Till within a comparatively recent period but little study was given to exceptional formations. They were considered as monsters to be shunned, as lawless deviations from the ordinary rule, unworthy the attention of botanists, or at best as objects of mere curiosity. By those whose notions of structure and conformation did not extend beyond the details necessary to distinguish one species from another, or to describe the salient features of a plant in technical language; whose acquaintance with botanical science might almost be said to consist in the conventional application of a number of arbitrary terms, or in the recollection of a number of names, teratology was regarded as a chaos whose meaningless confusion it were vain to attempt to render intelligible,—as a barren field not worth the labour of tillage.
The older botanists, it is true, often made them the basis of satirical allusions to the political or religious questions of the day, especially about the time of the Reformation, and the artists drew largely upon their polemical sympathies in their representations of these anomalies. Linnæus treated of them to some extent in his 'Philosophia,' but it is mainly to Angustin Pyramus De Candolle that the credit is due of calling attention to the importance of vegetable teratology. Thisgreat botanist, not only indirectly, but from his personal research into the nature of monstrosities, did more than any of his predecessors to rescue them from the utter disregard, or at best the contemptuous indifference, of the majority of botanists. De Candolle gave a special impetus to morphology in general by giving in his adhesion to the morphological hypotheses of Goethe. These were no mere figments of the poet's imagination, as they were to a large extent based on the actual investigation of normal and abnormal organisation by Goethe both alone, and also in conjunction with Batsch and Jaeger.
De Candolle's example was contagious. Scarcely a botanist of any eminence since his time but has contributed his quota to the records of vegetable teratology, in proof of which the names of Humboldt, Robert Brown, the De Jussieus, the Saint Hilaires, of Moquin-Tandon, of Lindley, and many others, not to mention botanists still living, may be cited. To students and amateurs the subject seems always to have presented special attractions, probably from the singularity of the appearances presented, and from the fact that in many cases the examination of individual instances of malformation can be carried on, to a large extent, without the lengthened or continuous investigation and critical comparative study required by other departments of botanical science. Be this as it may, teratology owes a very large number of its records to this class of observers.
While the number of scattered papers on vegetable teratology in various European languages is so great as to preclude the possibility of collating them all, there is no general treatise on the subject in theEnglish language, with the exception of Hopkirk's 'Flora Anomala,' a book now rarely met with, and withal very imperfect; and this notwithstanding that Robert Brown early lent his sanction to the doctrines of Goethe, and himself illustrated them by teratological observations. In France, besides important papers of Turpin, Geoffroy de Saint Hilaire, Brongniart, Kirschleger and others, to which frequent allusion is made in the following pages, there is the classic work of Moquin-Tandon, which was translated into German by Schauer. Germany has also given us the monographs of Batsch, Jæger, Rœper, Engelmann, Schimper, Braun, Fleischer, Wigand, and many others. Switzerland has furnished the treatises of the De Candolles, and of Cramer; Belgium, those of Morren, &c., all of which, as well as many others that might be mentioned, are, with the exception of Moquin-Tandon's 'Eléments,' to be considered as referring to limited portions only and not to the whole subject.[1]
In the compilation of the present volume great use has been made of the facts recorded in the works just cited, and especially in those of Moquin-Tandon, Engelmann, and Morren. A very large number of communications on teratological subjects in the various European scientific publications have also been laid under contribution. In most cases reference has been given to, and due acknowledgment made of, the sources whence information has been gathered. Should any such reference be omitted, the neglect must be attributed to inadvertence, not to design. In selectingillustrations from the immense number of recorded facts, the principle followed has been to choose those which seemed either intrinsically the most important, or those which are recorded with the most care. In addition to these public sources of information, the author has availed himself of every opportunity that has offered itself of examining cases of unusual conformation in plants. For many such opportunities the author has to thank his friends and correspondents. Nor has he less reason to be grateful for the suggestions that they have made, and the information they have supplied. In particular the writer is desirous of acknowledging his obligations to the Society, under whose auspices this work is published, and to Mr. S. J. Salter, to whom the book in some degree owes its origin.
The drawings, where not otherwise stated, have been executed either from the author's own rough sketches, or from the actual specimens, by Mr. E. M. Williams. A large number of woodcuts have also been kindly placed at the disposal of the author by the proprietors of the 'Gardeners' Chronicle.'[2]
As it is impossible to frame any but a purely arbitrarydefinition of teratology or to trace the limits between variation and malformation, it may suffice to say that vegetable teratology comprises the history of the irregularities of growth and development in plants, and of the causes producing them. These irregularities differ from variations mainly in their wider deviation from the customary structure, in their more frequent and more obvious dependence on external causes rather than on inherent tendency, in their more sudden appearance, and lastly in their smaller liability to be transmitted by inheritance.
