The Growth of a TreeThe great chestnut tree on the hillside has cast its burden of ripe nuts, flung down the empty burs, and given its yellow leaves to the autumn winds. Now the owner has cut down its twin, which was too near a neighbor for the well-being of either, and is converting it into lumber. The lopped limbs have gone to the woodpile, and the boards will be dressed and polished and used for the woodwork of the new house. Here is our opportunity to see what the bark of the living tree conceals—to study the anatomy of the tree—to learn something of grain and wood rings and knots.The most amazing fact is that this "too, too solid flesh" of the tree body was all made of dirty water and carbonic-acid gas. Well may we feel a kind of awe and reverence for the leaves and the cambium—the builders of this wooden structure we call a tree. The bark, or outer garment, covers the tree completely, from tip of farthest root to tip of highest twig. Under the bark is the slimy, colorless living layer, thecambium, which we may define asthe separation between wood and bark. It seems to have no perceptible diameter, though it impregnates with its substance the wood and bark next to it. This cambium is a continuous undergarment, lining the bark everywhere, covering the wood of every root and every twig as well as of the trunk and all its larger divisions.Under the cambium is the wood, which forms the real body of the tree. It is a hard and fibrous substance, which in cross section of root or trunk or limb or twig is seen to be in fine, but distinctly marked, concentric rings about a central pith. This pith is most conspicuous in the twigs.Now, what does the chestnut tree accomplish in a single growing season? We have seen its buds open in early spring and watched the leafy shoots unfold. Many of these bore clusters of blossoms in midsummer, long yellow spikes, shaking out a mist of pollen, and falling away at length, while the inconspicuous green flowers developed into spiny, velvet-lined burs that gave up in their own good time the nuts which are the seeds of the tree.The new shoots, having formed buds in the angles of their leaves, rest from their labors. The tree had added to the height and breadth of its crown the exact measure of its new shoots. There has been no lengthening of limb or trunk. But underground the roots have made a season's growth by extending their tips. These fresh rootlets clothed with the velvety root hairs are new, just as the shoots are new that bear the leaves on the ends of the branches.There is a general popular impression that trees grow in height by the gradual lengthening of trunk and limbs. If this were true, nails driven into the trunk in a vertical line would gradually become farther apart. They do not, asobservation proves. Fence wires stapled to growing trees are not spread apart nor carried upward, though the trees may serve as posts for years, and the growth in diameter may swallow up staple and wire in a short time. Normal wood fibres are inert and do not lengthen. Only the season's rootlets and leafy shoots are soft and alive and capable of lengthening by cell division.The work of the leaves has already been described. The return current, bearing starch in soluble form, flows freely among the cells of the cambium. Oxygen is there also. The cambium cell in the growing season fulfils its life mission by absorbing food and dividing. This is growth—and the power to grow comes only to the cell attacked by oxygen. The rebuilding of its tissues multiplies the substance of the cambium at a rapid rate. A cell divides, producing two "daughter cells." Each is soon as large as its parent, and ready to divide in the same way. A cambium cell is a microscopic object, but in a tree there are millions upon millions of them. Consider how large an area of cambium a large tree has. It is exactly equivalent to the total area of its bark. Two cells by dividing make four. The next division produces eight, then sixteen, thirty-two, sixty-four, in geometric proportion. The cell's power and disposition to divide seems limited only by the food and oxygen supply. The cambium layer itself remains a very narrow zone of the newest, most active cells. The margins of the cambium are crowded with cells whose walls are thickened and whose protoplasm is no longer active. The accumulation of these worn-out cells forms the total of the season's growth, the annual ring of wood on one side of the cambium and the annual layer of bark on the other.What was once a delicate cell now becomes a hollow wood fibre, thin walled, but becoming thickened as it gets older. For a few years the superannuated cell is a part of the sap wood and is used as a tube in the system through which the crude sap mounts to the leaves. Later it may be stored full of starch, and the sap will flow up through newer tubes. At last the walls of the old cell harden and darken with mineral deposits. Many annual rings lie between it and the cambium. It has become a part of the heart wood of the tree.The cells of its own generation that were crowded in the other direction made part of an annual layer of bark. As new layers formed beneath them, and the bark stretched and cracked, they lost their moisture by contact with the outer air. Finally they became thin, loose fibres, and scaled off.The years of a tree's life are recorded with fair accuracy in the rings of its wood. The bark tells the same story, but the record is lost by its habit of sloughing off the outer layers. Occasionally a tree makes two layers of wood in a single season, but this is exceptional. Sometimes, as in a year of drought, the wood ring is so small as to be hardly distinguishable.Each annual ring in the chestnut stump is distinct from its neighboring ring. The wood gradually merges from a dark band full of large pores to one paler in color and of denser texture. It is very distinct in oak and ash. The coarser belt was formed first. The spring wood, being so open, discolors by the accumulation of dust when exposed to the air. The closer summer wood is paler in color and harder, the pores almost invisible to the unaided eye. The best timber has the highest percentage of summer wood.If a tree had no limbs, and merely laid on each year a layer of wood made of parallel fibres fitted on each other like pencils in a box, wood splitting would be child's play and carpenters would have less care to look after their tools. But woods differ in structure, and all fall short of the woodworker's ideal. The fibres of oak vary in shape and size. They taper and overlap their ends, making the wood less easily split than soft pine, for instance, whose fibres are regular cylinders, which lie parallel, and meet end to end without "breaking joints."Fibres of oak are also bound together by flattened bundles of horizontal fibres that extend from pith to cambium, insinuated between the vertical fibres. These are seen on a cross-section of a log as narrow, radiating lines starting from the pith and cutting straight through heart wood and sap wood to the bark. A tangential section of a log (the surface exposed by the removal of a slab on any side) shows these "pith rays," or "medullary rays" as long, tapering streaks. A longitudinal section made from bark to centre, as when a log is "quarter-sawed," shows a full side view of the "medullary rays." They are often an inch wide or more in oak; these wavy, irregular, gleaming fibre bands are known in the furniture trade as the "mirrors" of oak. They take a beautiful polish, and are highly esteemed in cabinet work. The best white oak has 20 per cent. to 25 per cent. of its substance made up of these pith rays. The horny texture of its wood, together with its strength and durability, give white oak an enviable place among timber trees, while the beauty of its pith rays ranks it high among ornamental woods.The grain of wood is its texture. Wide annual rings with large pores mark coarse-grained woods. They need"filling" with varnish or other substance before they can be satisfactorily polished. Fine-grained woods, if hard, polish best. Trees of slow growth usually have fine-grained wood, though the rule is not universal.Ordinarily wood fibres are parallel with their pith. They are straight grained. Exceptions to this rule are constantly encountered. The chief cause of variation is the fact that tree trunks branch. Limbs have their origin in the pith of the stems that bear them. Any stem is normally one year older than the branch it bears. So the base of any branch is a cone quite buried in the parent stem. A cross-section of this cone in a board sawed from the trunk is aknot. Its size and number of rings indicate its age. If the knot is diseased and loose, it will fall out, leaving aknot hole. The fibres of the wood of a branch are extensions of those just below it on the main stem. They spread out so as to meet around the twig and continue in parallel lines to its extremity. The fibres contiguous to those which were diverted from the main stem to clothe the branch must spread so as to meet above the branch, else the parent stem would be bare in this quarter. The union of stem and branch is weak above, as is shown by the clean break made above a twig when it is torn off, and the stubborn tearing of the fibres below down into the older stem. A half hour spent at the woodpile or among the trees with a jack-knife will demonstrate the laws by which the straight grain of wood is diverted by the insertion of limbs. The careful picking up and tearing back of the fibres of bark and wood will answer all our questions. Basswood whose fibres are tough is excellent for illustration.When a twig breaks off, the bark heals the wound and the grain becomes straight over the place. Trees crowdedin a forest early divest themselves of their lower branches. These die for lack of sun and air, and the trunk covers their stubs with layers of straight-grained wood. Such timbers are the masts of ships, telegraph poles, and the best bridge timbers. Yet buried in their heart wood are the roots of every twig, great or small, that started out to grow when the tree was young. These knots are mostly small and sound, so they do not detract from the value of the lumber. It is a pleasure to work upon such a "stick of timber."A tree that grows in the open is clothed to the ground with branches, and its grain is found to be warped by hundreds of knots when it reaches the sawmill. Such a tree is an ornament to the landscape, but it makes inferior, unreliable lumber. The carpenter and the wood chopper despise it, for it ruins tools and tempers.Besides the natural diversion of straight grain by knots, there are some abnormal forms to notice. Wood sometimes shows wavy grain under its bark. Certain trees twist in growing, so as to throw the grain into spiral lines. Cypresses and gum trees often exhibit in old stumps a veering of the grain to the left for a few years, then