III.EVENTS AS THEY OCCUR.

OUTLINE OF TYPE-SETTING MACHINE.

OUTLINE OF TYPE-SETTING MACHINE.

After the matrix line is in place, the plunger falls and forces metal through the pot mouth into the mold, against and into the characters of the matrix line. The metal instantly solidifies in the mold, forming the slug or linotype, having on its edge raised type characters formed by the matrices. The mold wheel next makes a partial revolution, turning the mold from the original horizontal to a vertical position in front of the ejector, which then advances from the rear through the mold, pushing the slug out of the latter into the receiving galley, at the front.

A vibrating arm advances the slugs laterally in the galley, and thus assembles them side by side in column or page-form ready for use. In order to insure absolute accuracy in the height and thickness of the slugs, knives are arranged to act upon them during their course to the galley.

After the matrices in the line have served their purpose in front of the mold, they are returned to the magazine to be again discharged and used in the following manner. The line is lifted from the mold and shifted laterally until the teeth at the top engage the teeth of bar,R. This bar then rises as shown by dotted lines, lifting the matrices to the distributor at the top of the machine, but leaving the spaces,I, behind to be shifted laterally to the magazine or holder,H, from which they were discharged. Each matrix has distributor teeth in its top, arranged in a special order or number, according to the character it contains. In other words, a matrix containing any given character differs in the number or relation of its teeth from a matrix containing any other character. This difference is relied upon to secure proper distribution. A distributor-bar,T, in a single piece, is fixed horizontally over the upper end of the magazine, and is formed with longitudinal ribs or teeth, adapted to engage the teeth of the matrices and hold the latter in suspension as they are carried along the bar over the mouths or entrances of the channels.

The teeth of the bar are cut away to vary their number or arrangement at different points in its length, so that there is a special arrangement over the mouth of each channel. The matrices are pushed upon the bar at the end, and made to slide slowly along it while suspended therefrom. Each matrix remains in engagement, and travels over the mouth of the channels, until it arrives at the required point, where, for the first time, its teeth bear such relation to those of the bar that it is permitted to disengage and fall into its channel.

The travel of the matrices is secured by longitudinal screws, which lie below the bar in position to engage the edges of the matrices. The matrices pursue a circulatory course through the machine, starting from the bottom of the magazine and passing thence to the line being composed, thence to the mold, and finally back to the top of the magazine. This circulation permits the operations of composing one line, casting a second, and distributing a third, to be carried on concurrently, and enables the machine to run at a speed exceeding that at which any operator can finger the keys.

One half horse power is generally used in driving a machine. About five square feet is the space occupied by the machine; it weighs 1925 pounds, and consumes about fifteen feet of illuminating gas each hour to heat the metal pot. Each machine will do complete work equal to that of five men by hand. The simplicity of the machine bears a striking resemblance to thetypewriter, and this is operated successfully by young girls. When the matter set by the machine is placed together, the page presents a surface equal to an entire new set of type, or, as the printers say, “We take on an entire new dress every day.”

That is a production of the nineteenth century. How commonplace it will appear when the achievements of the twentieth century are placed on record.

When the nineteenth century opened, great events were occurring in the world. Napoleon Bonaparte was the central figure in the eye of Europe. He had, but a few years previously (1797), gone through the most brilliant campaign known. He had crossed the Alps, defeated the Austrians at Montenotte and Millesimo, defeated the Sardinians at Ceva and Mondovi, and conquered Lombardy,—all in a few weeks. The year following he had conquered Egypt, and in 1800 had become the first consul and the ruler of France, to be declared Emperor four years later.

Then followed, in rapid succession, the events which caused the world to look upon Napoleon as the probable coming ruler of the universe. It was in 1805 that he began the war of aggrandizement. He crossed the Rhine, compelling the Austrian army to surrender at Ulm; he entered Vienna and routed the Russian and Austrian armies at Austerlitz. This was followed by his move to make himself master of Southern and Central Europe. He established his brother Joseph as King of Naples; his brother Louis as King of Holland; his stepson Eugene as Viceroy of Italy; and his brother-in-law, Joachim Murat, as Grand Duke of Berg. The following year he defeated the Prussians and entered Berlin.

It was not until his abdication at Fontainebleau, in 1814, that Europe and America breathed freely. His final overthrow at Waterloo in 1815 removed him from the stage as an active participant in the world’s history of the nineteenth century.