What may be termed normal morphology includes the study of the form, arrangement, size and other characteristic attributes of the several parts of plants, their internal structure, and the precise relation one form bears to another. In order the more thoroughly to investigate these matters it is necessary to consider the mode of growth, and specially the plan of evolution or development of each organ. This is the more needful owing to the common origin of things ultimately very different one from the other, and to the presence of organs which, in the adult state, are identical or nearly so in aspect, but which nevertheless are very unlike in the early stages of their existence.[3]Following Goethe, these changes in the course of development are sometimes called metamorphoses. In this way Agardh[4]admits three kinds of metamorphosis, which he characterises as: 1st. Successive metamorphoses, or those changes in the course of evolution which each individual organ undergoes inits passage from the embryonic to the adult condition, or from the simple and incomplete to the complex and perfect. 2. Ascending metamorphoses, including those changes of form manifested in the same adult organism by the several parts of which it consists—those parts being typically identical or homologous, such as the parts of the flower, or, in animals, the vertebræ, &c. 3. Collateral metamorphoses, comprising those permutations of form and function manifested in homologous organs in the different groups of organisms, classes, orders, genera, species, &c.
Thus, in the first instance, we have a comparative examination of the form of each or any separate part of the same individual at different epochs in its life-history; in the second we have a similar comparison instituted between the several parts of the same organism which originally were identical in appearance, but which have in course of evolution altered in character. In the third form we have the comparative view not of one organ at different times, nor of the several parts of one organism, but of the constituent elements pertaining to those aggregates of individuals to which naturalists apply the terms classes, orders, &c.
In successive metamorphosis we have a measure of the amount of change and of the perfection of structure to which each separate organ attains.
In ascending metamorphosis we have a gauge of the extent of alteration that may take place in the several homologous organs under existing circumstances.
In collateral metamorphosis, in the same way, we have an illustration of the degree of change possible in aggregates of organisms under existing circumstances.
Now it is clear that from an investigation of all three classes just mentioned, we shall be able to gain an idea of those points which are common to all parts, to all individuals or to all aggregates, and those that are peculiar to some of them, and, by eliminating the one from the other, we shall arrive at conclusions which will be more or less generally accurate or applicable, according to the ability of the student and the extent to which the comparative analysis is earned. It is thus that morphologists have been enabled to frame types or standards of reference, and systematists to collocate the organisms they deal with into groups. These standards and groups are more or less artificial (none can be entirely natural) in proportion to the amount of knowledge possessed by their framers, and the use they make of it.
From this point of view teratological metamorphosis of all three kinds demands as much attention as that which is called normal. We can have no thorough knowledge of an organ, of an individual which is an aggregate of organs, or of an aggregate of individuals of whatever degree, unless we know approximately, at least, what are the limits of each. It is not possible to trace these limits accurately in the case of natural science, but the larger our knowledge and the wider our generalisations, the closer will be our approach to the truth.
The most satisfactory classification of malformations would be one founded upon the nature of the causes inducing the several changes. Thus, in all organised beings, there is a process of growth, mere increase in bulk as it were, and a process of evolution or metamorphosis,in accordance with which certain parts assume a different form from the rest, in order the better to fit them for the performance of different offices. Should growth and development be uniform and regular, that is in accordance with what is habitual in any particular species, there is no monstrosity, but if either growth or development be in any way irregular, malformation results. Hence, theoretically, the best way of grouping cases of malformation would be according as they are the consequences of:—1st. Arrest of Growth; 2ndly. Excessive Growth; 3rdly. Arrest of Development; 4thly, of Excessive or Irregular Development.
In practice, however, there are so many objections to this plan that it has not been found practicable to carry it out. The inability arises to a great extent from our ignorance of what should be attributed to arrest of growth, what to excess of development, and so on. Moreover, a student with a malformed plant before him must necessarily ascertain in what way it is malformed before he can understand how it became so, and for this purpose any scheme that will enable him readily to detect the kind of monstrosity he is examining, even though it be confessedly artificial and imperfect will be better than a more philosophical arrangement which circumstances prevent him from employing.
The plan followed in this volume is a slight modification of that adopted by Moquin-Tandon, and with several additions. In it the aim is to place before the student certain salient and easily recognisable points by reference to which the desired information can readily be found. Under each subdivision will be found general explanatory remarks, illustrative details, and usually a summary of the more important factsand the inferences to be derived from them. Bibliographical references and lists of the plants most frequently affected with particular malformations are also given. In reference to both these points it must be remembered that absolute completeness is not aimed at; had such fullness of detail been possible of attainment it would have necessitated for its publication a much larger volume than the present.[5]It is hoped that both the lists of books and of plants are sufficiently full for all general purposes.[6]
In the enumeration of plants affected with various malformations the ! denotes that the writer has himself seen examples of the deviation in question in the particular plant named, while the prefix of the * indicates that the malformation occurs with special frequency in the particular plant to which the sign is attached.
