CHAPTER XIX.SUBMARINE TUNNELING (Continued).

Fig. 122.—Sketch Showing Underground Stream, Milwaukee Water-Works Tunnel.

Fig. 122.—Sketch Showing Underground Stream, Milwaukee Water-Works Tunnel.

While the engineer did not consider the difficulty of proceeding along the old line insurmountable, it was decided to be less difficult on the whole to go back from 150 ft. to 175 ft. and deflect the line to the north and upward, so as to pass over the underground entrance. Instead of allowing the water to flow at its normal rate and take care of it by pumping, the contractors desired to reduce the pumping, and to this end they constructed a bulkhead just west of the deflection toward the south with a view of shutting off the water. The water, however, accumulated with a pressure of some 50 lbs. per sq. in. and penetrated the filling around the brick lining of the tunnel, preventing the cutting through of the lining for the new line. A second bulkhead was then built about 20 ft. west of the first, but with not much better results, for upon closing it the water was found to leak through the brickwork for a long distancewest. Finally on Aug. 2, 1892, the contractors lifted their pumps and allowed the tunnel to fill again with water.

No further work was done on the tunnel by the contractors, although they continued work on the lake shaft for some months. Difficulties had, however, arisen here, which will be describedfurther on; and finally a disagreement arose between the contractors and the city over the delay in prosecuting the tunnel work and over one or two other questions, which resulted in the City Council suspending their contract and ordering the Board of Public Works to go ahead with the work.

The first step to be taken by the engineer was to purchase adequate pumping machinery and empty the tunnel. This was effected Jan. 17, 1894; and as soon as practicable thereafter the two bulkheads were removed and the tunnel cleaned, tram-car tracks laid, and everything prepared for work. It was now determined to go ahead on the original line of the tunnel if possible, and the bulkhead here was removed and work begun. Meanwhile, a safety bulkhead had been built to replace the first one torn away. This was provided with a door and drainage pipes. Work was begun on the original heading, but had proceeded only a little way when the water broke in, driving out the workmen. This was removed three or four times, when the flow suddenly increased to 3000 gallons per minute. An examination of the lake bottom above the break showed that it had settled down, indicating that the new break connected with the lake bottom, and making further work along the original line out of the question.

The question now arose what it was best to do. It was impracticable to use a shield, as the material ahead of the break required blasting, and the pressure from above was enormous. On account of its expense and difficulty of application the freezing process did not seem advisable, and the plenum process was likewise out of the question on account of the great pressure which would be required at this depth. The détour to the south which had been made by the contractor had been unsuccessful,and had left the ground in a treacherous condition. To depress the tunnel was not advisable, for it was not by any means certain that the bed of gravel could be avoided in that way; and, moreover, it would be necessary to ascend again further on, and thus leave a trap which would effectually cut off escape to those at work on the face if water again broke into the tunnel.

It was finally decided that the old plan of deflecting the line toward the north and upward so as to pass over the underground stream should be tried. A hole was therefore cut through the tunnel lining 1433 ft. from the shore, and work was begun on a détour of 20° toward the north and an upward grade of 10%. Fair progress was made on this new line, gradually ascending into solid rock, until May 10, when the test borings, which were constantly made in every direction from the face, showed that sand was being approached. A brick bulkhead was therefore built into the masonry as a safeguard, should it happen that water was encountered in large quantities. As the borings seemed to indicate that the top surface of the rock underlying the sand was nearly level, the lower half of the tunnel was first excavated, leaving about 18 ins. of the rock to serve as a roof (Sketcha,Fig. 123), and the brick invert was built for a distance of 52 ft. The rock roof was then carefully broken through for short distances at a time, and short sheeting driven ahead into the sand, which proved to be a very fine quicksand flowing through the smallest openings. Extreme care had to be taken in this work, but little by little the brickwork was pushed ahead until at a distance of 90 ft. from the point where the sand was first met, and 208 ft. from the old tunnel, the sand stopped and the heading entered a hard clay.

All this work had been done on an ascending grade, and the ascent was continued about 40 ft. farther in the clay. By this time a sufficient elevation was gained to pass over the underground stream, and the tunnel line was changed to head toward the lake shaft, and the grade reduced to a level. The undergroundstream was passed without trouble and the tunnel continued for a distance of 54 ft. without difficulty. On July 10 the clay in the heading suddenly softened, and before the miners could secure it by bracing, the water rushed in, followed by gravel, filling up solidly some 34 ft. of the tunnel before it was stopped by a timber bulkhead hastily built.

Longitudinal Section Showing Method of Construction in Rock Covered with Quicksand.Sketch “a”.Section A-B-C-D.Sketch “c”.Longitudinal Section of Tunnel.Sketch “b”.Cross Section Showing Manner of Constructing Lining around Boulder.Sketch “d”.Fig. 123.—Sketch Showing Methods of Lining, Milwaukee Water-Works Tunnel.Larger illustration

Longitudinal Section Showing Method of Construction in Rock Covered with Quicksand.Sketch “a”.Section A-B-C-D.Sketch “c”.

Longitudinal Section Showing Method of Construction in Rock Covered with Quicksand.Sketch “a”.

Longitudinal Section Showing Method of Construction in Rock Covered with Quicksand.Sketch “a”.

Longitudinal Section Showing Method of Construction in Rock Covered with Quicksand.

Sketch “a”.