suddenly to the right, producing a "cross grain" that defies attempts to split it."Bird's-eye" and "curly maple" are prizes for the furniture maker. Occasionally a tree of swamp or sugar maple keeps alive the crowded twigs of its sapling for years, and forms adventitious buds as well. These dwarfed shoots persist, never getting ahead further than a few inches outside the bark. Each is the centre of a wood swelling on the tree body. The annual layers preserve all the inequalities. Dots surrounded by wavy rings arescattered over the boards when the tree is sawed. This is bird's-eye grain, beautiful in pattern and in sheen and coloring when polished. It is cut thin for veneer work. Extreme irregularity of grain adds to the value of woods, if they are capable of a high polish. The fine texture and coloring, combined with the beautiful patterns they display, give woods a place in the decorative arts that can be taken by no other material.The Fall of the LeavesIt is November, and the glory of the woods is departed. Dull browns and purples show where oaks still hold their leaves. Beech trees in sheltered places are still dressed in pale yellow. The elfin flowers of the witch hazel shine like threads of gold against the dull leaves that still cling. The trees lapse into their winter sleep.Last week a strange thing happened. The wind tore the red robes from our swamp maples and sassafras and scattered them in tatters over the lawn. But the horse-chestnut, decked out in yellow and green, lost scarcely a leaf. Three days later, in the hush of early morning, when there was not a whiff of a breeze perceptible, the signal, "Let go!" came, and with one accord the leaves of the horse-chestnut fell. In an hour the tree stood knee deep in a stack of yellow leaves; the few that still clung had considerable traces of green in them. Gradually these are dropping, and the shining buds remain as a pledge that the summer story just ended will be told again next year.Perhaps such a sight is more impressive if one realizes the vast importance of the work the leaves of a summer accomplish for the tree before their surrender.The shedding of leaves is a habit broad-leaved trees havelearned by experience in contact with cold winters. The swamp magnolia is a beautiful evergreen tree in Florida. In Virginia the leaves shrivel, but they cling throughout the season. In New Jersey and north as far as Gloucester, where the tree occurs sparingly, it is frankly deciduous. Certain oaks in the Northern states have a stubborn way of clinging to their dead leaves all winter. Farther south some of these species grow and their leaves do not die in fall, but are practically evergreen, lasting till next year's shoots push them off. The same gradual change in habit is seen as a species is followed up a mountain side.The horse-chestnut will serve as a type of deciduous trees. Its leaves are large, and they write out, as if in capital letters, the story of the fall of the leaf. It is a serial, whose chapters run from July until November. The tree anticipates the coming of winter. Its buds are well formed by midsummer. Even then signs of preparation for the leaf fall appear. A line around the base of the leaf stem indicates where the break will be. Corky cells form on each side of this joint, replacing tissues which in the growing season can be parted only by breaking or tearing them forcibly. A clean-cut zone of separation weakens the hold of the leaf upon its twig, and when the moment arrives the lightest breath of wind—even the weight of the withered leaf itself—causes the natural separation. And the leaflets simultaneously fall away from their common petiole.There are more important things happening in leaves in late summer than the formation of corky cells. The plump green blades are full of valuable substance that the tree can ill afford to spare. In fact, a leaf is a layer of the precious cambium spread out on a framework of veins and coveredwith a delicate, transparent skin—a sort of etherealized bark. What a vast quantity of leaf pulp is in the foliage of a large tree!As summer wanes, and the upward tide of sap begins to fail, starch making in the leaf laboratories declines proportionately. Usually before midsummer the fresh green is dimmed. Dust and heat and insect injuries impair the leaf's capacity for work. The thrifty tree undertakes to withdraw the leaf pulp before winter comes.But how?It is not a simple process nor is it fully understood. The tubes that carried the products of the laboratory away are bound up with the fibres of the leaf's skeleton. Through the transparent leaf wall the migration of the pulp may be watched. It leaves the margins and the net veins, and settles around the ribs and mid vein, exactly as we should expect. Dried and shrivelled horse-chestnut leaves are still able to show various stages in this marvellous retreat of the cambium. If moisture fails, the leaf bears some of its green substance with it to the earth. The "breaking down of the chlorophyll" is a chemical change that attends the ripening of a leaf. (Leaf ripening is as natural as the ripening of fruit.) The waxy granules disintegrate, and a yellow liquid shows its colors through the delicate leaf walls. Now other pigments, some curtained from view by the chlorophyll, others the products of decomposition, show themselves. Iron and other minerals the sap brought from the soil contribute reds and yellows and purples to the color scheme. As drainage proceeds, with the chemical changes that accompany it, the pageant of autumn colors passes over the woodlands. No weed or grass stem but joins in the carnival of the year.Crisp and dry the leaves fall. Among the crystals and granules that remain in their empty chambers there is little but waste that the tree can well afford to be rid of—substances that have clogged the leaf and impeded its work.We have been mistaken in attributing the gay colors of autumnal foliage to the action of frost. The ripening of the leaves occurs in the season of warm days and frosty nights, but it does not follow that the two phenomena belong together as cause and effect. Frost no doubt hastens the process. But the chemical changes that attend the migration of the carbohydrates and albuminous materials from the leaf back into twig and trunk and root for safe keeping go on no matter what the weather.In countries having a moist atmosphere autumn colors are less vivid. England and our own Pacific Coast have nothing to compare with the glory of the foliage in the forests of Canada and the Northeastern states, and with those on the wooded slopes of the Swiss Alps, and along the Rhine and the Danube. Long, dry autumns produce the finest succession of colors. The most brilliant reds and yellows often appear long before the first frost. Cold rains of long duration wash the colors out of the landscape, sometimes spoiling everything before October. A sharp freeze before the leaves expect it often cuts them off before they are ripe. They stiffen and fall, and are wet and limp next day, as if they had been scalded; all their rich cell substance lost to the tree, except as they form a mulch about its roots. But no tree can afford so expensive a fertilizer, and happily they are not often caught unawares.Under the trees the dead leaves lie, forming with the snow a protective blanket for the roots. In spring the rains will leach out their mineral substance and add it tothe soil. The abundant lime in dead leaves is active in the formation ofhumus, which is decayed vegetable matter. We call it "leaf mould." So even the waste portions have their effectual work to do for the tree's good.The leaves of certain trees in regions of mild winters persist until they are pushed off by the swelling buds in spring. Others cling a year longer, in sorry contrast with the new foliage. We may believe that this is an indolent habit induced by climatic conditions.Leaves of evergreens cling from three to five years. Families and individuals differ; altitude and latitude produce variations. An evergreen in winter is a dull-looking object, if we could compare it with its summer foliage. Its chlorophyll granules withdraw from the surface of the leaf.They seek the lower ends of the palisade cells, as far as they can get from the leaf surface, assume a dull reddish brown or brownish yellow color, huddle in clumps, their water content greatly reduced, and thus hibernate, much as the cells of the cambium are doing under the bark. In this condition, alternate freezing and thawing seem to do no harm, and the leaves are ready in spring to resume the starch-making function if they are still young. Naturally, the oldest leaves are least capable of this work, and least is expected of them. Gradually they die and drop as new ones come on. As among broad-leaved trees, the zone of foliage in evergreens is an outer dome of newest shoots; the framework of large limbs is practically destitute of leaves.How Trees Spend the WinterNine out of every ten intelligent people will see nothing of interest in a row of bare trees. They casually state that buds are made in the early spring. They miss seeing thestrength and beauty of tree architecture which the foliage conceals in summertime. The close-knit, alive-looking bark of a living tree they do not distinguish from the dull, loose-hung garment worn by the dead tree in the row. All trees look alike to them in winter.Yet there is so much to see if only one will take time to look. Even the most heedless are struck at times with the mystery of the winter trance of the trees. They know that each spring reënacts the vernal miracle. Thoughtful people have put questions to these sphinx-like trees. Secrets the bark and bud scales hide have been revealed to those who have patiently and importunately inquired. A keen pair of eyes used upon a single elm in the dooryard for a whole year will surprise and inform the observer. It will be indeed the year of miracle.A tree has no centre of life, no vital organs corresponding to those of animals. It is made up, from twig to root, of annual, concentric layers of wood around a central pith.It is completely covered with a close garment of bark, also made of annual layers. Between bark and wood is the delicate undergarment of living tissue calledcambium. This is disappointing when one comes to look for it, for all there is of it is a colorless, slimy substance that moistens the youngest layers of wood and bark, and forms the layer of separation between them. This cambium is the life of the tree. A hollow trunk seems scarcely a disability. The loss of limbs a tree can survive and start afresh. But girdle its trunk, exposing a ring of the cambium to the air, and the tree dies. The vital connection of leaves and roots is destroyed by the girdling; nothing can save the tree's life. Girdle a limb or a twig and all above the injury suffers practical amputation.The bark protects the