Teratological alterations are rarely isolated phenomena, far more generally they are associated with other and often compensatory changes. Hence it is often necessary, in studying any given malformation, to refer to two or more subdivisions, and in this way a certain amount of repetition becomes unavoidable. The detailsof the several cases of malformation given in these pages are generally arranged according to their apparent degree of importance. Thus, in a case of prolification associated with multiplication of the petals, the former change is a greater deviation from the customary form than the latter, hence reference should be made, in the first instance, to the sections treating on prolification, and afterwards to those on multiplication. To facilitate such research, numerous cross references are supplied.
In the investigation of teratological phenomena constant reference must be made to the normal condition, andvice versâ, else neither the one nor the other can be thoroughly understood. It cannot, however, be overlooked that the form and arrangement called normal are often merely those which are the most common, while the abnormal or unusual arrangement is often more in consonance with that considered to be typical than the ordinary one. Thus, too, it is often found that the structural arrangements, which in one flower are normal, are in another abnormal, in so far that they are not usual in that particular instance.
For purposes of reference, a standard of comparison is required; and this standard, so long as its nature is not overlooked, may, indeed must be, to some extent, an arbitrary one. Thus in the phanerogamous plants there is assumed to exist, in all cases, an axis (stem, branches, roots, thalamus, &c.), bearing leaves and flowers. These latter consist of four whorls, calyx, corolla, stamens, and pistils, each whorl consisting of so many separate pieces in determinate position and numbers, and of regular proportionate size. A very close approach to such a flower occursnormally inLimnanthesandCrassula, and, indeed, in a large proportion of all flowers in an early stage of development. To a standard type, such as just mentioned, all the varied forms that are met with, either in normal or abnormal morphology, may be referred by bearing in mind the different modifications and adaptations that the organs have to undergo in the course of their development. Some parts after a time may cease to grow, others may grow in an inordinate degree, and so on; and thus, great as may be the ultimate divergences from the assumed standard, they may all readily be explained by the operation, simply or conjointly, of some of the four principal causes of malformation before alluded to. The fact that so many and such varied changes can thus readily be explained is not only a matter of convenience, but may be taken as evidence that the standard of reference is not wholly arbitrary and artificial, but that it is a close approximation to the truth.
It has already been said that an arrangement like that here considered as typical is natural to some flowers in their adult state, and to a vast number in their immature condition. It would be no extravagant hypothesis to surmise that this was the primitive structure of the flower in the higher plants. Variations from it may have arisen in course of time, owing to the action of an inherent tendency to vary, or from external circumstances and varied requirements which may have induced corresponding adaptations, and which may have been transmitted in accordance with the principle of hereditary transmission. This hypothesis necessarily implies a prior simplicity of organisation, of which, indeed, there is sufficient proof; many casesof malformation can thus be considered as so many reversions to the ancestral form.
Thus, teratology often serves as an aid in the study of morphology in general, and also in that of special groups of plants, and hence may even be of assistance in the determination of affinities. In any case the data supplied by teratology require to be used with caution and in conjunction with those derived from the study of development and from analogy. It is even possible that some malformations, especially when they acquire a permanent nature and become capable of reproducing themselves by seed, may be the starting-point of new species, as they assuredly are of new races, and between a race and a species he would be a bold man who would undertake to draw a hard and fast line.[7]
Discredit has been cast on teratology because it has been incautiously used. At one time it was made to prove almost everything; what wonder that by some, now-a-days, it is held to prove nothing. True the evidence it affords is sometimes negative, often conflicting, but it is so rather from imperfect interpretation than from any intrinsic worthlessness. If misused the fault lies with the disciple, not with Nature.
Teratology as a guide to the solution of morphological problems has been especially disparaged in contrast with organogeny, but unfairly so. There is no reason to exalt or to disparage either at the expense of the other. Both should receive the attention they demand. The study of development shows the primitive condition and gradual evolution of parts in anygiven individual or species; it carries us back some stages further in the history of particular organisms, but so also does teratology. Many cases of arrest of development show the mode of growth and evolution more distinctly, and with much greater ease to the observer, than does the investigation of the evolution of organs under natural circumstances. Organogeny by no means necessarily, or always, gives us an insight into the principles regulating the construction of flowers in general. It gives us no archetype except in those comparatively rare cases where primordial symmetry and regularity exist. When an explanation of the irregularity of development in these early stages of the plant's history is required, recourse must be had to the inferences and deductions drawn from teratological investigations and from the comparative study of allied forms precisely as in the case of adult flowers.