Section A-B-C-D.Sketch “c”.

Section A-B-C-D.Sketch “c”.

Section A-B-C-D.

Sketch “c”.

Longitudinal Section of Tunnel.Sketch “b”.Cross Section Showing Manner of Constructing Lining around Boulder.Sketch “d”.

Longitudinal Section of Tunnel.Sketch “b”.

Longitudinal Section of Tunnel.Sketch “b”.

Longitudinal Section of Tunnel.

Sketch “b”.

Cross Section Showing Manner of Constructing Lining around Boulder.Sketch “d”.

Cross Section Showing Manner of Constructing Lining around Boulder.Sketch “d”.

Cross Section Showing Manner of Constructing Lining around Boulder.

Sketch “d”.

Fig. 123.—Sketch Showing Methods of Lining, Milwaukee Water-Works Tunnel.

Larger illustration

Upon examining the lake bottom a cavity over 60 ft. deep and 10 ft. in diameter was found directly over the end of the tunnel, which had been caused by the gravel breaking into the tunnel. Having now reached an elevation where it was possible to use compressed air, it was determined to put in double air-locks and use the plenum process. The locks were built, and some670 cu. yds. of clay were dumped into the hole in the lake bottom. On Aug. 4 the air-locks were tried with 26 lbs. air pressure; but, upon a temporary release of the pressure, the water passed around the locks and back of the tunnel lining for some distance, and even forced through the lining, carrying considerable clay and fine sand with it. Upon sounding the lake bottom it was found that the cavity had again increased to a depth of 65 ft., whereupon an additional 600 cu. yds. of clay were dumped into it.

On account of the water leaking through the brickwork, the only dry place to cut through the brickwork and build in an air-lock was just ahead of the brick bulkhead. This lock was completed Aug. 27, and to avoid encountering the danger of the direct connection with the lake at the end of the drift, it was decided to make another détour to the north. On Aug. 28, therefore, the brick on the north side of the tunnel 12 ft. back from the end of the brickwork was cut through under 25 lbs. air pressure, and work proceeded in good, hard clay. The original air-lock was cut out and a new lock built into this clay about 34 ft. from the last détour, to be used in case of further difficulties. After building the tunnel for about 80 ft. from the détour, the soundings again indicated the approach to gravel and water, and on Oct. 14 the water broke through from the bottom in such volume and with such force that the men ran out, closing every air-lock and the valves of every drain in their haste to escape, until the brick bulkhead was reached. It was with great difficulty that the portion of the tunnel up to the last air-lock was recovered and cleaned out.

It was now recognized that a pressure of from 38 to 40 lbs. of air would be needed to hold this water, and accordingly another compressor was added to the plant. With a pressure of 36 lbs. the water was driven out and the work again started. At this time also an additional 350 cu. yds. of clay were dumped into the hole in the lake bottom. Altogether, 1620 cu. yds. of clay had been put into this hole.

Loose gravel and boulders, some of immense size, were nowencountered, and the work became exceedingly difficult on account of the great escape of air. The interstices between the gravel and boulders were not filled with silt or sand, but contained water. Moreover, this material extended upward to the lake bottom, as was shown by the escape of air at the surface of the lake. For an area of several hundred square feet the surface of the water resembled a pot of boiling water. At times the air would escape very rapidly; and again only a few bubbles would show.

It need hardly be said that the work in this gravel was very slow. It was impossible to blast or to tear out the large boulders whole, as so much surface would be exposed that an inrush of water would take place despite the air pressure. The method of procedure was to excavate a heading and build the brick roof arch first, and then to take out the bench and build the invert.Fig. 123gives a number of sketches showing how the work was done. A short piece of heading was taken out, the top and face of the bench being meanwhile plastered with clay (Sketchesbandc,Fig. 123) to reduce the escape of air, and then the roof arch was built and supported on side sills resting on the bench. Bit by bit the roof arch was pushed forward until some little distance had been completed, then the heading was plastered with clay and the bench taken out little by little and the invert built. All the gravel except the small area upon which work was actually in progress was kept thoroughly plastered with clay; and as the air escaped through the completed brickwork very rapidly, water was allowed to cover a portion of the invert (see Sketchc,Fig. 123), so as to reduce the area of escape.

When a large boulder was reached, which lay partly within and partly without the tunnel section, the lining was built out and around it, as shown in Sketchd,Fig. 123. The boulder was then broken and taken out. All through this gravel bed the cross-section of the lining is made irregular by the construction of these pockets in the lining to get around boulders.Sometimes they were on one side and sometimes on the other, or on both, or at the top or bottom. In fact, there was no regularity. Despite the hazard and danger of this work, continual progress was made, though sometimes it was only 4 ft. of completed tunnel per week, working night and day; and, if some cases of caisson disease be excepted, the only mishap occurring was a fire which got into the timber packing behind the lining and caused some trouble. From the gravel the tunnel ran into clay and quicksand, and then into hard, dry clay similar to that encountered near the shore. Some difficulty was had with the quicksand, but it was successfully overcome; and when the hard clay was struck, the trouble, as far as the work from the shore shaft was concerned, was virtually over.