cambium, and the cambium is the tissue which by cell multiplication in the growing season produces the yearly additions of wood and bark. Buds are growing points set along the twigs. They produce leafy shoots, as a rule. Some are specialized to produce flowers and subsequently fruits. Leaves are extensions of cambium spread in the sun and air in the season when there is no danger from frosts. The leaves have been called the stomachs of a tree. They receive crude materials from the soil and the air and transmute them into starch under the action of sunlight. This elaborated sap supplies the hungry cambium cells during the growing season, and the excess of starch made in the leaf laboratories is stored away in empty wood cells and in every available space from bud to root tip, from bark to pith.The tree's period of greatest activity is the early summer. It is the time of growth and of preparation for the coming winter and for the spring that follows it. Winter is the time of rest—of sleep, or hibernation. A bear digs a hollow under the tree's roots and sleeps in it all winter, waking in the spring. In many ways the tree imitates the bear. Dangerous as are analogies between plants and animals, it is literally true that the sleeping bear and the dormant tree have each ceased to feed. The sole activity of each seems to be the quiet breathing.Do trees really breathe? As truly and as incessantly as you do, but not as actively. Other processes are intermittent, but breathing must go on, day and night, winter and summer, as long as life lasts. Breathing is low in winter. The tree is not growing. There is only the necessity of keeping it alive.Seepage 42A GROVE OF BEECHESSeepage 44THE CHESTNUTLeaves are the lungs of plants. In the growing season respiration goes on at a vigorous rate. The leaves also throw off in insensible vapor a vast quantity of water. This is calledtranspirationin plants; in animals the term used isperspiration. They are one and the same process. An average white oak tree throws off 150 gallons of water in a single summer day. With the cutting off of the water supply at the roots in late fall, transpiration is also cut off.The skin is the efficient "third lung" of animals. The closing of its pores causes immediate suffocation. The bark of trees carries on the work of respiration in the absence of the leaves. Bark is porous, even where it is thickest.Look at the twigs of half a dozen kinds of trees, and find the little raised dots on the smooth surface. They usually vary in color from the bark. These arelenticels, or breathing pores—not holes, likely to become clogged with dust, but porous, corky tissue that filters the air as it comes in. In most trees the smooth epidermis of twigs is shed as the bark thickens and breaks into furrows. This obscures, though it does not obliterate, the air passages. Cherry and birch trees retain the silky epidermal bark on limbs, and in patches, at least, on the trunks of old trees. Here the lenticels are seen as parallel, horizontal slits, open sometimes, but usually filled with the characteristic corky substance. They admit air to the cambium.There is a popular fallacy that trees have no buds until spring. Some trees have very small buds. But there is no tree in our winter woods that will not freely show its buds to any one who wishes to see them. A very important part of the summer work of a tree is the forming of buds for next spring. Even when the leaves are just unfoldingon the tender shoots a bud will be found in each angle between leaf and stem. All summer long its bud is the especial charge of each particular leaf. If accident destroy the leaf, the bud dies of neglect. When midsummer comes the bud is full grown, or nearly so, and the fall of the leaf is anticipated. The thrifty tree withdraws as much as possible of the rich green leaf pulp, and stores it in the twig to feed the opening buds in spring.What is there inside the wrappings of a winter bud? "A leaf," is the usual reply—and it is not a true one. A bud is an embryo shoot—one would better say, a shoot in miniature. It has very little length or diameter when the scales are stripped off. But with care the leaves can be spread open, and their shape and venation seen. The exact number the shoot was to bear are there to be counted. Take a horse-chestnut bud—one of the biggest ones—and you will unpack a cluster of flowers distinct in number and in parts. The bud of the tulip tree is smaller, but it holds a single blossom, and petals, stamens, and pistil are easily recognizable. Some buds contain flowers and no leaves. Some have shoots with both upon them. If we know the tree, we may guess accurately about its buds.There is another popular notion, very pretty and sentimental, but untrue, that study of buds is bound to overthrow. It is the belief that the woolly and silky linings of bud scales, and the scales themselves, and the wax that seals up many buds are all for the purpose of keeping the bud warm through the cold winter. The bark, according to the same notion, is to keep the tree warm. This idea is equally untenable. There is but feeble analogy between a warm-blooded animal wrapped in fur, its bodily heat kept up by fires within (the rapid oxidation of fatsand carbohydrates in the tissues), and the winter condition of a tree. Hardy plants are of all things the most cold blooded. They are defended against injuries from cold in an effective but entirely different way.Exposure to the air and consequent loss of its moisture by evaporation is the death of the cambium—that which lies under the thick bark and in the tender tissues of the bud, sealed up in its layers of protecting scales.The cells of the cambium are plump little masses of protoplasm, semi-fluid in consistency in the growing season. They have plenty of room for expansion and division. Freezing would rupture their walls, and this would mean disintegration and death. Nature prepares the cells to be frozen without any harm. The water of the protoplasm is withdrawn by osmosis into the spaces between the cells. The mucilaginous substance left behind is loosely enclosed by the crumpled cell wall. Thus we see that a tree has about as much water in it in winter as in summer. Green wood cut in winter burns slowly and oozes water at the ends in the same discouraging way as it does in summertime.A tree takes on in winter the temperature of the surrounding air. In cold weather the water in buds and trunk and cambium freezes solid. Ice crystals form in the intercellular spaces where they have ample room, and so they do no damage in their alternate freezing and thawing. The protoplasm stiffens in excessive cold, but when the thermometer rises, life stirs again. Motion, breathing, and feeding are essential to cell life.It is hard to believe that buds freeze solid. But cut one open in a freezing cold room, and before you breathe upon it take a good look with a magnifier, and you should makeout the ice crystals. The bark is actually frozen upon a stick of green stovewood. The sap that oozes out of the pith and heart wood was frozen, and dripped not at all until it was brought indoors.What is meant by the freezing of fruit buds in winter, by which the peach crop is so often lost in Northern states? When spring opens, the warmth of the air wakes the sleeping buds. It thaws the ice in the intercellular spaces, and the cells are quick to absorb the water they gave up when winter approached. The thawing of the ground surrounds the roots with moisture. Sap rises and flows into the utmost twig. Warm days in January or February are able to deceive the tree to this extent. The sudden change back to winter again catches them. The plump cells are ruptured and killed by the "frost bite."It is a bad plan to plant a tender kind of tree on the south side of a house or a wall. The direct and the reflected warmth of the sun forces its buds out too soon, and the late frosts cut them off. There is rarely a good yield on a tree so situated.There is no miracle like "the burst of spring." Who has watched a tree by the window as its twigs began to shine in early March, and the buds to swell and show edges of green as their scales lengthened? Then the little shoot struggled out, casting off the hindering scales with the scandalous ingratitude characteristic of infancy. Feeble and very appealing are the limp baby leaves on the shoot, as tender and pale green as asparagus tips. But all that store of rich nutritive material is backing the enterprise. The palms are lifted into the air; they broaden and take on the texture of the perfect, mature leaf. Scarcely a day is required to outgrow the hesitation and inexperience ofyouth. The tree stands decked in its canopy of leaves, every one of which is ready and eager to assume the responsibilities it faces. The season of starch making has opened.Cut some twigs of convenient trees in winter. Let them be good ones, with vigorous buds, and have them at least two feet long. You may test this statement I have made about the storing of food in the twigs, and the one about the unfolding of the leafy shoots. Get a number of them from the orchard—samples from cherry, plum, and apple trees; from maple and elm and any other familiar tree. Put them in jars of water and set them where they get the sun on a convenient window shelf. Give them plenty of water, and do not crowd them. It is not necessary to change the water, but cutting the ends slanting and under water every few days insures the unimpeded flow of the water up the stems and the more rapid development of the buds you are watching. When spring comes there are too many things that demand attention. The forcing of winter buds while yet it is winter is the ideal way to discover the trees' most precious secrets.PART IITHE NUT TREESThe Walnuts—The Hickories—The Beech—The Chestnuts—The Oaks—The White Oak Group—The Black Oak Group—The Horse-Chestnuts, or Buckeyes—The Lindens, or BasswoodsTHE WALNUTSHickories are included with their near relatives, the walnuts, in one of the most important of all our native tree groups. They are distinct, yet they have many traits in common—the flowers and the nut fruits, the hard resinous wood, with aromatic sap and leaves of many leaflets, instead of a single blade.The walnuts are decidedly "worth knowing." All produce valuable timber and edible nuts, and all are good shade trees. Four native walnuts are well known in this country, for in October, every tree in every bit of woods is likely to be visited by school boys with bags, eager to gather the nuts before some other boy finds the tree, and thus establishes a prior claim upon it. The curiously gnawed shells outside the winter storehouse of some furry woods-dweller reveal the most successful competitor boys have, the constant watcher of the nut trees, a harvester who works at nothing else while the season is on.The Southwestern WalnutJuglans rupestris, Engelm.The walnut of