The study of development is of the highest importance in the examination of plants as individuals, but in regard to comparative anatomy and morphology, and specially in its relation to the study of vegetable homology it has no superiority over teratology. Those who hold the contrary opinion do so, apparently, because they overlook the fact that there is no distinction, save of degree, to be drawn between the laws regulating normal organisation, and those by which so-called abnormal formations are regulated.
It is sometimes said, and not wholly without truth, that teratology, as it stands at present, is little more than a record of facts, but in proportion as the laws that regulate normal growth are better understood, so will the knowledge of those that govern the so-called monstrous formations increase. Sufficient hasbeen already said to prove that there is no intrinsic difference between the laws of growth in the two cases. As our knowledge increases we shall be enabled to ascertain approximately of what extent of variation a given form is capable, under given conditions, and to refer all formations now considered anomalous to a few well-defined forms. Already teratology has done much towards showing the erroneous nature of many morphological statements that still pass current in our text-books, though their fallacy has been demonstrated again and again. Thus organs are said to be fused which were never separate, disjunctions and separations are assigned to parts that were never joined, adhesions and cohesions are spoken of in cases where, from the nature of things, neither adhesion nor cohesion could have existed. Some organs are said to be atrophied which were never larger and more fully developed than they now are, and so on. So long as these expressions are used in a merely conventional sense and for purposes of artificial classification or convenience, well and good, but let us not delude ourselves that we are thus contributing to the philosophical study either of the conformation of plants or of the affinities existing between them. What hope is there that we shall ever gain clear conceptions as to the former, as long as we tie ourselves down to formulas which are the expressions of facts as they appear to be, rather than as they really are? What chance is there of our attaining to comprehensive and accurate views of the genealogy and affinities of plants as long as we are restricted by false notions as to the conformation and mutual relation of their parts?[8]
That teratology may serve the purposes of systematic botany to a greater extent than might at first be supposed becomes obvious from a consideration of such facts as are mentioned under the head of Peloria, while the presence of rudimentary organs, or the occasional appearance of additional parts, or other changes, may, and often do, afford a clue to the relationship existing between plants—a relationship that might otherwise be unsuspected. So, too, some of the alterations met with appear susceptible of no other explanations than that they are reversions to some pre-existing form, or, at any rate, that they are manifestations of a phase of the plant affected different from that which is habitual, and due, as it were, to a sort of allotropism.
The mutations and perversions of form, associated as they commonly are with corresponding changes of function, show the connection between teratology and physiology—a connection which is seen to be the more intimate when viewed in the light afforded by the writings and experiments of Gærtner, Sprengel, and St. Hilaire, and, in our own times, especially by the writings and experiments of Mr. Darwin, whose works on the 'Origin of Species,' and particularly on the 'Variation of Animals and Plants under Domestication' comprise so large a collection of facts for theuse of students in most departments of biology. It will suffice to allude, in support of these statements, to the writings of Mr. Darwin on such subjects as rudimentary organs, the use or disuse of certain parts according to circumstances, the frequently observed tendency of some flowers to become structurally unisexual, the liability of other flowers perfectly organised to become functionally imperfect, at least so far as any reciprocal action of the organs of the same flower is concerned, reversions, classification, general morphology, and other subjects handled at once with such comprehensive breadth and minute accuracy of detail by our great physiologist.
In the following pages alterations of function, unless attended by corresponding alterations of form, are either only incidentally alluded to, or are wholly passed over; such, for instance, as alterations in the period of flowering, in the duration of the several organs, and so forth.[9]Pathological changes, lesions caused by insect puncture or other causes, also find no place in this book, unless the changes are of such a character as to admit of definite comparison with normal conformation. Usually such changes are entirely heteromorphous, and, as it were, foreign to the natural organisation.