Meanwhile, a different set of afflictions had come upon the engineer and contractors in sinking the lake shaft and driving the heading toward shore. This shaft was intended to be built by sinking a cast-iron cylinder 10 ft. in diameter, made up of sections bolted together. Work was begun July 5, 1892, and the sinking was accomplished first by weighting the cylinder, and afterwards by pumping out the sand and water within it until the pressure from the outside broke through under the cutting edge and forced the sand into the cylinder, allowing it to sink a little. From 10 to 30 cu. yds. of sand were carried into the cylinder each time, and finally it was feared that if the process continued, the crib, which had been previously erected, would be undermined. On Sept. 6, therefore, the contractors were ordered to discontinue this method of work. No change was made, however, until Oct. 1, when the cylinder had reached a depth of 68 ft., and by this time there was quite a large cavity underneath the crib. This was refilled, and the cylinder pumped out, and excavation begun inside of it. On Oct. 11 a 21⁄2-ft. deep ring of brickwork was laid underneath the cutting edge; but in trying to put in another ring beneath the first, two days later, the sand and water broke through the bottom, driving the men out, and filling the cylinder to a depthof 16 ft. with sand. The pumps were started, but the water could not be lowered to a greater depth than 60 ft.

At the request of the contractors, the city engineer had a boring made at the center of the shaft to determine the character of the material to be further penetrated. This boring showed that sand mixed with loam and gravel would be found for a depth of 26 ft., then would come 15 ft. of red clay, and finally a layer of hard clay like that penetrated by the shore end of the tunnel. About the middle of December the contractors made another attempt to pump the shaft, but finding that the water came in at the rate of 25 gallons a minute, abandoned the attempt. In the latter part of February preparations were made to put an air-lock in the shaft and use compressed air. Hardly had the work been begun by this system when, on April 20, 1893, a terrific easterly storm swept the top of the crib bare of the buildings and machinery, and drowned all but one of the 15 men at work there.

This disaster delayed the work for some time, but in June the contractors erected a new building and new machinery, and resumed work. Very little progress was made; and the air escaped so rapidly that it loosened the sand surrounding the shaft and reduced the friction to such an extent that on July 28 the entire cylinder lifted bodily about 6 ft., and sand rushed in, filling the lower part of the cylinder to within 45 ft. of the lake surface. No further work was done by the contractors although they submitted a proposition to sink a steel cylinder inside the cast-iron cylinder and extending from 5 ft. above datum to 100 ft. below datum for $300 per ft. This proposition was refused by the city; and since work on the tunnel proper had been abandoned by the contractors some time before, as had already been described, the city suspended their contract on Oct. 19.

On Oct. 30 a contract was made with Mr. Thos. Murphy of Milwaukee, Wis., to sink a steel cylinder inside the old iron cylinder. The water was first pumped out of the old cylinder,and a timber bulkhead built at the bottom. On this the steel cylinder was built, and then the bulkhead was removed. Air pressure was put on, and the excavation proceeded successfully until the bottom layer of clay was met with, when all chances for trouble ceased.

The cylinder, as it was completed, penetrated 9 ft. into the hard clay, and was underpinned with brickwork for a depth of 29 ft. or more, to a point 4 ft. below the grade line of the tunnel. At the lower end, the section of the shaft was changed from a circle to a square. Later the steel cylinder was lined with brick.

On March 28, 1894, an agreement was made with Mr. Thos. Murphy to construct the tunnel from the lake shaft toward the shore. Except that considerable water was encountered, which, owing to inadequate pumping machinery, filled the tunnel and shaft at two different times, and had to be removed, no very great difficulty was had with this part of the work.

On July 28, 1895, the headings from the lake and shore shafts met. Meanwhile the cast-iron pipe intake, the intake crib, etc., had been completed, and practically all that remained to be done was to clean the tunnel and lift the pumping machinery at the shore shaft. During the cleaning, the air pressure had been kept up on account of the leakage through the brick lining, and, indeed, the pressure was kept up until the last possible moment, and everything made ready for removing the air-locks, bulkheads, pumps, etc., in the least possible time. The pumps were the last to come out.

—The invention of the shield system of tunneling through soft ground is generally accredited to Sir Isambard Brunel, a Frenchman born in 1769, who emigrated to the United States in 1793, where he remained six years, and then went to England, in which country his epoch-making invention in tunneling was developed and successfully employed in building the first Thames tunnel, and where he died in 1849, a few years after the completion of this great work. Sir Isambard is said to have obtained the idea of employing a shield to tunnel soft ground from observing the work of ship-worms. He noticed that this little animal had a head provided with a boring apparatus with which it dug its way into the wood, and that its body threw off a secretion which lined the hole behind it and rendered it impervious to water. To duplicate this operation by mechanical means on a large enough scale to make it applicable to the construction of tunnels was the plan which occurred to the engineer; and how closely he followed his animate model may be seen by examining the drawings of his first shield, for which he secured a patent in 1818. Briefly described, this device consisted of an iron cylinder having at its front end an auger-like cutter, whose revolution was intended to shove away the material ahead and thus advance the cylinder. As the cylinder advanced the perimeter of the hole behind was to be lined with a spiral sheet-iron plating, which was to be strengthened with an interior lining of masonry. Itwill be seen that the mechanical resemblance of this device to the ship-worm, on which it is alleged to have been modeled, was remarkably close.

