8 to 3/4 of an inch.
Fig. 89.
The actual boat itself can be of any shape. If you happen to have an old wooden hull suitable to the purpose, use that; if not, then a flat hull similar to that described on page 70 will do quite well. Fix the bent tubing at the stern of the boat, so that the two open ends project over the edge and dip beneath the surface of the water (Fig. 90). Two pieces of wire bent as in Fig. 90awill hold the tubing in place.
Fig. 90.
All that you need do now is place the candles under the loop of the tube and heat it. (If you have a tiny spirit lamp, that will act more effectively, of course.) The heat from the candles makes the air in the tube very hot. This hot air is expelled from one arm of the tube; and a current of water rushes up one arm of the tube and down the other with considerable force. It is this current that causes the boat to move.
Another Working Steamboat.—This time our boat will merit its name—for we shall have a boiler, and generate a supply of steam.If you look at Fig. 91 you will get a good idea of the construction of this model, and realise how simple it really is. The boiler is provided by a medium-sized flat oblong tin, with the lid soldered down so that it is steam tight. For the purpose of putting water into the boiler when necessary, a hole is bored in the lid, and a cork fitted tightly.Fig. 91.In one end of the boiler, and towards the top, you must make a pin hole. When the water boils well, the steam is expelled through this tiny hole with considerable force; and to this is due the motion of the craft.The remainder of the fitting up is soon done. A flat hull similar to that described on page 70 is prepared, and four flat-headed nails driven in, so that the four corners of the boiler can each stand on a nail head. The rudder is cut from an old piece of tin, and pressed into a knife-cut made in the centre of the stern of the hull.The boiler is placed into position with the steam hole facing the stern, and lighted candle ends are then placed underneath the boiler—as many as possible; for the more the candlesthe greater the heat, and consequently the greater the force of steam. It will help matters along considerably if the boiler is first of all filled with hot water, instead of cold; but be careful not to scald yourself in doing this.When steam is up, the boat should travel along at quite a comfortable pace.
Another Working Steamboat.—This time our boat will merit its name—for we shall have a boiler, and generate a supply of steam.
If you look at Fig. 91 you will get a good idea of the construction of this model, and realise how simple it really is. The boiler is provided by a medium-sized flat oblong tin, with the lid soldered down so that it is steam tight. For the purpose of putting water into the boiler when necessary, a hole is bored in the lid, and a cork fitted tightly.
Fig. 91.
In one end of the boiler, and towards the top, you must make a pin hole. When the water boils well, the steam is expelled through this tiny hole with considerable force; and to this is due the motion of the craft.
The remainder of the fitting up is soon done. A flat hull similar to that described on page 70 is prepared, and four flat-headed nails driven in, so that the four corners of the boiler can each stand on a nail head. The rudder is cut from an old piece of tin, and pressed into a knife-cut made in the centre of the stern of the hull.
The boiler is placed into position with the steam hole facing the stern, and lighted candle ends are then placed underneath the boiler—as many as possible; for the more the candlesthe greater the heat, and consequently the greater the force of steam. It will help matters along considerably if the boiler is first of all filled with hot water, instead of cold; but be careful not to scald yourself in doing this.
When steam is up, the boat should travel along at quite a comfortable pace.