The practical applications of teratology deserve the attention of those cultivators who are concerned in the embellishment of our gardens and the supplyof our tables. The florist lays down a certain arbitrary standard of perfection, and attempts to make flowers conform to that model. Whether it be in good taste or not to value all flowers, in proportion as they accord with an artificial and comparatively inelastic standard of this kind, we need not stop to enquire; suffice it to say, that taking the matter in its broadest sense, the aim of the florist is to produce large, symmetrical flowers, brightly and purely coloured, or if parti-coloured, the colours must be distinct, harmonious, or contrasted. When all this is done, the flower, in most instances, becomes 'monstrous' of the eyes in the botanist, though all the more interesting to the student of morphology on that account. In like manner the double flowers, the "breaks," the "sports" which the florist cultivates so anxiously, are all of them greater or less deviations from the ordinary form, while the broccolies, the cabbages, and many other products of our kitchen gardens and fields owe the estimation in which they are held entirely to those peculiarities which, by an unhappy application of words, are called monstrous by botanists. Grafting, layering, the "striking" of cuttings, the formation of adventitious roots and buds, processes on which the cultivator so greatly relies for the propagation and extension of his plants, are also matters with which teratology concerns itself. Again the difficulty experienced occasionally in getting vines, strawberries, &c., to set properly, may sometimes be accounted for by that inherent tendency which some plants possess of exchanging an hermaphrodite for a unisexual condition.
For reasons then of direct practical utility, noless than on purely scientific grounds, it is desirable to study these irregularities of growth, their nature, limits, and inducing causes; and to this end it is hoped the present work may, in some degree, contribute.
FOOTNOTES:[1]An excellent summary of the history of Vegetable Teratology is given in Kirschleger's 'Essai historique de la Tératologie Végétale,' Strasburg, 1845.[2]In some instances diagrams and formulæ are given in explanation of the conformation of monstrous flowers; in general these require no further explanation than is given in the text, unless it be to state that the horizontal line—is intended to indicate the cohesion of the parts over which it is placed, while the vertical line | signifies the adhesion of the organs by whose side it is placed. The formulaS S S S S------------------------| P P P P P|| ST ST ST ST STshows that the sepals (S) are distinct, the petals (P) coherent, and the stamens (ST) adherent to the petals.[3]Wolff was the first to call attention to the great importance of the study of development. He was followed by Turpin, Mirbel, Schleiden, Payer, and others, and its value is now fully recognised by botanists.[4]Agardh, "Theoria Syst. Plant.," p. xxiii.[5]In the memoirs of Hopkirk, Kirschleger, Cramer, Hallier, and others, malformations are arranged primarily according to the organs affected, an arrangement which has only convenience to justify it. It is hoped that the index and the headings to the paragraphs in the present volume will suit the convenience of the reader as well as if the more artificial plan just alluded to had been adopted.[6]Cryptogamous plants are only incidentally alluded to in these pages, owing to their wide difference in structure from flowering plants. Attention may, also, here be called to a paper of M. de Seynes in a recent number of the Bulletin of the Botanical Society of France, vol. xiv, p. 290, tab. 5 et 6, in which numerous cases of malformation among agarics are recorded. See also same publication, vol. iv, p. 744; vol. v, p. 211; vol. vi, p. 496.[7]On this subject see a paper of M. Naudin in the 'Comptes Rendus,' 1867, t. 64, pp. 929–933.[8]It is probable that many terms and expressions calculated to mislead in the way above mentioned are made use of in the following pages. The inconsistency manifested by their use may be excused on the ground of ignorance of the true structure, and by the circumstance that in many cases facts alone are recorded without an explanation of them being offered. Moreover, it is desirable to act in conformity with the usual practice of botanical writers, and not to change established terminology, even if suspected to convey false ideas, until the true condition of affairs be thoroughly well ascertained by organogenetic research or other means.[9]A curious illustration of the latter class of alterations came under the writer's notice last summer (1868), and which he has reason to believe has not been previously recorded, viz. the persistence in an unwithered state of the petals at the base of the ripe fruit, in a strawberry. All the fruits on the particular plants alluded to were thus provided as it were with a white frill. Whether this be a constant occurrence in the particular variety is not known.
[1]An excellent summary of the history of Vegetable Teratology is given in Kirschleger's 'Essai historique de la Tératologie Végétale,' Strasburg, 1845.
[1]An excellent summary of the history of Vegetable Teratology is given in Kirschleger's 'Essai historique de la Tératologie Végétale,' Strasburg, 1845.
[2]In some instances diagrams and formulæ are given in explanation of the conformation of monstrous flowers; in general these require no further explanation than is given in the text, unless it be to state that the horizontal line—is intended to indicate the cohesion of the parts over which it is placed, while the vertical line | signifies the adhesion of the organs by whose side it is placed. The formulaS S S S S------------------------| P P P P P|| ST ST ST ST STshows that the sepals (S) are distinct, the petals (P) coherent, and the stamens (ST) adherent to the petals.