In the same patent in which Sir Isambard secured protection for his mechanical ship-worm he claimed equal rights of invention for another shield, which is of far greater importance in being the prototype of the shield actually employed by him in constructing the first Thames tunnel. This alternative invention, if it may be so termed, consisted of a group of separate cells which could be advanced one or more at a time or all together. The sides of these cells were to be provided with friction rollers to enable them to slide easily upon each other; and it was also specified that the preferable motive power for advancing the cells was hydraulic jacks. To summarize briefly, therefore, the two inventions of Brunel comprehended the protecting cylinder or shield, the closure of the face of the excavation, the cellular division, the hydraulic-jack propelling power, and cylindrical iron lining, which are the essential characteristics of the modern shield system of tunneling. The next step required was the actual proof of the practicability of Brunel’s inventions, and this soon came.

Those who have read the history of the first Thames tunnel will recall the early unsuccessful attempts at construction which had discouraged English engineers. Five years after Brunel’s patent was secured a company was formed to undertake the task again, the plan being to use the shield system, under the personal direction of its inventor as chief engineer. For this work Brunel selected the cellular shield mentioned as an alternative construction in his original patent. He also chose to make this shield rectangular in form. This choice is commonly accounted for by the fact that the strata to be penetrated by the tunnel were practically horizontal, and that it was assumed by the engineer that a rectangular shield would for some reason best resist the pressures which would be developed. Whatever the reason may have been for the choice, the fact remains thata rectangular shield was adopted. The tunnel as designed consisted of two parallel horseshoe tunnels, 13 ft. 9 ins. wide and 16 ft. 4 ins. high and 1200 ft. long, separated from each other by a wall 4 ft. thick, pierced by 64 arched openings of 4 ft. span, the whole being surrounded with massive brickwork built to a rectangular section measuring over all 38 ft. wide and 22 ft. high.

The first shield designed by Brunel for the work proved inadequate to resist the pressures, and it was replaced by another somewhat larger shield of substantially the same design, but of improved construction. This last shield was 22 ft. 3 ins. high and 37 ft. 6 ins. wide. It was divided vertically into twelve separate cast-iron frames placed close side by side, and each frame was divided horizontally into three cells capable of separate movement, but connected by a peculiar articulated construction, which is indicated in a general way byFig. 124. To close or cover the face of the excavation, poling-boards held in place by numerous small screw-jacks were employed. Each cell or each frame could be advanced independently of the others, the power for this operation being obtained by means of screw-jacks abutting against the completed masonry lining. Briefly described, the mode of procedure was to remove the poling-boards in front of the top cell of one frame, and excavate the material ahead for about 6 ins. This being done, the top cell was advanced 6 ins. by means of the screw-jacks, and the poling-boards were replaced. The middle cell of the frame was then advanced 6 ins. by repeating the same process, and finally the operation was duplicated for the bottom cell. With the advance of the bottom cell one frame had been pushed ahead 6 ins., and by a succession of such operations the other eleven frames were advanced a distance of 6 ins., one after the other, until the whole shield occupied a position 6 ins. in advance of that at which work was begun. The next step was to fill the 6-in. space behind the shield with a ring of brickwork.

Fig. 124.—Longitudinal Section of Brunel’s Shield, First Thames Tunnel.

Fig. 124.—Longitudinal Section of Brunel’s Shield, First Thames Tunnel.

The illustration,Fig. 124, is the section parallel to the verticalplane of the tunnel through the center of one of the frames, and it shows quite clearly the complicated details of the shield construction. Two features which are to be particularly noted are the suspended staging and centering for constructing the roof arch, and the top plate of the shield extending back and overlapping the roof masonry so as to close completely the roof of the excavation and prevent its falling. Notwithstandingits complicated construction and unwieldy weight of 120 tons, this shield worked successfully, and during several months the construction proceeded at the rate of 2 ft. every 24 hours. There were two irruptions of water and mud from the river during the work, but the apertures were effectually stopped by heaving bags of clay into the holes in the river bed, and covering them over with tarpaulin, with a layer of gravel over all. The tunnel was completed in 1843, at a cost of about $5600 per lineal yard, and 20 years from the time work was first commenced, including all delays.

Fig. 125.—First Shield Invented by Barlow.

Fig. 125.—First Shield Invented by Barlow.

The next tunnel to be built by the shield system was the tunnel under London Tower constructed by Barlow and Greathead and begun in 1869. In 1863 Mr. Peter W. Barlow secured a patent in England for a system of tunnel construction comprising the use of a circular shield and a cylindrical cast-iron lining. The shield, as shown byFig. 125, was simply an iron or steel plate cylinder. The cylinder plates were thinned down in front to form a cutting edge, and they extended far enough back at the rear to enable the advance ring of the cast-iron lining to be set up within the cylinder. In simplicity of form this shield was much superior to Brunel’s; but it seems very doubtful, since it had no diametrical bracing of any sort, whether it would ever have withstood the combined pressure of the screw-jacks and of the surrounding earth in actual operation without serious distortion, and, probably, total collapse. It should also be noted that Barlow’s shield made no provision for protecting the face of the excavation, although the inventor did state that if the soil made it necessary such a protection could be used. The patent provided for the injection of liquid cement behind the cast-iron lining to fill the annular space leftby the advancing tail-plates of the shield. Although Barlow made vigorous efforts to get his shield used, it was not until 1868 that an opportunity presented itself. In the meantime the inventor had been studying how to improve his original device, and in 1868 he secured additional patents covering these improvements. Briefly described, they consisted in partly closing the shield with a diaphragm as shown byFig. 126. The uninclosed portion of the shield is here shown at the center, but the patent specified that it might also be located below the center in the bottom part of the shield. The idea of the construction was that in case of an irruption of water the upper portion of the shield could be kept open by air pressure, and work prosecuted in this open space until the shield had been driven ahead sufficiently to close the aperture, when the normal condition of affairs would be resumed. This was obviously an improvement of real merit. The partial diaphragm also served to stiffen the shield somewhat against collapse, but the thin plate cutting-edges and most of the other structural weaknesses were left unaltered. To summarize briefly the improvements due to Barlow’s work, we have: the construction of the shield in a single piece; the use of compressed air and a partial diaphragm for keeping the upper part of the shield open in case of irruptions of water; and the injection of liquid cement to fill the voids behind the lining.