the Southwest grows into a spreading, luxuriant tree, where its roots find water. But on the canyon sides, and higher on mountain slopes, it becomes a stunted shrub, because of lack of moisture.The nut is smaller than that of the eastern walnuts and has a thick shell, but the kernel is sweet and keeps its rich flavor for a long time. The Mexicans and Indians are glad to have this nut added to the stores they gather for their winter food.One striking feature of this tree is the pale, cottony down on its twigs, which sometimes persists three or four years. The long limbs droop at the extremities, almost deserving to be called "weeping." But nothing could be more cheerful in color than the yellow-green foliage, shining in the sun, against the white bark of the tree. In autumn the foliage turns bright yellow. A specimen, much admired, grows in the Arnold Arboretum in Boston.The California WalnutJ. californica, Wats.The California walnut is a stocky, round-headed tree, with heavy, drooping branches, and bark that is white and smooth on limbs and on trunks of young trees. Ultimately the trunk turns nearly black, and is checked into broad, irregular ridges. In bottom lands, along the courses of rivers, back thirty miles from the coast, these trees arefound, from the Sacramento Valley to the southern slopes of the San Bernardino Mountains.The foliage is bright pale green, feathery, the leaflets often curved to sickle form, showing paler silky linings. Californians admire and plant this tree for shade and ornament. Its greatest value is as a hardy stock upon which the "English" walnut is grafted by nurserymen, for planting orchards of this commercial nut. The fruit of the native nut is excellent, but it cannot compete with the thin-shelled nut that came from Persia,viaEngland.The Butternut, White Walnut, or OilnutJ. cinerea, Linn.In eastern woods the butternut is known by its long, pointed nuts, with deeply and raggedly sculptured shells, in fuzzy, clammy, sticky husks that stain the hands of him who attempts to get at the oily meat before the husks are dry. This dark stain was an important dye in the time when homespun cotton cloth was worn by men and boys. The modern khaki resembles in color the "butternut jeans," in which backwoods regiments of the Civil War were clad. Butternut husks and bark yield also a drug of cathartic properties.Pickling green oilnuts in their husks is a housewifely industry, on the summer programme of many housewives still, if the woods near by furnish the raw material for employing her great-grandmother's recipe, brought from England, or perhaps from France. The green nuts are tested with a knitting needle. If it goes through them with no difficulty, and yet the nuts are of good size, they are ready. Vigorous rubbing removes the fuzz after the nuts are scalded. Then they are pickled whole, in spiced vinegar, and are a rare, delectable relish with meats for the winter table.Seepage 42WEEPING BEECHSeepage 31BLACK WALNUTA butternut tree, beside the road, or elsewhere, with room to grow, has a short trunk, and a low, broad head, with a downward droop to the horizontal limbs. The bark is light brown, the limbs grayish green, the twigs and leaves all ooze a clammy, waxy, aromatic sap, and are covered with fine hairs of velvety abundance.Because it is low and rather wayward in growth, late to leaf out in spring, and early to shed its leaves in summer, the butternut is not a good street tree. It breaks easily in the wind, and crippled trees are more common than well-grown specimens. Insect and fungous enemies beset the species, and take advantage of breaks to invade the twigs through the chambered pith. Short-lived trees they are, whose brown, satiny wood is used in cabinet work, but is not plentiful.The Black WalnutJ. nigra, Linn.The black walnut (see illustrations, pages31,70) is the second species east of the Rocky Mountains, and the tree chiefly depended upon, during the century just closed, by the makers of furniture of the more expensive grades. Black walnut wood is brown, with purplish tones in it, and a silvery lustre, when polished. Its hardness and strength commend it to the boat and ship builder. Gunstock factories use quantities of this wood. In furniture and interior woodwork, the curly walnut, found in the old stumps of trees cut long before, is especially sought for veneering panels. Old furniture, of designs that have passed out,are often sold to the factories, and their seasoned wood cut thin for veneering.Walnut trees one hundred and fifty feet high were not uncommon in the forests primeval, in the basin of the Ohio and Wabash rivers. These giants held up their majestic heads far over the tops of oaks and maples in the woods. They were slaughtered, rolled together, and burned by the pioneers, clearing the land for agriculture. These men had a special grudge against walnut trees, they were so stubborn—so hard to make away with. How unfortunate it is that our ancestors had the patience to go forward and conquer the unconquerable ones. Had they weakly surrendered, and let these trees stand, we should have had them for the various uses to which we put the finest lumber trees to-day.Unhappily, the growing of young trees has not been extensively undertaken to replace those destroyed. The newer forestry is awake to the need, and the loss may be made good, from this time forward.The black walnut is nearly globular, deeply sculptured, with a sweet nut rich in oil, very good if one eats but a few at a time. Locally, they find their way to market, but they soon become rancid in the grocer's barrel. At home, boys spread them, in their smooth, yellow-pitted husks, on the roof of the woodshed, for instance, so the husks can dry while the nuts are seasoning. No walnut opens its husk in regular segments, as the hickories all do. But the husking is not hard. The thick shells require careful management of the hammer or nut-cracker, to avoid breaking the meats.Dark as is its wood and bark, no walnut tree in full leaf is sombre. The foliage is bright, lustrous, yellow-green,graceful, dancing. A majestic tree, with a luxuriant crown from May till September, this walnut needs room to display its notable contour and size. It deserves more popularity than it enjoys as a tree for parks. No tree is more interesting to watch as it grows.The bitter spongy husk deters the squirrels from gnawing into the nut until the husk is dry and brittle. Hidden in the ground, the shell absorbs moisture, and winter frost cracks it, by the gentle but irresistible force of expanding particles of water as they turn to ice. So the plantlet has no hindrance to its growth when spring opens.Imitating nature, the nurseryman lays his walnuts and butternuts in a bed of sand or gravel, one layer above another, and lets the rain and the cold do the rest. In spring the "stratified" nuts are ready for planting. Sometimes careful cracking of the shell prepares the nut to sprout when planted.The Japanese walnuts (J. SieboldianaandJ. cordiformis) are grown to a limited extent in states where the English walnut is not hardy. They are butternuts, and very much superior to our native species. A Manchurian walnut has been successfully introduced, but few people but the pioneers in nut culture know anything about these exotic species. South America and the West Indies have native species. So we shall not be surprised, in our travels, to find walnuts in the woods of many continents.The English WalnutJ. regia, Linn.Originally at home in the forests of Persia and northwestern India, the English walnut was grown for its excellentnuts in the warm countries of Europe and Asia. It was a tree of great reputation when Linnaeus gave it the specific name that meansroyal. Indeed, this is the tree which gave to all the family the name "Juglans," which means, "Jove's acorn," in the writings of Roman authors. Kings made each other presents of these nuts, and so the range of the species was extended, even to England, by the planting of nuts from the south.It became the fad of gardeners, before the fifteenth century, to improve the varieties, and to compete with others in getting the thinnest shell, the largest nut, the sweetest kernel, just as horticulturists do now. In 1640 the herbalist Parkinson wrote about a variety of "French wallnuts, which are the greatest of any, within whose shell are often put a paire of fine gloves, neatly foulded up together." Another variety he mentions "whose shell is so tender that it may easily be broken between one's fingers, and the nut itsself is very sweete."In England, the climate prevents the ripening of the fruit of walnut trees. But the nuts reach good size, and are pickled green, for use as a relish; or made into catsups—husks and all being used, when a needle will still puncture the fruit with ease.In America, the first importations of the walnuts came from the Mediterranean countries, by way of England, "the mother country." In contradistinction to our black walnuts and butternuts, these nuts from overseas were called by the loyal colonists "English walnuts," and so they remain to this day in the markets of this country.It was natural and easy to grow these trees in the Southern states. But little had been done to improve them, orto grow them extensively for market, until California undertook to compete with Europe for the growing American trade. Now the crop reaches thousands of tons of nuts, and millions of dollars come back each year to the owners of walnut ranches. Hardy varieties have extended the range of nut-orcharding; and so has the grafting of tender varieties on stock of the native black walnut of California.The beauty of this Eurasian walnut tree would justify planting it merely for the adornment of parks and private grounds. Its broad dome of bright green foliage in summer, and its clean gray trunk and bare branches in winter, are attractive features in a landscape that has few deciduous trees. A fine dooryard tree that bears delicious nuts, after furnishing a grateful shade all summer, is deserving the popularity it enjoys with small farmers and owners of the simplest California homes.As a lumber tree, the walnut of Europe has long been commercially important. It is the staple wood for gun-stocks, and during wars the price has reached absurd heights, one country bidding against its rival to get control of the visible supply. Furniture makers use quantities of the curly walnut often found in stumps of old trees. The heart wood, always a rich brown, is often watered and crimped in curious and intricate patterns, that when polished blend the loveliest dark and light shades with the characteristic walnut lustre, to reward the skilled craftsman.In the United States this wood is rarely seen, because the trees are grown for their nuts. They require several years to come into bearing, are long-lived, have few enemies, and need little pruning as bearing age approaches.