[2]In some instances diagrams and formulæ are given in explanation of the conformation of monstrous flowers; in general these require no further explanation than is given in the text, unless it be to state that the horizontal line—is intended to indicate the cohesion of the parts over which it is placed, while the vertical line | signifies the adhesion of the organs by whose side it is placed. The formula
S S S S S------------------------| P P P P P|| ST ST ST ST ST
shows that the sepals (S) are distinct, the petals (P) coherent, and the stamens (ST) adherent to the petals.
[3]Wolff was the first to call attention to the great importance of the study of development. He was followed by Turpin, Mirbel, Schleiden, Payer, and others, and its value is now fully recognised by botanists.
[3]Wolff was the first to call attention to the great importance of the study of development. He was followed by Turpin, Mirbel, Schleiden, Payer, and others, and its value is now fully recognised by botanists.
[4]Agardh, "Theoria Syst. Plant.," p. xxiii.
[4]Agardh, "Theoria Syst. Plant.," p. xxiii.
[5]In the memoirs of Hopkirk, Kirschleger, Cramer, Hallier, and others, malformations are arranged primarily according to the organs affected, an arrangement which has only convenience to justify it. It is hoped that the index and the headings to the paragraphs in the present volume will suit the convenience of the reader as well as if the more artificial plan just alluded to had been adopted.
[5]In the memoirs of Hopkirk, Kirschleger, Cramer, Hallier, and others, malformations are arranged primarily according to the organs affected, an arrangement which has only convenience to justify it. It is hoped that the index and the headings to the paragraphs in the present volume will suit the convenience of the reader as well as if the more artificial plan just alluded to had been adopted.
[6]Cryptogamous plants are only incidentally alluded to in these pages, owing to their wide difference in structure from flowering plants. Attention may, also, here be called to a paper of M. de Seynes in a recent number of the Bulletin of the Botanical Society of France, vol. xiv, p. 290, tab. 5 et 6, in which numerous cases of malformation among agarics are recorded. See also same publication, vol. iv, p. 744; vol. v, p. 211; vol. vi, p. 496.
[6]Cryptogamous plants are only incidentally alluded to in these pages, owing to their wide difference in structure from flowering plants. Attention may, also, here be called to a paper of M. de Seynes in a recent number of the Bulletin of the Botanical Society of France, vol. xiv, p. 290, tab. 5 et 6, in which numerous cases of malformation among agarics are recorded. See also same publication, vol. iv, p. 744; vol. v, p. 211; vol. vi, p. 496.
[7]On this subject see a paper of M. Naudin in the 'Comptes Rendus,' 1867, t. 64, pp. 929–933.
[7]On this subject see a paper of M. Naudin in the 'Comptes Rendus,' 1867, t. 64, pp. 929–933.
[8]It is probable that many terms and expressions calculated to mislead in the way above mentioned are made use of in the following pages. The inconsistency manifested by their use may be excused on the ground of ignorance of the true structure, and by the circumstance that in many cases facts alone are recorded without an explanation of them being offered. Moreover, it is desirable to act in conformity with the usual practice of botanical writers, and not to change established terminology, even if suspected to convey false ideas, until the true condition of affairs be thoroughly well ascertained by organogenetic research or other means.
[8]It is probable that many terms and expressions calculated to mislead in the way above mentioned are made use of in the following pages. The inconsistency manifested by their use may be excused on the ground of ignorance of the true structure, and by the circumstance that in many cases facts alone are recorded without an explanation of them being offered. Moreover, it is desirable to act in conformity with the usual practice of botanical writers, and not to change established terminology, even if suspected to convey false ideas, until the true condition of affairs be thoroughly well ascertained by organogenetic research or other means.
[9]A curious illustration of the latter class of alterations came under the writer's notice last summer (1868), and which he has reason to believe has not been previously recorded, viz. the persistence in an unwithered state of the petals at the base of the ripe fruit, in a strawberry. All the fruits on the particular plants alluded to were thus provided as it were with a white frill. Whether this be a constant occurrence in the particular variety is not known.
[9]A curious illustration of the latter class of alterations came under the writer's notice last summer (1868), and which he has reason to believe has not been previously recorded, viz. the persistence in an unwithered state of the petals at the base of the ripe fruit, in a strawberry. All the fruits on the particular plants alluded to were thus provided as it were with a white frill. Whether this be a constant occurrence in the particular variety is not known.
As full details relating to the disposition or arrangement of the general organs of flowering plants are given in all the ordinary text-books, it is only necessary in this place to allude to the main facts at present known, and which serve as the standard of comparison with which all morphological changes are compared.
Even in the case of the roots, which appear to be very irregular in their ramification, it has been found that, in the first instance at least, the rootlets or fibrils are arranged in regular order one over another, in a certain determinate number of vertical ranks, generally either in two or in four, sometimes in three or in five series. This regularity of arrangement (Rhizotaxy), first carefully studied by M. Clos, is connected with the disposition of the fibro-vascular bundles in the body of the root. This primitive regularity is soon lost as the plant grows.