Longitudinal Section.Cross Section.Fig. 126.—Second Shield Invented by Barlow.

Longitudinal Section.Cross Section.

Longitudinal Section.

Longitudinal Section.

Longitudinal Section.

Cross Section.

Cross Section.

Cross Section.

Fig. 126.—Second Shield Invented by Barlow.

Turning now to the London Tower tunnel work, it may first be noted that Barlow found some difficulty in finding a contractor who was willing to undertake the job, so little confidence had engineers generally in his shield system. One man, however,Mr. J. H. Greathead, perceived that Barlow’s device presented merit, although its design and construction were defective, and he finally undertook the work and carried it to a brilliant success. The tunnel was 1350 ft. long and 7 ft. in diameter, and penetrated compact clay. Work was begun on the first shore shaft on Feb. 12, 1869, and the tunnel was completed the following Christmas, or in something short of eleven months, at a cost of £14,500.

The shield used was Barlow’s idea put into practical shape by Greathead. It consisted of an iron cylinder, or, more properly, a frustum of a cone whose circumferential sides were very slightly inclined to the axis, the idea being that the friction would be less if the front end of the shield were slightly larger than the rear end. The shell of the cone was made of1⁄2-in. plates. The thinned plate cutting-edge of Barlow’s shield was replaced by Greathead with a circular ring of cast iron. Greathead also altered the construction of the diaphragm by arranging the angle stiffeners so that they ran horizontally and vertically, and by fastening the diaphragm plates to an interior cast-iron ring connected to the shell plates. This was a decided structural improvement, but it was accompanied with another modification which was quite as decided a retrogression from Barlow’s design. Greathead made the diaphragm opening rectangular and to extend very nearly from the top to the bottom of the shield, thus abandoning the element of safety provided by Barlow in case of an irruption of water. Fortunately the material penetrated by the shield for the Tower tunnel was so compact that no trouble was had from water; but the dangerous character of the construction was some years afterwards disastrously proven in driving the Yarra River tunnel at Melbourne, Australia. To drive his shield Greathead employed six 21⁄2-in. screw-jacks capable of developing a total force of 60 tons. The tails of the jack bore against the completed lining, which consisted of cast-iron rings 18 ins. wide and7⁄8in. thick, each ring being made up of a crown piece and three segments. The different segments and rings were provided with double (exterior and interior) flanges, bymeans of which they were bolted together. The soil behind the lining was filled with liquid cement injected through small holes by means of a hand pump.

Fig. 127.—Shield Suggested by Greathead for the Proposed North and South Woolwich Subway.

Fig. 127.—Shield Suggested by Greathead for the Proposed North and South Woolwich Subway.

Fig. 128.—Beach’s Shield Used on Broadway Pneumatic Railway Tunnel.

Fig. 128.—Beach’s Shield Used on Broadway Pneumatic Railway Tunnel.

The remarkable success of the London Tower tunnel encouraged Barlow to form in 1871 a company to tunnel the Thames between Southwark and the City, and Greathead, in 1876, to project a tunnel under the same waterway known as the North and South Woolwich Subway. Barlow’s concession was abrogated by Parliament in 1873, without any work having been done. Greathead progressed far enough with his enterprise to construct a shield and a large amount of the iron lining when the contractors abandoned the work. From the brief description of his shield given by Greathead to the London Society of Civil Engineers, it contained several important differences from the shield built by him for the London Tower tunnel, as is shown byFig. 127. The changes which deserve particular notice are the great extension of the shield behind the diaphragm, the curved form of the diaphragm, and the use of hydraulic jacks. Greathead had also designedfor this work a special crane to be used in erecting the cast-iron segments of the lining.

Fig. 129.—Shield for City and South London Railway.

Fig. 129.—Shield for City and South London Railway.

While these works had been progressing in England, Mr. Beach, an American, received a patent in the United States for a tunnel shield of the construction shown byFig. 128, which was first tried practically in constructing a short length of tunnel under Broadway for the nearly forgotten Broadway Pneumatic Underground Railway. This shield, as is indicated by the illustration, consisted of a cylinder of wood with an iron-cutting-edge and an iron tail-ring. Extending transversely across the shield at the front end were a number of horizontal iron plates or shelves with cutting-edges, as shown clearly by the drawing. The shield was moved ahead by means of a number of hydraulic jacks supplied with power by a hand pump attached to the shield. By means of suitable valves all or any lesser number of these jacks could be operated, and by thus regulating the action of the motive power the direction ofthe shield could be altered at will. Work was abandoned on the Broadway tunnel in 1870. In 1871-2 Beach’s shield was used in building a short circular tunnel 8 ft. in diameter in Cincinnati, and a little later it was introduced into the Cleveland water-works tunnel 8 ft. in diameter. In this latter work, which was through a very treacherous soil, the shield gave a great deal of trouble, and was finally so flattened by the pressures that it was abandoned. The obviously defective features of this shield were its want of vertical bracing and the lack of any means of closing the front in soft soil.