In the United States, the close of the eighteenth century was marked by the death of Washington, while 1800, 1801, 1802 saw us make a treaty of peace with France, remove the national capital from Philadelphia to Washington, D. C., declare war against Tripoli, purchase Louisiana from France, and enter upon the disputes with Great Britain which culminated in a declaration of war with the mother country, in June of 1812.

While these events at home and abroad were making history, long periods of time elapsed between their occurrence and their being given to the people. There was no telegraphic communication which flashed messages around the globe. It was a wait until the mails brought the news. Two months, probably, elapsed after the battle of Waterloo ere this country was furnished with the story which meant so much to the peace of Europe.

What a change in this respect was wrought between the downfall of Napoleon Bonaparte in 1815 and the downfall of his nephew, Louis Napoleon, in 1870! On the fateful second of September, 1870, when the Emperor of France, Napoleon III., surrendered to the Emperor William of Prussia, on the field of Sedan, the news was flashed to America in less than two hours. On that hot, sultry day eager crowds surrounded the bulletin boards of the newspapers, on which were displayed the facts connected with theoverthrow of the Napoleonic dynasty. The difference in time made it possible for us here to know all that had been done by the two emperors and by Bismarck an hour ahead of their actual happening. For days before that the crowds had surged around the newspaper offices, for days afterward they did the same, and facts were given with a rapidity which showed how wonderful had been the scientific stride between 1815 and 1870.

Had any one in 1815 predicted the possibility of such scenes, he would have been put down as a fit subject for a writ ofde lunatico inquirendo. Such, too, would have been the comment on the one who then would have suggested the likelihood of a newspaper in this country reaching a circulation of a million copies daily,—and yet such has become an accomplished fact.

At the close of the first quarter of the nineteenth century there had been no practical advance in the rapid transmission of news. This was the period when the press lacked the facility to rapidly furnish the people with the events which were occurring in all directions. Newspapers still depended upon the mails. Home events were many weeks reaching sections remote from their happening. In this respect there had been some little improvement at the close of the first half of the century. That was the time when the electrical current was being brought into operation in the transmission of signals from which messages were being recorded, and these were being utilized for the sending of information at short distances. Scientific men were even talking of the possibility of connecting distant points on the coast, and whispering their hope for an Atlantic cable. In 1858 that wonderful event came to pass. The old world and the new were connected by cable from Valencia Bay, in Ireland, to Newfoundland, in North America, and messages of greeting passed between Queen Victoria and President Buchanan. The break which followed soon after the opening of this cable stimulated men of genius and men of capital to further efforts, and the governments of the United States and Great Britain came forward with generous aid. The laying of the Atlantic cable by the Great Eastern in 1864, and its successful operation in 1866, opened the doors for the possibilities of the press of to-day, and the realization of such scenes as were witnessed in this country on September 2, 1870.

Between that memorable year, 1866, and this, 1899, how wonderful has been the advance in the transmission of information from all quarters of the globe. From the Transvaal Republic, in South Africa; from the desert home of the Dervish in the Soudan; from the domain of Turkey’s Sultan, in Armenia; from the Holy Land; from the Oriental empires of China and Japan; from the snow-clad land of the Czar in Siberia; from the Bosphorus to the English Channel; from Valencia across the Atlantic; from Victoria Land in North America to Patagonia in South America; from Maine to Mexico; from the Atlantic to the Pacific; there are each day transmitted all occurrences of interest transpiring,—and these encompass peace and war, joy and sorrow, science and art, education and trade,—events which arouse the passions and quicken the pulse of humanity.

This is done through the medium of an organization known as the Associated Press. This wonderful combination has nearly forty thousand miles of wire from the different telegraph companies, for which there is paid a fixed price per mile. This, however, does not include its cable service, thecharges for which are according to the number of words transmitted. The service of this organization costs a million and a half a year, divided among several hundred of the great newspapers of the United States. During the recent conflict between Spain and the United States its expenditure for war news alone was nearly $500,000. This can readily be understood when the reader is informed that the cable rate from Manila was $2.37 a word. Thus, a dispatch filling less than a quarter of a column of the average daily paper cost $1000. The rate from Porto Rico, at the outbreak of hostilities, was $1.90 a word, and it often happened that a single dispatch covering the movements of a body of troops in that island, with possibly a pen picture of a skirmish with the Spaniards, would cost $2000 in gold. The Santiago toll was $1.10 a word; and whole pages of newspapers were printed at that rate.

What a gigantic institution it has become for the rapid dissemination of news events!