The Growth of a Tree
The great chestnut tree on the hillside has cast its burden of ripe nuts, flung down the empty burs, and given its yellow leaves to the autumn winds. Now the owner has cut down its twin, which was too near a neighbor for the well-being of either, and is converting it into lumber. The lopped limbs have gone to the woodpile, and the boards will be dressed and polished and used for the woodwork of the new house. Here is our opportunity to see what the bark of the living tree conceals—to study the anatomy of the tree—to learn something of grain and wood rings and knots.
The most amazing fact is that this "too, too solid flesh" of the tree body was all made of dirty water and carbonic-acid gas. Well may we feel a kind of awe and reverence for the leaves and the cambium—the builders of this wooden structure we call a tree. The bark, or outer garment, covers the tree completely, from tip of farthest root to tip of highest twig. Under the bark is the slimy, colorless living layer, thecambium, which we may define asthe separation between wood and bark. It seems to have no perceptible diameter, though it impregnates with its substance the wood and bark next to it. This cambium is a continuous undergarment, lining the bark everywhere, covering the wood of every root and every twig as well as of the trunk and all its larger divisions.
Under the cambium is the wood, which forms the real body of the tree. It is a hard and fibrous substance, which in cross section of root or trunk or limb or twig is seen to be in fine, but distinctly marked, concentric rings about a central pith. This pith is most conspicuous in the twigs.
Now, what does the chestnut tree accomplish in a single growing season? We have seen its buds open in early spring and watched the leafy shoots unfold. Many of these bore clusters of blossoms in midsummer, long yellow spikes, shaking out a mist of pollen, and falling away at length, while the inconspicuous green flowers developed into spiny, velvet-lined burs that gave up in their own good time the nuts which are the seeds of the tree.
The new shoots, having formed buds in the angles of their leaves, rest from their labors. The tree had added to the height and breadth of its crown the exact measure of its new shoots. There has been no lengthening of limb or trunk. But underground the roots have made a season's growth by extending their tips. These fresh rootlets clothed with the velvety root hairs are new, just as the shoots are new that bear the leaves on the ends of the branches.
There is a general popular impression that trees grow in height by the gradual lengthening of trunk and limbs. If this were true, nails driven into the trunk in a vertical line would gradually become farther apart. They do not, asobservation proves. Fence wires stapled to growing trees are not spread apart nor carried upward, though the trees may serve as posts for years, and the growth in diameter may swallow up staple and wire in a short time. Normal wood fibres are inert and do not lengthen. Only the season's rootlets and leafy shoots are soft and alive and capable of lengthening by cell division.
The work of the leaves has already been described. The return current, bearing starch in soluble form, flows freely among the cells of the cambium. Oxygen is there also. The cambium cell in the growing season fulfils its life mission by absorbing food and dividing. This is growth—and the power to grow comes only to the cell attacked by oxygen. The rebuilding of its tissues multiplies the substance of the cambium at a rapid rate. A cell divides, producing two "daughter cells." Each is soon as large as its parent, and ready to divide in the same way. A cambium cell is a microscopic object, but in a tree there are millions upon millions of them. Consider how large an area of cambium a large tree has. It is exactly equivalent to the total area of its bark. Two cells by dividing make four. The next division produces eight, then sixteen, thirty-two, sixty-four, in geometric proportion. The cell's power and disposition to divide seems limited only by the food and oxygen supply. The cambium layer itself remains a very narrow zone of the newest, most active cells. The margins of the cambium are crowded with cells whose walls are thickened and whose protoplasm is no longer active. The accumulation of these worn-out cells forms the total of the season's growth, the annual ring of wood on one side of the cambium and the annual layer of bark on the other.
What was once a delicate cell now becomes a hollow wood fibre, thin walled, but becoming thickened as it gets older. For a few years the superannuated cell is a part of the sap wood and is used as a tube in the system through which the crude sap mounts to the leaves. Later it may be stored full of starch, and the sap will flow up through newer tubes. At last the walls of the old cell harden and darken with mineral deposits. Many annual rings lie between it and the cambium. It has become a part of the heart wood of the tree.
The cells of its own generation that were crowded in the other direction made part of an annual layer of bark. As new layers formed beneath them, and the bark stretched and cracked, they lost their moisture by contact with the outer air. Finally they became thin, loose fibres, and scaled off.
The years of a tree's life are recorded with fair accuracy in the rings of its wood. The bark tells the same story, but the record is lost by its habit of sloughing off the outer layers. Occasionally a tree makes two layers of wood in a single season, but this is exceptional. Sometimes, as in a year of drought, the wood ring is so small as to be hardly distinguishable.
Each annual ring in the chestnut stump is distinct from its neighboring ring. The wood gradually merges from a dark band full of large pores to one paler in color and of denser texture. It is very distinct in oak and ash. The coarser belt was formed first. The spring wood, being so open, discolors by the accumulation of dust when exposed to the air. The closer summer wood is paler in color and harder, the pores almost invisible to the unaided eye. The best timber has the highest percentage of summer wood.
If a tree had no limbs, and merely laid on each year a layer of wood made of parallel fibres fitted on each other like pencils in a box, wood splitting would be child's play and carpenters would have less care to look after their tools. But woods differ in structure, and all fall short of the woodworker's ideal. The fibres of oak vary in shape and size. They taper and overlap their ends, making the wood less easily split than soft pine, for instance, whose fibres are regular cylinders, which lie parallel, and meet end to end without "breaking joints."
Fibres of oak are also bound together by flattened bundles of horizontal fibres that extend from pith to cambium, insinuated between the vertical fibres. These are seen on a cross-section of a log as narrow, radiating lines starting from the pith and cutting straight through heart wood and sap wood to the bark. A tangential section of a log (the surface exposed by the removal of a slab on any side) shows these "pith rays," or "medullary rays" as long, tapering streaks. A longitudinal section made from bark to centre, as when a log is "quarter-sawed," shows a full side view of the "medullary rays." They are often an inch wide or more in oak; these wavy, irregular, gleaming fibre bands are known in the furniture trade as the "mirrors" of oak. They take a beautiful polish, and are highly esteemed in cabinet work. The best white oak has 20 per cent. to 25 per cent. of its substance made up of these pith rays. The horny texture of its wood, together with its strength and durability, give white oak an enviable place among timber trees, while the beauty of its pith rays ranks it high among ornamental woods.
The grain of wood is its texture. Wide annual rings with large pores mark coarse-grained woods. They need"filling" with varnish or other substance before they can be satisfactorily polished. Fine-grained woods, if hard, polish best. Trees of slow growth usually have fine-grained wood, though the rule is not universal.
Ordinarily wood fibres are parallel with their pith. They are straight grained. Exceptions to this rule are constantly encountered. The chief cause of variation is the fact that tree trunks branch. Limbs have their origin in the pith of the stems that bear them. Any stem is normally one year older than the branch it bears. So the base of any branch is a cone quite buried in the parent stem. A cross-section of this cone in a board sawed from the trunk is aknot. Its size and number of rings indicate its age. If the knot is diseased and loose, it will fall out, leaving aknot hole. The fibres of the wood of a branch are extensions of those just below it on the main stem. They spread out so as to meet around the twig and continue in parallel lines to its extremity. The fibres contiguous to those which were diverted from the main stem to clothe the branch must spread so as to meet above the branch, else the parent stem would be bare in this quarter. The union of stem and branch is weak above, as is shown by the clean break made above a twig when it is torn off, and the stubborn tearing of the fibres below down into the older stem. A half hour spent at the woodpile or among the trees with a jack-knife will demonstrate the laws by which the straight grain of wood is diverted by the insertion of limbs. The careful picking up and tearing back of the fibres of bark and wood will answer all our questions. Basswood whose fibres are tough is excellent for illustration.
When a twig breaks off, the bark heals the wound and the grain becomes straight over the place. Trees crowdedin a forest early divest themselves of their lower branches. These die for lack of sun and air, and the trunk covers their stubs with layers of straight-grained wood. Such timbers are the masts of ships, telegraph poles, and the best bridge timbers. Yet buried in their heart wood are the roots of every twig, great or small, that started out to grow when the tree was young. These knots are mostly small and sound, so they do not detract from the value of the lumber. It is a pleasure to work upon such a "stick of timber."
A tree that grows in the open is clothed to the ground with branches, and its grain is found to be warped by hundreds of knots when it reaches the sawmill. Such a tree is an ornament to the landscape, but it makes inferior, unreliable lumber. The carpenter and the wood chopper despise it, for it ruins tools and tempers.
Besides the natural diversion of straight grain by knots, there are some abnormal forms to notice. Wood sometimes shows wavy grain under its bark. Certain trees twist in growing, so as to throw the grain into spiral lines. Cypresses and gum trees often exhibit in old stumps a veering of the grain to the left for a few years, then suddenly to the right, producing a "cross grain" that defies attempts to split it.