Fig. 130.—Shield for St. Clair River Tunnel.Larger illustration

Fig. 130.—Shield for St. Clair River Tunnel.

Larger illustration

Longitudinal Section.Cross Section.Fig. 131.—Shield for Blackwall Tunnel.Larger illustration

Longitudinal Section.Cross Section.

Longitudinal Section.

Longitudinal Section.

Longitudinal Section.

Cross Section.

Cross Section.

Cross Section.

Fig. 131.—Shield for Blackwall Tunnel.

Larger illustration

With the foregoing brief review of the early development of the shield system of tunneling, we have arrived at a point where the methods of modern practice can be studied intelligently. In the pages which follow we shall first illustrate fully the construction of a number of shields of typical and special construction, and follow these illustrations with a general discussion of present practice in the various details of shield construction.

Transverse Section.Larger illustrationLongitudinal Section.Larger illustrationFig. 132.—Elliptical Shield for Clichy Sewer Tunnel, Paris.

Transverse Section.

Larger illustration

Longitudinal Section.

Larger illustration

Fig. 132.—Elliptical Shield for Clichy Sewer Tunnel, Paris.

Longitudinal Section.Larger illustrationCross Section.Larger illustrationFig. 133.—Semi-elliptical Shield for Clichy Sewer Tunnel.

Longitudinal Section.

Larger illustration

Cross Section.

Larger illustration

Fig. 133.—Semi-elliptical Shield for Clichy Sewer Tunnel.

Mr. Raynald Légouez, in his excellent book upon the shield system of tunneling, considers that tunnel shields may be dividedinto three classes structurally, according to the character of the material which they are designed to penetrate. In the first class he places shields designed to work in a stiff and comparativelystable soil, like the well-known London clay; in the second class are placed those constructed to work in soft clays and silts; and in the third class those intended for soils of an unstable granular nature. This classification will, in a general way, be kept by the writer. As a representative shield of the first class, the one designed for the City and South London Railway is illustrated inFig. 129. The shields for the London Tower tunnel, the Waterloo and City Railway, the Glasgow District Subway, the Siphons of Clichy and Concorde in Paris, and the Glasgow Port tunnel, are of the same general design and construction. To represent shields of the second class, the St.Clair River and Blackwall shields are shown inFigs. 130and131. The shields for the Mersey River, the Hudson River, and the East River tunnels also belong to this class. To represent shields of the third class, the elliptical and semi-elliptical shields of the Clichy tunnel work in Paris are shown byFigs. 132and133. The semi-circular shield of the Boston Subway is illustrated byFig. 134.

Half Transverse Section A-B.Half Rear-End Elevation.Larger illustrationDetails of Casting Supporting Ends of Jacks.Details of Castings under Ends of Girders.Longitudinal Section C-D.Larger illustrationFig. 134.—Roof Shield for Boston Subway.

Half Transverse Section A-B.Half Rear-End Elevation.

Half Transverse Section A-B.

Half Transverse Section A-B.

Half Rear-End Elevation.

Half Rear-End Elevation.

Larger illustration

Details of Casting Supporting Ends of Jacks.Details of Castings under Ends of Girders.Longitudinal Section C-D.

Details of Casting Supporting Ends of Jacks.Details of Castings under Ends of Girders.

Details of Casting Supporting Ends of Jacks.Details of Castings under Ends of Girders.

Details of Casting Supporting Ends of Jacks.

Details of Casting Supporting Ends of Jacks.

Details of Castings under Ends of Girders.

Details of Castings under Ends of Girders.

Longitudinal Section C-D.

Longitudinal Section C-D.

Larger illustration

Fig. 134.—Roof Shield for Boston Subway.

—In closing this short review mention will be made of a new shield designed and patented by the Author and shown inFig. 135. It is an articulated shield composed of two separated shields whose outer shells overlap each other. The shields are connected together by means of hydraulic jacks attached all around the two diaphragms. Between these diaphragms is a large inclosed space called a safety chamber, where the men can withdraw in case of accidents and where the air can be immediately raised to the required pressure. This isan advantage in case of blow-outs, because the flooding of the tunnel is prevented, while the accident is limited to only a few feet from the front. On account of the shield being advanced half at a time it is always under control and is thus better directed through grade and alignment. Besides, this shield will not rotate around its axis and consequently it can be built of any shape, thus permitting the construction of subaqueous tunnels of any cross-section and even with a wider foundation, which is impossible to-day with the ordinary rotating shields of circular cross-section.

Fig. 135.—Transversal and Longitudinal Section of Prelini’s Shield.Larger illustration

Fig. 135.—Transversal and Longitudinal Section of Prelini’s Shield.