In that war between Spain and the United States, General Toral, the Spanish commander, surrendered Santiago on July 14, at 2.15 o’clock in the afternoon. At 2.25 o’clock the message announcing the fact was received in Philadelphia. On the 12th of August following, at 4.23 o’clock in the afternoon, the Peace Protocol was signed in Washington by the French Ambassador Cambon and Secretary of State Day, and at 4.27 o’clock—four minutes later—the information was in the New York office of the Associated Press. Hundreds of such instances of this rapid transmission of news could be recorded in this last year of the nineteenth century,—facts never even dreamed of when Benjamin Franklin chained the electric current in the closing years of the eighteenth century.

The journey of a piece of news from the far East to the far West is something worth noting. The trip covers thousands of miles out of a direct route. As for instance, when Admiral Dewey annihilated the Spanish fleet in the Bay of Manila, on May 1, 1898, the fact was cabled to Hong Kong, China. There an operator transmitted it northward to Helampo in Russia, right on the border line of Manchooria, from which place it was sent across Russia to Tomsk, thence to St. Petersburg. From the Russian capital it zigzagged to Berne, in Switzerland; thence to Paris; thence across the channel to Penzance, and finally to Valencia, to be put on the cable for America. In two hours from the time the operator in Hong Kong started his dispatch, it was being hurried across the American continent—north, west, east, south—for distribution in the newspaper offices.

When a party of Mohammedans attacked a Christian mission in Calcutta, a telegraph operator dispatched the news to Bombay, whence it was transmitted to Aden. The next point reached was Suez, from which it was sent to Malta. It was next sent to Lisbon. From there it was given to Paris. From Malta it was also cabled to Penzance, thence to Valencia, and finally to the United States.

When that Manila piece of news from Admiral Dewey reached the Pacific coast in the United States, the date of its being started was yet several hours behind the time of its arrival. The attack on the Spanish fleet was made on Sunday, May 1, Manila time. The fact was not sent out by Dewey until the following morning, May 2 (still Manila time). It was started on itswestward course that morning (May 2) at ten o’clock. By the route taken to Valencia with the relays, two hours were consumed. This brought it to London about three o’clock on that morning of May 2, owing to the difference in time. Traveling westward across the Atlantic ocean in advance of the sun, it reached New York about ten o’clock in the night of May 1. But little time was lost in retransmission to the Pacific coast, which point it reached about six o’clock on that Sunday evening of May 1—fourteen hours previous, by the day of the month, to its being started from Manila.

In this work of sending out news not a moment is lost that can be avoided. The aid of the typewriter enables the operator to keep pace with the sending operator, and his pace has been increased in the past few years by the introduction of a code system. Here is a specimen of the code system as used by the operator in sending out a newsitem:—

“Madrid, March 17—T Qn Regent h sined t Treaty of Peace btn Spn & t Uni Stas. T treaty wb frwded to t French Ambsdr, Jules Cambon, at Washn, fo exg w t one sined by Pr McKinley. No decree q sj wb pud d ‘Official Gazette.’

“Ofl rlns btn t 2 govts wi nw b promtly rnud. Ix rmrd 5 Mir to t Uni Stas wb Snor. Don J. Brunetti, Duke d’Arcos, fmr Spnh Mir to Mex, wos wif is an Amn.”

When this seemingly incomprehensible conglomeration of letters leaves the hand of the receiving operator it reads asfollows:—

“Madrid, March 17—The Queen Regent has signed the Treaty of Peace between Spain and the United States. The treaty will be forwarded to the French Ambassador, Jules Cambon, at Washington, for exchange with the one signed by President McKinley. No decree on the subject will be published in the ‘Official Gazette.’

“Official relations between the two governments will now be promptly renewed. It is rumored that the Minister to the United States will be Señor Don J. Brunetti, Duke d’Arcos, former Spanish Minister to Mexico, whose wife is an American.”

The London “Times” recently has been experimenting with a scheme whereby reporters in the Houses of Parliament operate the typesetting machines in the London office by the wire from their quarters in Parliament.

It is only a question of time when this practice comes into use in the reporting of all legislative proceedings.

In some of the New York newspaper offices, the receiving operator sits at a typesetting machine and puts into type the messages which come over the wires.

How rapidly we have advanced in this direction in the last half of the nineteenth century is thus shown. What will be done by our successors in the first half of the twentieth century, no man can at this time satisfactorily predict.

The manufacture of the small metal pieces called type has undergone little change in this nineteenth century. That which has been done has been in the way of producing artistic designs, so arranged that combinations can be formed pleasing to the eye, and an aid to rapid workmanship. The machineryin use has lost its crudity, the production has been increased, and the finish become more perfect. The setting of type by machinery has been a serious blow to this industry, and the time will come when it will be devoted entirely to the making of job or fancy types.