In the case of the leaves there are two principalmodes of arrangement, dependent, as it would seem, on their simultaneous or on their successive development; thus, if two leaves on opposite sides of the stem are developed at the same time, we have the arrangement called opposite; if there are more than two, the disposition is then called verticillate or whorled. On the other hand, if the leaves are developed in succession, one after the other, they are found to emerge from the stem in a spiral direction. In either case the leaves are arranged in a certain regular manner, according to what are called the laws of Phyllotaxis, which need not be entered into fully here; but in order the better to estimate the teratological changes which take place, it may be well to allude to the following circumstances relating to the alternation of parts. The effect of this alternation is such, that no two adjacent leaves stand directly over or in front one of the other, but a little to one side or a little higher up. Now, in the alternate arrangement the successive leaves of each spiral cycle alternate one with another till the coil is completed. For the sake of clearness this may be illustrated thus:—Suppose the spiral cycle to comprise five leaves, numbered 1, 2, 3, 4, 5, then 2 would intervene between 1 and 3, and so on, while the sixth leaf would be the commencement of a new series, and would be placed exactly over 1. This arrangement may be thus formularised:
6 7 8 9 101 2 3 4 5
In the verticillate or simultaneous arrangement of leaves the case is somewhat different. Let us suppose a whorl of eight leaves, surmounted by a similar whorl of eight. In such a case it will generally be foundthat the whorls alternate one with another, as may be represented by this symbol:
9 10 11 12 13 14 15 161 2 3 4 5 6 7 8
The simplest illustration of this arrangement is seen in the case of decussate leaves, where those organs are placed in pairs, and the pairs cross one another at right angles. This may be expressed by the following symbol:
7 85 63 41 2
Thus, while in both the annular and the spiral modes of development the individual members of each complete series necessarily alternate one with another, in the former case the series themselves alternate, while in the successive arrangement they are placed directly one over the other. There are, of course, exceptions, but the rule is as has been stated, and the effect is to prevent one leaf from interfering with the development and growth of its neighbours.
In the case of the whorled or simultaneous arrangement the conditions of growth must be uniform on all sides, but in the successive or spiral disposition the conditions influencing growth act with unequal force, on different sides of the stem, at the same time. In the whorl there is an illustration of radiating symmetry, while in the spiral arrangement there is a transition to the bilateral symmetry. There are frequent passages from one to the other even under normal circumstances; thus, while the one arrangementobtains in the ordinary leaves, the parts of the flower may be disposed according to the other method. In the annular disposition it generally happens that the rings are separated one from the other by the development of the stem between them, the internodes between the constituent leaves themselves of course being undeveloped; on the other hand, in the spiral or successive arrangement there is no such alternate growth and arrest of growth of the stem between the leaves, or between successive cycles, but the growth is, under favorable conditions, continuous—leaf is separated from leaf, and cycle from cycle, by the continually elongating stem. Thus, the two modes of growth correspond precisely with those observed in the case of definite and indefinite inflorescence respectively.
Fig. 1.—Diagram showing the arrangement of parts in a complete, regular, pentamerous flower:s, sepals;p, petals;st, stamens;o, ovaries.
Fig. 1.—Diagram showing the arrangement of parts in a complete, regular, pentamerous flower:s, sepals;p, petals;st, stamens;o, ovaries.
The same arrangements, that are observed in the disposition of the leaves, apply equally well to the several parts of the flower; thus, in what is for convenience considered the typical flower, there is a calyx of five or more distinct sepals, equal in size, and arranged in a whorl, a corolla of a similar number of petals alternating with the sepals, five stamens placed in the same position with reference to the petals, and five carpels alternating with the stamens. Throughout this book this arrangement is taken as the standard of reference. Nevertheless the spiral order does occur in the floral leaves as well as in those of the stem; it often happens, especially when the organs are numerous, that they form spiral series;and the same holds good very generally, when the parts of the flower are uneven in number, as in the very common quincuncial arrangement of the sepals, &c.
To these general remarks, intended to show the agreement between the disposition of the leaves of the stem and those of the flower, it is merely necessary to add that the arrangement of the placentas, as well as that of the ovules borne on them, is also definite, and takes place according to methods explained in all the text-books, and on which, therefore, it is not necessary to dilate in this place.
The branches of the stem or axis correspond for the most part in disposition with that of the leaves from the axils of which they originate, subject, however, to numerous disturbing causes, and to alterations from the usual or typical order brought about by the development of buds. These latter organs, as it seems, may be found in almost any situation, though their ordinary position is in the axil of a leaf or at the end of a stem or branch.