Larger illustration

—Tunnel shields are usually cylindrical or semi-cylindrical in cross-section. The cylinder may be circular, elliptical, or oval in section. Far the greater number of shields used in the past have been circular cylinders; but in one part of the sewer tunnel of Clichy, in Paris, an elliptical shield with its major axis horizontal, was used, and the German engineer, Herr Mackensen, has designed an oval shield, with its major axis vertical. A semi-elliptical shield was employed on the Clichy tunnel, and semi-circular shields were used on the Baltimore Belt Line tunnel and the Boston Subway in America. Generally, also, tunnel shields are right cylinders; that is, thefront and rear edges are in vertical planes perpendicular to the axis of the cylinder. Occasionally, however, they are oblique cylinders; that is, the front or rear edges, or both, are in planes oblique to the axis of the cylinder. One of these visor-shaped shields was employed on the Clichy tunnel.

—It is absolutely necessary that the exterior surface of the shell should be smooth, and for this reason the exterior rivet heads must be countersunk. It is generally admitted, also, that the shell should be perfectly cylindrical, and not conical. The conical form has some advantage in reducing the frictional resistance to the advance of the shield; but this is generally considered to be more than counterbalanced by the danger of subsidence of the earth, caused by the excessive void which it leaves behind the iron tunnel lining. For the same reason the shell plate, which overlaps the forward ring of the lining, should be as thin as practicable, but its thickness should not be reduced so that it will deflect under the earth pressure from above. Generally the shell is made of at least two thicknesses of plating, the plates being arranged so as to break joints, and, thus, to avoid the use of cover joints, to interrupt the smooth surface which is so essential, particularly on the exterior. The thickness of the shell required will vary with the diameter of the shield, and the character and strength of the diametrical bracing. Mr. Raynald Légouez suggests as a rule for determining the thickness of the shell, that, to a minimum thickness of 2 mm., should be added 1 mm. for every meter of diameter over 4 meters. Referring to the illustrations, Figs. 128 to 132 inclusive, it will be noted that the St. Clair tunnel shield, 211⁄2ft. in diameter, had a shell of 1-in. steel plates with cover-plate joints and interior angle stiffeners; the shell of the East River tunnel shield, 11 ft. in diameter, was made up of one1⁄2-in. and one3⁄8-in. plate; the Blackwall tunnel shield, 27 ft. 9 ins. in diameter, had a shell consisting of four thicknesses of5⁄8-in. plates; and the Clichy tunnel shield, with a diameter of 2.06 meters, had a shell 2 millimeters thick.

—By the front end is meant that portion of the shield between the cutting-edge and the vertical diaphragm. The length of this portion of the shield was formerly made quite small, and where the material penetrated is very soft, a short front-end construction yet has many advocates; but the general tendency now is to extend the cutting-edge far enough ahead of the diaphragm to form a fair-sized working chamber. Excavation is far more easy and rapid when the face can be attacked directly from in front of the diaphragm than where the work has to be done from behind through the apertures in the diaphragm. So long as the roof of the excavation is supported from falling, experience has shown that it is easily possible to extend the excavation safely some distance ahead of the diaphragm. In reasonably stable material, like compact-clay, the front face will usually stand alone for the short time necessary to excavate the section and advance the shield one stage. In softer material the face can usually be sustained for the same short period by means of compressed air; or the face of the excavation, instead of being made vertical, can be allowed to assume its natural slope. In the latter case a visor-shaped front-end construction, such as was used on some portions of the Clichy tunnel, is particularly advantageous. The following figures show the lengths of the front ends of a number of representative tunnel shields.

Two general types of construction are employed for the cutting-edge. The first type consists of a cast-iron or cast-steel ring, beveled to form a chisel-like cutting-edge and bolted to the ends of the forward shell plates. This construction was first employed in the shield for the London Tower tunnel, and has since been used on the City and South London, Waterloo and City, and the Clichy tunnels. The second construction consists in bracing the forward shell plates by means of righttriangular brackets, whose perpendicular sides are riveted respectively to the shell plates and the diaphragm, and whose inclined sides slant backward and downward from the front edge, and carry a conical ring of plating. The shields for the St. Clair River, East River, and Blackwall tunnels show forms of this type of cutting-edge construction. A modification of the second type of construction, which consists in omitting the conical plating, was employed on some of the shields for the Clichy tunnel. This modification is generally considered to be allowable only in materials which have little stability, and which crumble down before the advance of the cutting-edge. Where the material is of a sticky or compact nature, into which the shield in advancing must actually cut, the beveled plating is necessary to insure a clean cutting action without wedging or jamming of the material.

—It is necessary in shields of large diameter to brace the shell horizontally and vertically against distortion. This bracing also serves to form stagings for the workmen, and to divide the shield into cells. The following table shows the arrangement of the vertical and transverse bracing in several representative tunnel shields.

Referring first to the horizontal divisions, it may be noted that they serve different purposes in different instances. In the Clichy tunnel shield the horizontal divisions formed simply working platforms; in the Waterloo tunnel shield they were designed to abut closely against the working face by means of special jacks, and so to divide it into three separate divisions; inthe St. Clair tunnel they served as working platforms, and also had cutting-edges for penetrating the material ahead; and in the Blackwall tunnel shield they served as working platforms, and had cutting-edges as in the St. Clair tunnel shield, and in addition the middle division was so devised that the two lower chambers of the shield could be kept under a higher pressure of air than the two upper chambers. Passing now to the vertical divisions, they serve to brace the shell of the shield against vertical pressures, and also to divide the horizontal chambers into cells; but unlike the horizontal plates they are not provided with cutting-edges. The St. Clair, Hudson River, and Blackwall tunnel shields illustrate the use of the vertical bracing for the double purpose of vertical bracing and of dividing the horizontal chambers into cells. The Waterloo tunnel shield is an example, of vertical bracing employed solely as bracing. The vertical division of the East River tunnel shield was employed in order to allow the shield to be dissembled in quadrants.