"Bird's-eye" and "curly maple" are prizes for the furniture maker. Occasionally a tree of swamp or sugar maple keeps alive the crowded twigs of its sapling for years, and forms adventitious buds as well. These dwarfed shoots persist, never getting ahead further than a few inches outside the bark. Each is the centre of a wood swelling on the tree body. The annual layers preserve all the inequalities. Dots surrounded by wavy rings arescattered over the boards when the tree is sawed. This is bird's-eye grain, beautiful in pattern and in sheen and coloring when polished. It is cut thin for veneer work. Extreme irregularity of grain adds to the value of woods, if they are capable of a high polish. The fine texture and coloring, combined with the beautiful patterns they display, give woods a place in the decorative arts that can be taken by no other material.
The Fall of the Leaves
It is November, and the glory of the woods is departed. Dull browns and purples show where oaks still hold their leaves. Beech trees in sheltered places are still dressed in pale yellow. The elfin flowers of the witch hazel shine like threads of gold against the dull leaves that still cling. The trees lapse into their winter sleep.
Last week a strange thing happened. The wind tore the red robes from our swamp maples and sassafras and scattered them in tatters over the lawn. But the horse-chestnut, decked out in yellow and green, lost scarcely a leaf. Three days later, in the hush of early morning, when there was not a whiff of a breeze perceptible, the signal, "Let go!" came, and with one accord the leaves of the horse-chestnut fell. In an hour the tree stood knee deep in a stack of yellow leaves; the few that still clung had considerable traces of green in them. Gradually these are dropping, and the shining buds remain as a pledge that the summer story just ended will be told again next year.
Perhaps such a sight is more impressive if one realizes the vast importance of the work the leaves of a summer accomplish for the tree before their surrender.
The shedding of leaves is a habit broad-leaved trees havelearned by experience in contact with cold winters. The swamp magnolia is a beautiful evergreen tree in Florida. In Virginia the leaves shrivel, but they cling throughout the season. In New Jersey and north as far as Gloucester, where the tree occurs sparingly, it is frankly deciduous. Certain oaks in the Northern states have a stubborn way of clinging to their dead leaves all winter. Farther south some of these species grow and their leaves do not die in fall, but are practically evergreen, lasting till next year's shoots push them off. The same gradual change in habit is seen as a species is followed up a mountain side.
The horse-chestnut will serve as a type of deciduous trees. Its leaves are large, and they write out, as if in capital letters, the story of the fall of the leaf. It is a serial, whose chapters run from July until November. The tree anticipates the coming of winter. Its buds are well formed by midsummer. Even then signs of preparation for the leaf fall appear. A line around the base of the leaf stem indicates where the break will be. Corky cells form on each side of this joint, replacing tissues which in the growing season can be parted only by breaking or tearing them forcibly. A clean-cut zone of separation weakens the hold of the leaf upon its twig, and when the moment arrives the lightest breath of wind—even the weight of the withered leaf itself—causes the natural separation. And the leaflets simultaneously fall away from their common petiole.
There are more important things happening in leaves in late summer than the formation of corky cells. The plump green blades are full of valuable substance that the tree can ill afford to spare. In fact, a leaf is a layer of the precious cambium spread out on a framework of veins and coveredwith a delicate, transparent skin—a sort of etherealized bark. What a vast quantity of leaf pulp is in the foliage of a large tree!
As summer wanes, and the upward tide of sap begins to fail, starch making in the leaf laboratories declines proportionately. Usually before midsummer the fresh green is dimmed. Dust and heat and insect injuries impair the leaf's capacity for work. The thrifty tree undertakes to withdraw the leaf pulp before winter comes.
But how?
It is not a simple process nor is it fully understood. The tubes that carried the products of the laboratory away are bound up with the fibres of the leaf's skeleton. Through the transparent leaf wall the migration of the pulp may be watched. It leaves the margins and the net veins, and settles around the ribs and mid vein, exactly as we should expect. Dried and shrivelled horse-chestnut leaves are still able to show various stages in this marvellous retreat of the cambium. If moisture fails, the leaf bears some of its green substance with it to the earth. The "breaking down of the chlorophyll" is a chemical change that attends the ripening of a leaf. (Leaf ripening is as natural as the ripening of fruit.) The waxy granules disintegrate, and a yellow liquid shows its colors through the delicate leaf walls. Now other pigments, some curtained from view by the chlorophyll, others the products of decomposition, show themselves. Iron and other minerals the sap brought from the soil contribute reds and yellows and purples to the color scheme. As drainage proceeds, with the chemical changes that accompany it, the pageant of autumn colors passes over the woodlands. No weed or grass stem but joins in the carnival of the year.
Crisp and dry the leaves fall. Among the crystals and granules that remain in their empty chambers there is little but waste that the tree can well afford to be rid of—substances that have clogged the leaf and impeded its work.
We have been mistaken in attributing the gay colors of autumnal foliage to the action of frost. The ripening of the leaves occurs in the season of warm days and frosty nights, but it does not follow that the two phenomena belong together as cause and effect. Frost no doubt hastens the process. But the chemical changes that attend the migration of the carbohydrates and albuminous materials from the leaf back into twig and trunk and root for safe keeping go on no matter what the weather.
In countries having a moist atmosphere autumn colors are less vivid. England and our own Pacific Coast have nothing to compare with the glory of the foliage in the forests of Canada and the Northeastern states, and with those on the wooded slopes of the Swiss Alps, and along the Rhine and the Danube. Long, dry autumns produce the finest succession of colors. The most brilliant reds and yellows often appear long before the first frost. Cold rains of long duration wash the colors out of the landscape, sometimes spoiling everything before October. A sharp freeze before the leaves expect it often cuts them off before they are ripe. They stiffen and fall, and are wet and limp next day, as if they had been scalded; all their rich cell substance lost to the tree, except as they form a mulch about its roots. But no tree can afford so expensive a fertilizer, and happily they are not often caught unawares.
Under the trees the dead leaves lie, forming with the snow a protective blanket for the roots. In spring the rains will leach out their mineral substance and add it tothe soil. The abundant lime in dead leaves is active in the formation ofhumus, which is decayed vegetable matter. We call it "leaf mould." So even the waste portions have their effectual work to do for the tree's good.
The leaves of certain trees in regions of mild winters persist until they are pushed off by the swelling buds in spring. Others cling a year longer, in sorry contrast with the new foliage. We may believe that this is an indolent habit induced by climatic conditions.
Leaves of evergreens cling from three to five years. Families and individuals differ; altitude and latitude produce variations. An evergreen in winter is a dull-looking object, if we could compare it with its summer foliage. Its chlorophyll granules withdraw from the surface of the leaf.
They seek the lower ends of the palisade cells, as far as they can get from the leaf surface, assume a dull reddish brown or brownish yellow color, huddle in clumps, their water content greatly reduced, and thus hibernate, much as the cells of the cambium are doing under the bark. In this condition, alternate freezing and thawing seem to do no harm, and the leaves are ready in spring to resume the starch-making function if they are still young. Naturally, the oldest leaves are least capable of this work, and least is expected of them. Gradually they die and drop as new ones come on. As among broad-leaved trees, the zone of foliage in evergreens is an outer dome of newest shoots; the framework of large limbs is practically destitute of leaves.
How Trees Spend the Winter
Nine out of every ten intelligent people will see nothing of interest in a row of bare trees. They casually state that buds are made in the early spring. They miss seeing thestrength and beauty of tree architecture which the foliage conceals in summertime. The close-knit, alive-looking bark of a living tree they do not distinguish from the dull, loose-hung garment worn by the dead tree in the row. All trees look alike to them in winter.
Yet there is so much to see if only one will take time to look. Even the most heedless are struck at times with the mystery of the winter trance of the trees. They know that each spring reënacts the vernal miracle. Thoughtful people have put questions to these sphinx-like trees. Secrets the bark and bud scales hide have been revealed to those who have patiently and importunately inquired. A keen pair of eyes used upon a single elm in the dooryard for a whole year will surprise and inform the observer. It will be indeed the year of miracle.
A tree has no centre of life, no vital organs corresponding to those of animals. It is made up, from twig to root, of annual, concentric layers of wood around a central pith.
It is completely covered with a close garment of bark, also made of annual layers. Between bark and wood is the delicate undergarment of living tissue calledcambium. This is disappointing when one comes to look for it, for all there is of it is a colorless, slimy substance that moistens the youngest layers of wood and bark, and forms the layer of separation between them. This cambium is the life of the tree. A hollow trunk seems scarcely a disability. The loss of limbs a tree can survive and start afresh. But girdle its trunk, exposing a ring of the cambium to the air, and the tree dies. The vital connection of leaves and roots is destroyed by the girdling; nothing can save the tree's life. Girdle a limb or a twig and all above the injury suffers practical amputation.
The bark protects the cambium, and the cambium is the tissue which by cell multiplication in the growing season produces the yearly additions of wood and bark. Buds are growing points set along the twigs. They produce leafy shoots, as a rule. Some are specialized to produce flowers and subsequently fruits. Leaves are extensions of cambium spread in the sun and air in the season when there is no danger from frosts. The leaves have been called the stomachs of a tree. They receive crude materials from the soil and the air and transmute them into starch under the action of sunlight. This elaborated sap supplies the hungry cambium cells during the growing season, and the excess of starch made in the leaf laboratories is stored away in empty wood cells and in every available space from bud to root tip, from bark to pith.