The points just mentioned are of primary importance in structural botany, and as such are seized on not only by the morphologist, but by the systematic botanist, who finds in them the characters by which he may separate one group from another. Thanks to the labours of those observers who have devoted their attention to that difficult but most important branch of study, organogeny, or the investigation of the development of the various organs, and to the researches of the students of comparative anatomy or morphology, the main principles regulating the arrangement and form of the organs of flowering plants seem to be fairly wellestablished, though in matters of detail much remains to be cleared up, even in such important points as the share which the axis takes in the construction of the flower and fruit, the nature of the placenta, the construction of the ovules, and other points.
The facts already known justify the adoption of a standard or typical arrangement as just mentioned. The intrinsic value of this type is shown by the facility with which all varieties of form or arrangement may be explained by reference to certain modifications of it. It must, however, be considered as an abstraction, and should be looked on in the light rather of a scaffolding, which enables us to see the building and its several parts, than of the edifice itself, but which latter, from our imperfect knowledge and limited powers, we could not see without some such assistance.
The typical form may be, hypothetically at least, considered as the primitive one transmitted by hereditary descent from generation to generation, and modified to suit the requirements of the individual, or in accordance with circumstances. If it be borne in mind that it is but an artificial contrivance, more or less true—a means to an end, and not the end itself—no harm will arise from its employment; and as knowledge increases, or as circumstances demand, the hypothetical type can be replaced by another more in accordance with the actual state of science.
Teratological changes in the arrangement of organs depend upon arrest of growth, as when parts usually spirally arranged remain verticillate, owing to the non-development of the internodes, or to excessive growth, or development; but in many instances it isimpossible, without studying the development of the malformed flower, to ascertain whether the altered arrangement is due to an excessive or to a diminished action. Practically, however, it is of comparatively little importance to know whether, say, the isolation of parts, that are usually combined together, is congenital (i.e.the result of an arrest of growth preventing their union), or whether it be due to a separation of parts primitively undivided; the effect remains the same, though the cause may have been very different.
The principal alterations to be mentioned under this head may therefore be conveniently arranged under the following categories:—Union, Independence, Displacement, Prolification, Heterotaxy, and Heterogamy.
The union of parts, usually separate in their adult condition, is of very common occurrence as a malformation. The instances of its manifestation admit of being grouped under the heads of Cohesion, where parts of the same whorl, or of the same organ, are united together; and of Adhesion, where the union takes place between members of different whorls, or between two or more ordinarily wholly detached and distinct parts. In either case, the apparent union may be congenital (that is, the result of a primitive integrity or a lack of separation), or it may really consist in a coalition of parts originally distinct and separate. In practice it is not always easy to distinguish between these two different conditions. Indeed, in most cases it cannot be done without tracing the development of the flower throughout all its stages. It is needless to make more than a passing allusion to the frequency with which both congenital integrity or subsequent coalescence of organs exist under ordinary circumstances. Considered as a teratological phenomenon, union admits of being grouped into several subdivisions, such as Cohesion, Adhesion, Synanthy, Syncarpy, Synophty, &c. Each of these subdivisions will be separately treated, but it maybe here said that, in all or any case, the degree of fusion may be very slight, or it may be so perfect that there may be a complete amalgamation of two or more parts, while to all outward appearance the organ may be single. Thecolumn of Orchids may be referred to as an illustration under natural circumstances of the complete union of many usually distinct parts.
In the uncertainty that exists in many cases as to the real nature of the occurrence, it would be idle to attempt to explain the causes of fusions. It is clear, however, that an arrest of development will tend towards the maintenance of primordial integrity (congenital fusion), and that pressure will induce the coalition of organs primarily distinct.
Following Augustin Pyranius De Candolle, botanists have applied the term cohesion to the coalescence of parts of the same organ or of members of the same whorl; for instance, to the union of the sepals in a gamosepalous calyx, or of the petals in a gamopetalous corolla. It may arise either from a union between organs originally distinct, or more frequently from a want of separation between parts, which under general circumstances become divided during their development. Nothing is more common as a normal occurrence, while viewed as a teratological phenomenon it is also very frequent. For the purposes of convenience it admits of subdivision into those cases wherein the union takes place between the branches of the same plant, or between the margins of the same leaf-organ, or between those of different members of the same whorl.
Cohesion between the axes of the same plant.—This cohesion may occur in various manners. Firstly. The branches of the main stem may become united one to the other. Secondly. Two or more stems become joined together.Thirdly. The branches become united to the stem; or, lastly, the roots may become fused one with another.