—The purpose of the shield diaphragm is to close the rear end of the shield and the tunnel behind from an inrush of water and earth from the face of the excavation. It also serves the secondary purpose of stiffening the shell diametrically. Structurally the diaphragm separates the front-end construction previously described from the rear-end construction, which will be described farther on; and it is usually composed of iron or steel plating reinforced by beams or girders, and pierced with one or several openings by which access is had to the working face. In stable material, where caving or an inrush of water and earth is not likely, the diaphragm is omitted. The shield of the Waterloo tunnel is an example of this construction. In more treacherous materials, however, not only is a diaphragm necessary, but it is also necessary to diminish the size of the openings through it, and to provide means for closing them entirely. Sometimes only one or two openings are left near the bottom of the diaphragm, as in the St. Clair and Mersey tunnel shields; and sometimes a number of smalleropenings are provided, as in the East River and Hudson River tunnel shields.

In highly treacherous materials subject to sudden and violent irruptions of earth from the excavation face, it sometimes is the case that openings, however small, closed in the ordinary manner, are impracticable, and special construction has to be adopted to deal with the difficulty. The shields for the Mersey and for the Blackwall tunnels are examples of such special devices. In the Mersey tunnel a second diaphragm was built behind the first, extending from the bottom of the shield upward to about half its total height. The aperture in the first diaphragm being near the bottom, the space between the second and first diaphragms formed a trap to hold the inflowing material. The Blackwall tunnel shield, as previously indicated, had its front end divided into cells. Ordinarily the face of the excavation in front of each cell was left open, but where material was encountered which irrupted into these cells a special means of closing the face was necessary. This consisted of three poling-boards or shutters of iron held one above the other against the face of the excavation. These shutters were supported by means of strong threaded rods passing through nuts fastened to the vertical frames, which permitted each shutter to be advanced against or withdrawn from the face of the excavation independently of the others. Various other constructions have been devised to retain the face of the excavation in highly treacherous soils, but few of them have been subjected to conclusive tests, and they do not therefore justify consideration.

—By the rear end of the shield is meant that portion at the rear of the diaphragm. It may be divided into two parts, called respectively the body and the tail of the shield. The chief purpose of the body of the shield is to furnish a place for the location of the jacks, pumps, motors, etc., employed in manipulating the shield. It also serves a purpose in distributing the weight of the shield over a largearea. To facilitate the passage of the shield around curves, or in changing from one grade to another, it is desirable to make the body of the shield as short as possible. In the Mersey, Clichy, and Waterloo tunnel shields, and, in fact, in most others which have been employed, the shell plates of the body have been reinforced by a heavy cast-iron ring, within and to which are attached the jacks and other apparatus. The latest opinion, however, seems to point to the use of brackets and beams for strengthening the shell for the purpose named, rather than to this heavy cast-iron construction. In the Hudson River, St. Clair River, and East River tunnel shields, with their long and strongly braced front-end construction to carry the jacks, the body of the shield, so to speak, is omitted and the rear-end construction consists simply of the tail plating. In the Blackwall shield, the body of the shield shell provides the space necessary for the double diaphragms and the cells which they inclose. In a general way, it may be said that the present tendency of engineers is to favor as short and as light a body construction as can be secured.

The tail of the shield serves to support the earth while the lining is being erected; and for this reason it overlaps the forward ring of the lining, as shown clearly by most of the shields illustrated. To fulfill this purpose, the tail-plates should be perfectly smooth inside and outside, so as to slide easily between the outside of the lining plates and the earth, and should also be as thin as practicable, in order not to leave a large void behind the lining to be filled in. In soils which are fairly stable, the tail construction is often visor-shaped; that is, the tail-plates overlap the lining only for, say, the roof from the springing lines up, as in one of the shields for the Clichy tunnel. In unstable materials the tail-plating extends entirely around the shield and excavation. The length of the tail-plating is usually sufficient to overlap two rings of the lining, but in one of the Clichy tunnel shields it will be noticed that it extended over three rings of lining. This seemingly considerable space for thin steel plates is madepossible by the fact that the extreme rear end of the tail always rests upon the last completed ring of lining.

In closing these remarks concerning the rear-end construction, the accompanying table, prepared by Mr. Raynald Légouez, will be of interest, as a general summary of principal dimensions of most of the important tunnel shields which have been built. The figures in this table have been converted from metric to English measure, and some slight variation from the exact dimensions necessarily exists. The different columns of the table show the diameter, total length, and the length of each of the three principal parts into which tunnel shields are ordinarily divided in construction as previously described:

A shield of 60 or 100 tons weight can hardly be directed along the line of the proposed tunnel and also through curves and grades, especially when driven through loose or muddy soils. The tunnels of the New York and Hudson River Railroad under the Hudson, and the tunnel of the New York Rapid Transit Railway under the East River, show marked evidence of how troublesome this work is. To avoid these and other inconveniences encountered in every shield, the Author has designed a new shield which was briefly described atpage 251.


Back to IndexNext