The tree's period of greatest activity is the early summer. It is the time of growth and of preparation for the coming winter and for the spring that follows it. Winter is the time of rest—of sleep, or hibernation. A bear digs a hollow under the tree's roots and sleeps in it all winter, waking in the spring. In many ways the tree imitates the bear. Dangerous as are analogies between plants and animals, it is literally true that the sleeping bear and the dormant tree have each ceased to feed. The sole activity of each seems to be the quiet breathing.
Do trees really breathe? As truly and as incessantly as you do, but not as actively. Other processes are intermittent, but breathing must go on, day and night, winter and summer, as long as life lasts. Breathing is low in winter. The tree is not growing. There is only the necessity of keeping it alive.
Seepage 42A GROVE OF BEECHES
Seepage 42
A GROVE OF BEECHES
Seepage 44THE CHESTNUT
Seepage 44
THE CHESTNUT
Leaves are the lungs of plants. In the growing season respiration goes on at a vigorous rate. The leaves also throw off in insensible vapor a vast quantity of water. This is calledtranspirationin plants; in animals the term used isperspiration. They are one and the same process. An average white oak tree throws off 150 gallons of water in a single summer day. With the cutting off of the water supply at the roots in late fall, transpiration is also cut off.
The skin is the efficient "third lung" of animals. The closing of its pores causes immediate suffocation. The bark of trees carries on the work of respiration in the absence of the leaves. Bark is porous, even where it is thickest.
Look at the twigs of half a dozen kinds of trees, and find the little raised dots on the smooth surface. They usually vary in color from the bark. These arelenticels, or breathing pores—not holes, likely to become clogged with dust, but porous, corky tissue that filters the air as it comes in. In most trees the smooth epidermis of twigs is shed as the bark thickens and breaks into furrows. This obscures, though it does not obliterate, the air passages. Cherry and birch trees retain the silky epidermal bark on limbs, and in patches, at least, on the trunks of old trees. Here the lenticels are seen as parallel, horizontal slits, open sometimes, but usually filled with the characteristic corky substance. They admit air to the cambium.
There is a popular fallacy that trees have no buds until spring. Some trees have very small buds. But there is no tree in our winter woods that will not freely show its buds to any one who wishes to see them. A very important part of the summer work of a tree is the forming of buds for next spring. Even when the leaves are just unfoldingon the tender shoots a bud will be found in each angle between leaf and stem. All summer long its bud is the especial charge of each particular leaf. If accident destroy the leaf, the bud dies of neglect. When midsummer comes the bud is full grown, or nearly so, and the fall of the leaf is anticipated. The thrifty tree withdraws as much as possible of the rich green leaf pulp, and stores it in the twig to feed the opening buds in spring.
What is there inside the wrappings of a winter bud? "A leaf," is the usual reply—and it is not a true one. A bud is an embryo shoot—one would better say, a shoot in miniature. It has very little length or diameter when the scales are stripped off. But with care the leaves can be spread open, and their shape and venation seen. The exact number the shoot was to bear are there to be counted. Take a horse-chestnut bud—one of the biggest ones—and you will unpack a cluster of flowers distinct in number and in parts. The bud of the tulip tree is smaller, but it holds a single blossom, and petals, stamens, and pistil are easily recognizable. Some buds contain flowers and no leaves. Some have shoots with both upon them. If we know the tree, we may guess accurately about its buds.
There is another popular notion, very pretty and sentimental, but untrue, that study of buds is bound to overthrow. It is the belief that the woolly and silky linings of bud scales, and the scales themselves, and the wax that seals up many buds are all for the purpose of keeping the bud warm through the cold winter. The bark, according to the same notion, is to keep the tree warm. This idea is equally untenable. There is but feeble analogy between a warm-blooded animal wrapped in fur, its bodily heat kept up by fires within (the rapid oxidation of fatsand carbohydrates in the tissues), and the winter condition of a tree. Hardy plants are of all things the most cold blooded. They are defended against injuries from cold in an effective but entirely different way.
Exposure to the air and consequent loss of its moisture by evaporation is the death of the cambium—that which lies under the thick bark and in the tender tissues of the bud, sealed up in its layers of protecting scales.
The cells of the cambium are plump little masses of protoplasm, semi-fluid in consistency in the growing season. They have plenty of room for expansion and division. Freezing would rupture their walls, and this would mean disintegration and death. Nature prepares the cells to be frozen without any harm. The water of the protoplasm is withdrawn by osmosis into the spaces between the cells. The mucilaginous substance left behind is loosely enclosed by the crumpled cell wall. Thus we see that a tree has about as much water in it in winter as in summer. Green wood cut in winter burns slowly and oozes water at the ends in the same discouraging way as it does in summertime.
A tree takes on in winter the temperature of the surrounding air. In cold weather the water in buds and trunk and cambium freezes solid. Ice crystals form in the intercellular spaces where they have ample room, and so they do no damage in their alternate freezing and thawing. The protoplasm stiffens in excessive cold, but when the thermometer rises, life stirs again. Motion, breathing, and feeding are essential to cell life.
It is hard to believe that buds freeze solid. But cut one open in a freezing cold room, and before you breathe upon it take a good look with a magnifier, and you should makeout the ice crystals. The bark is actually frozen upon a stick of green stovewood. The sap that oozes out of the pith and heart wood was frozen, and dripped not at all until it was brought indoors.
What is meant by the freezing of fruit buds in winter, by which the peach crop is so often lost in Northern states? When spring opens, the warmth of the air wakes the sleeping buds. It thaws the ice in the intercellular spaces, and the cells are quick to absorb the water they gave up when winter approached. The thawing of the ground surrounds the roots with moisture. Sap rises and flows into the utmost twig. Warm days in January or February are able to deceive the tree to this extent. The sudden change back to winter again catches them. The plump cells are ruptured and killed by the "frost bite."
It is a bad plan to plant a tender kind of tree on the south side of a house or a wall. The direct and the reflected warmth of the sun forces its buds out too soon, and the late frosts cut them off. There is rarely a good yield on a tree so situated.
There is no miracle like "the burst of spring." Who has watched a tree by the window as its twigs began to shine in early March, and the buds to swell and show edges of green as their scales lengthened? Then the little shoot struggled out, casting off the hindering scales with the scandalous ingratitude characteristic of infancy. Feeble and very appealing are the limp baby leaves on the shoot, as tender and pale green as asparagus tips. But all that store of rich nutritive material is backing the enterprise. The palms are lifted into the air; they broaden and take on the texture of the perfect, mature leaf. Scarcely a day is required to outgrow the hesitation and inexperience ofyouth. The tree stands decked in its canopy of leaves, every one of which is ready and eager to assume the responsibilities it faces. The season of starch making has opened.
Cut some twigs of convenient trees in winter. Let them be good ones, with vigorous buds, and have them at least two feet long. You may test this statement I have made about the storing of food in the twigs, and the one about the unfolding of the leafy shoots. Get a number of them from the orchard—samples from cherry, plum, and apple trees; from maple and elm and any other familiar tree. Put them in jars of water and set them where they get the sun on a convenient window shelf. Give them plenty of water, and do not crowd them. It is not necessary to change the water, but cutting the ends slanting and under water every few days insures the unimpeded flow of the water up the stems and the more rapid development of the buds you are watching. When spring comes there are too many things that demand attention. The forcing of winter buds while yet it is winter is the ideal way to discover the trees' most precious secrets.
PART II
THE NUT TREES
The Walnuts—The Hickories—The Beech—The Chestnuts—The Oaks—The White Oak Group—The Black Oak Group—The Horse-Chestnuts, or Buckeyes—The Lindens, or Basswoods
THE WALNUTS
Hickories are included with their near relatives, the walnuts, in one of the most important of all our native tree groups. They are distinct, yet they have many traits in common—the flowers and the nut fruits, the hard resinous wood, with aromatic sap and leaves of many leaflets, instead of a single blade.
The walnuts are decidedly "worth knowing." All produce valuable timber and edible nuts, and all are good shade trees. Four native walnuts are well known in this country, for in October, every tree in every bit of woods is likely to be visited by school boys with bags, eager to gather the nuts before some other boy finds the tree, and thus establishes a prior claim upon it. The curiously gnawed shells outside the winter storehouse of some furry woods-dweller reveal the most successful competitor boys have, the constant watcher of the nut trees, a harvester who works at nothing else while the season is on.
The Southwestern Walnut
Juglans rupestris, Engelm.
The walnut of the Southwest grows into a spreading, luxuriant tree, where its roots find water. But on the canyon sides, and higher on mountain slopes, it becomes a stunted shrub, because of lack of moisture.