Benjamin Franklin attempted to make metal type in this country, but he did not succeed. It was not until 1796 that type-making was commenced here.

As in many other departures in the printing business, the city of Philadelphia took the lead. Binney and Ronaldson, of Edinburgh, Scotland, established the first foundry in this country, operating it in Philadelphia. After a severe struggle and with some aid from the State, a business was established by the two Scotchmen, which afterwards became known as the Johnson Foundry, under MacKellar, Smiths & Jordan, which is still in existence. They were followed by David Bruce, also a Scotchman, and by 1813 foundries had been established in New York and other large cities.

Since that time improvements have been introduced, but nothing has come forth which deserves to be ranked with the printing-press or the typesetting machine.

The type founder will tell you how much better are the machines used in 1899 than those which produced type in 1850. But he cannot point out any device connected with it which the mechanical world can designate as marvelous, or the people at large regard as a wonderful invention. Type once was rubbed into smoothness by boys. Now it is done automatically on the machine. By the hand process about four hundred types an hour were cast; by the present mechanism a speed of six thousand an hour has been acquired. Until about 1875, this output hardly met the demand; now it will do so. Before many years it will be far in excess of the requirements.

*****

Stereotyping is the art of making plates cast in one piece of type metal from the surface of one or more pages of type. In the beginning of the nineteenth century, stereotyping was used to an exceedingly limited extent. The printers were prejudiced against it for reasons purely selfish. It was not until 1813 that it was introduced into the United States, and only a few years previously Lord Stanhope introduced it into the English printing business. “The Larger Catechism of the Westminster Assembly” professes on its title-page to have been the first work stereotyped in America. It bears the date of June, 1813. Now the process is in general use—plaster, clay, and papier mâché being used.

The process of stereotyping originally was to preserve the pages, so that an entire edition of a work could be finished without requiring large numbers of type, and to have it ready for future editions. For newspaper work it came into vogue to save the rapid wearing out of the type by the impressions made.

From the practical introduction of stereotyping in this country, in 1813, by Robert Bruce, until about 1850, the slow, tedious, and troublesome process of making the plates by plaster of Paris was in vogue. That was done by the plaster being poured over the face of the type. Molten lead was then run into the cast, after which the plate was finished. The time thus occupied caused the work to be confined to books, magazines, and weekly issuesof small journals. When the plate was taken from the cast it was rough, imperfect, and unfit for use. Men, whose specialty was finishing, were employed to make the plate so as to meet the requirements of the printing press.

It was just at the opening of the last half of the nineteenth century that papier mâché began to be used in this country. A few years before that time it had been brought into use in London and Paris. Its introduction into the United States found the printing trade ready and willing to accept it, and but a few years passed before it came into general use by the newspapers. It is a peculiar combination. The paper matrix is formed by paste of starch, flour, alum, and water. This is spread over a thick paper, on which are placed layers of fine tissue paper. When ready for use, it is placed on the face of the type and a deep impression secured by being passed through a press. Then it goes into a steam chest to be dried, from there it is passed into the casting machine, the molten metal poured in, and a few minutes thereafter the plate is ready for the press. Up to a few years ago, the impression on papier mâché was secured by being beaten with brushes prepared for that use. The method had two disadvantages,—consumption of time and destruction of type. The press now used obviates these defects. The old way took about twenty minutes to produce a plate. Now it is done in from five to seven minutes. The machinery here introduced has been of benefit to the trade, but none of it ranks among the great inventions of the century.

The making of electrotype plates had its origin early in the century, when it was found that stereotype plates had a limit as to durability. Electroplating suggested to Josiah Adams, in 1839, the idea of a copper surface for the stereotype plate. It took ten years to bring it into practical use. His first successful work in this line was on the engravings and borders for a Bible issued in New York. It was found to be particularly adapted to engravings, producing a surface of sufficient smoothness to allow the pressman to make a print of exquisite fineness. The improvements introduced tended only toward the saving of time and the excellence of finish. Practically the same process is used now that was employed half a century ago. An impression of the type is made on wax, the electric current is secured by a deposit of fine graphite, the mold is placed in a bath containing a solution of sulphate of copper and is made part of the electric circuit, in which also is introduced a zinc element in a sulphuric acid solution. The current deposits a film of copper on the graphite surface of the mold. When it has assumed a sufficient thickness, it is taken from the bath, the wax is removed, and the copper shell trimmed. It is then backed with an alloy of type metal. The finishing process brings the plate to the proper thickness, after which it is blocked to the height required for printing. That is the process. To it in the last ten years there has been applied the use of steam machinery. In the old days the making of electrotypes required from ten to fifteen hours. They now are produced in from two to three hours.