The nut is smaller than that of the eastern walnuts and has a thick shell, but the kernel is sweet and keeps its rich flavor for a long time. The Mexicans and Indians are glad to have this nut added to the stores they gather for their winter food.
One striking feature of this tree is the pale, cottony down on its twigs, which sometimes persists three or four years. The long limbs droop at the extremities, almost deserving to be called "weeping." But nothing could be more cheerful in color than the yellow-green foliage, shining in the sun, against the white bark of the tree. In autumn the foliage turns bright yellow. A specimen, much admired, grows in the Arnold Arboretum in Boston.
The California Walnut
J. californica, Wats.
The California walnut is a stocky, round-headed tree, with heavy, drooping branches, and bark that is white and smooth on limbs and on trunks of young trees. Ultimately the trunk turns nearly black, and is checked into broad, irregular ridges. In bottom lands, along the courses of rivers, back thirty miles from the coast, these trees arefound, from the Sacramento Valley to the southern slopes of the San Bernardino Mountains.
The foliage is bright pale green, feathery, the leaflets often curved to sickle form, showing paler silky linings. Californians admire and plant this tree for shade and ornament. Its greatest value is as a hardy stock upon which the "English" walnut is grafted by nurserymen, for planting orchards of this commercial nut. The fruit of the native nut is excellent, but it cannot compete with the thin-shelled nut that came from Persia,viaEngland.
The Butternut, White Walnut, or Oilnut
J. cinerea, Linn.
In eastern woods the butternut is known by its long, pointed nuts, with deeply and raggedly sculptured shells, in fuzzy, clammy, sticky husks that stain the hands of him who attempts to get at the oily meat before the husks are dry. This dark stain was an important dye in the time when homespun cotton cloth was worn by men and boys. The modern khaki resembles in color the "butternut jeans," in which backwoods regiments of the Civil War were clad. Butternut husks and bark yield also a drug of cathartic properties.
Pickling green oilnuts in their husks is a housewifely industry, on the summer programme of many housewives still, if the woods near by furnish the raw material for employing her great-grandmother's recipe, brought from England, or perhaps from France. The green nuts are tested with a knitting needle. If it goes through them with no difficulty, and yet the nuts are of good size, they are ready. Vigorous rubbing removes the fuzz after the nuts are scalded. Then they are pickled whole, in spiced vinegar, and are a rare, delectable relish with meats for the winter table.
Seepage 42WEEPING BEECH
Seepage 42
WEEPING BEECH
Seepage 31BLACK WALNUT
Seepage 31
BLACK WALNUT
A butternut tree, beside the road, or elsewhere, with room to grow, has a short trunk, and a low, broad head, with a downward droop to the horizontal limbs. The bark is light brown, the limbs grayish green, the twigs and leaves all ooze a clammy, waxy, aromatic sap, and are covered with fine hairs of velvety abundance.
Because it is low and rather wayward in growth, late to leaf out in spring, and early to shed its leaves in summer, the butternut is not a good street tree. It breaks easily in the wind, and crippled trees are more common than well-grown specimens. Insect and fungous enemies beset the species, and take advantage of breaks to invade the twigs through the chambered pith. Short-lived trees they are, whose brown, satiny wood is used in cabinet work, but is not plentiful.
The Black Walnut
J. nigra, Linn.
The black walnut (see illustrations, pages31,70) is the second species east of the Rocky Mountains, and the tree chiefly depended upon, during the century just closed, by the makers of furniture of the more expensive grades. Black walnut wood is brown, with purplish tones in it, and a silvery lustre, when polished. Its hardness and strength commend it to the boat and ship builder. Gunstock factories use quantities of this wood. In furniture and interior woodwork, the curly walnut, found in the old stumps of trees cut long before, is especially sought for veneering panels. Old furniture, of designs that have passed out,are often sold to the factories, and their seasoned wood cut thin for veneering.
Walnut trees one hundred and fifty feet high were not uncommon in the forests primeval, in the basin of the Ohio and Wabash rivers. These giants held up their majestic heads far over the tops of oaks and maples in the woods. They were slaughtered, rolled together, and burned by the pioneers, clearing the land for agriculture. These men had a special grudge against walnut trees, they were so stubborn—so hard to make away with. How unfortunate it is that our ancestors had the patience to go forward and conquer the unconquerable ones. Had they weakly surrendered, and let these trees stand, we should have had them for the various uses to which we put the finest lumber trees to-day.
Unhappily, the growing of young trees has not been extensively undertaken to replace those destroyed. The newer forestry is awake to the need, and the loss may be made good, from this time forward.
The black walnut is nearly globular, deeply sculptured, with a sweet nut rich in oil, very good if one eats but a few at a time. Locally, they find their way to market, but they soon become rancid in the grocer's barrel. At home, boys spread them, in their smooth, yellow-pitted husks, on the roof of the woodshed, for instance, so the husks can dry while the nuts are seasoning. No walnut opens its husk in regular segments, as the hickories all do. But the husking is not hard. The thick shells require careful management of the hammer or nut-cracker, to avoid breaking the meats.
Dark as is its wood and bark, no walnut tree in full leaf is sombre. The foliage is bright, lustrous, yellow-green,graceful, dancing. A majestic tree, with a luxuriant crown from May till September, this walnut needs room to display its notable contour and size. It deserves more popularity than it enjoys as a tree for parks. No tree is more interesting to watch as it grows.
The bitter spongy husk deters the squirrels from gnawing into the nut until the husk is dry and brittle. Hidden in the ground, the shell absorbs moisture, and winter frost cracks it, by the gentle but irresistible force of expanding particles of water as they turn to ice. So the plantlet has no hindrance to its growth when spring opens.
Imitating nature, the nurseryman lays his walnuts and butternuts in a bed of sand or gravel, one layer above another, and lets the rain and the cold do the rest. In spring the "stratified" nuts are ready for planting. Sometimes careful cracking of the shell prepares the nut to sprout when planted.
The Japanese walnuts (J. SieboldianaandJ. cordiformis) are grown to a limited extent in states where the English walnut is not hardy. They are butternuts, and very much superior to our native species. A Manchurian walnut has been successfully introduced, but few people but the pioneers in nut culture know anything about these exotic species. South America and the West Indies have native species. So we shall not be surprised, in our travels, to find walnuts in the woods of many continents.
The English Walnut
J. regia, Linn.
Originally at home in the forests of Persia and northwestern India, the English walnut was grown for its excellentnuts in the warm countries of Europe and Asia. It was a tree of great reputation when Linnaeus gave it the specific name that meansroyal. Indeed, this is the tree which gave to all the family the name "Juglans," which means, "Jove's acorn," in the writings of Roman authors. Kings made each other presents of these nuts, and so the range of the species was extended, even to England, by the planting of nuts from the south.
It became the fad of gardeners, before the fifteenth century, to improve the varieties, and to compete with others in getting the thinnest shell, the largest nut, the sweetest kernel, just as horticulturists do now. In 1640 the herbalist Parkinson wrote about a variety of "French wallnuts, which are the greatest of any, within whose shell are often put a paire of fine gloves, neatly foulded up together." Another variety he mentions "whose shell is so tender that it may easily be broken between one's fingers, and the nut itsself is very sweete."
In England, the climate prevents the ripening of the fruit of walnut trees. But the nuts reach good size, and are pickled green, for use as a relish; or made into catsups—husks and all being used, when a needle will still puncture the fruit with ease.
In America, the first importations of the walnuts came from the Mediterranean countries, by way of England, "the mother country." In contradistinction to our black walnuts and butternuts, these nuts from overseas were called by the loyal colonists "English walnuts," and so they remain to this day in the markets of this country.
It was natural and easy to grow these trees in the Southern states. But little had been done to improve them, orto grow them extensively for market, until California undertook to compete with Europe for the growing American trade. Now the crop reaches thousands of tons of nuts, and millions of dollars come back each year to the owners of walnut ranches. Hardy varieties have extended the range of nut-orcharding; and so has the grafting of tender varieties on stock of the native black walnut of California.
The beauty of this Eurasian walnut tree would justify planting it merely for the adornment of parks and private grounds. Its broad dome of bright green foliage in summer, and its clean gray trunk and bare branches in winter, are attractive features in a landscape that has few deciduous trees. A fine dooryard tree that bears delicious nuts, after furnishing a grateful shade all summer, is deserving the popularity it enjoys with small farmers and owners of the simplest California homes.
As a lumber tree, the walnut of Europe has long been commercially important. It is the staple wood for gun-stocks, and during wars the price has reached absurd heights, one country bidding against its rival to get control of the visible supply. Furniture makers use quantities of the curly walnut often found in stumps of old trees. The heart wood, always a rich brown, is often watered and crimped in curious and intricate patterns, that when polished blend the loveliest dark and light shades with the characteristic walnut lustre, to reward the skilled craftsman.
In the United States this wood is rarely seen, because the trees are grown for their nuts. They require several years to come into bearing, are long-lived, have few enemies, and need little pruning as bearing age approaches.