*****

The close of the nineteenth century witnesses the disappearance entirely from the printing establishment of the once generally used wood engraving. The rise and fall of this once splendid art is practically encompassed inthe period of time covered by the nineteenth century. Thomas Bewick, an Englishman, gave wood engraving an artistic impetus by the production of illustrations for his “Histories of British Quadrupeds,” which appeared about 1790. Up to that period the work was crude. The books and magazines of the first decade of the century were illustrated in a way then regarded as highly artistic. The application of the Bewick method brought forth work which ranked in the line of high art. Of the development of this work volumes could be written. To simplify the situation it is only necessary to recall how these pictures were made. Squares of boxwood were used, on the face of which was spread a preparation of water-color Chinese white. On this surface the artist drew his picture, and then the engraver’s art was brought into requisition—the engraving being done alongside the pencil lines.

And here it was that the artistic instinct of the handler of the “graver” appeared,—the delicacy of touch being shown in the shading and in the finish of the lines. By this method there have been produced rare works of art, as can be seen by an examination of the books printed in the first half of the century.

The time taken in the making of the engravings, however, prevented the possibility of their being used by the newspapers and magazines as generally as was desired. This want was in a measure met by the introduction of machine “grooving.” The cuts, however, could not be used to print from directly in consequence of the warping of the boxwood, and it was necessary in every instance to make stereotype or electrotype plates. Then, too, came the realization of the fact that the reproduction of portraits needed something which would preserve features and expression. In those days some of the pictures produced were ludicrous in the extreme, and it became a standing joke in the newspapers that the best way to cast ridicule upon a public man was to print his picture. In the work of reproducing scenes the skill of the artist and the engraver frequently brought forth results which were marvels of excellence. For a number of years the wood engraving business flourished in this particular line, despite the dissatisfaction existing in regard to portrait work. In the production of illustrations for fine books, printed on good paper with flat presses and properly “under-” or “overlaid,” there was attained a degree of perfection in lines and shading which raised the pictures almost to the rank of steel and copperplate engravings. Many of those engaged in the work of drawing and cutting were possessed of a skill which would have won for them distinction in other artistic lines.

This, practically, was the condition of the profession when the end of the first half of the nineteenth century had been reached. Even then, however, the question of a substitute was under severe consideration in scientific as well as artistic circles. Experiments were made with copper, acids, and zinc, but satisfactory results could not be obtained. It was not until 1860 that a successful substitute was produced. Gillot, a Frenchman, brought forth a system of etching. By this means a photograph from an artist’s drawing was placed above a plate of gelatine, chemically sensitized. The parts of the gelatine exposed to the light became hard, and the remainder was brushed away with warm water. From this an electrotype could be made directly. That process has given way to the present system of photographing on zinc,and the use of acid baths for etching. Other improvements—principally the use of the screen—have resulted in the production of half-tones which are highly satisfactory in newspaper work. By this means there can be produced such reproductions as give the features of persons so that recognition is as easy as in the case of photographs. With the aid of different sizes of screens, backgrounds are secured which add materially to the artistic excellence of the pictures. So well done is the work in this direction that the plates can be used on the curved cylinders of the huge octuple presses, and enormous editions are printed from them. The peculiarity of this process is that the original can be reduced or enlarged so as to suit any width of column or page without affecting one way or the other the fineness of the work. Pen and ink drawings made by artists are photographed and backgrounded with the utmost accuracy as to design and detail. It has been found, however, that scenes in half-tones do not give as much satisfaction as do portraits, and it is believed to be only a question of time when there is a return to line engravings so far as the newspapers are concerned.

When one compares the photographic reproductions which appear in the magazines and newspapers of to-day with those of even ten years ago, there is seen an advancement which tells a wonderful story of the rapid march of artistic taste. The outline picture—excellent of its kind—has the appearance of crudity almost grotesque when placed beside the life-like half-tone reproduction of photographic art.

Wood engraving has been relegated to the days of the hand-press, the mail news-carrier and the plaster of Paris process of stereotyping. Inventive genius not only has advanced for the printing press and its adjuncts; it has also laid a heavy hand on art, causing it to pause and consider how soon the pencil and the brush will be superseded entirely by the rhythmic motion of the machine.


Back to IndexNext