CHAPTER II.

Theprinciple that knowledge consists in a perception of relations will now be applied to the structure and functions or uses of the different parts of the body.

Fig. 1

Fig. 1. Muscle-fibres from the heart, much magnified, showing cross-stripings, nuclei, or the darkly stained central bodies very important to the life of the cell, also the divisions and points of union. (Schäfer'sHistology.)

Fig. 1. Muscle-fibres from the heart, much magnified, showing cross-stripings, nuclei, or the darkly stained central bodies very important to the life of the cell, also the divisions and points of union. (Schäfer'sHistology.)

Fig. 2

Fig. 2. Appearance of a small portion of muscle under a moderate magnification. Between the muscle-cells proper a form of binding tissue may be seen.

Fig. 2. Appearance of a small portion of muscle under a moderate magnification. Between the muscle-cells proper a form of binding tissue may be seen.

The demonstration that all animals, even all living things, have certain properties or functions in common is one of the great results of modern science. Man no longer can be rightly viewed apart from other animals. In many respects he is in no wise superior to them. The most desirable course to pursue is to learn wherein animals resemble and wherein they differ, without dwelling at great length on the question of relative superiority or inferiority. It may be unhesitatingly asserted that all animals live, move, and have their being, in every essential respect, in the same way. Whether one considers those creatures of microscopic size living in stagnant ponds, or man himself, it is found that certain qualities characterize them all. That minute mass of jelly-like substance known as protoplasm, constituting the one-celled animal amœba, may be described asingestive,digestive,secretory,excretory,assimilative,respiratory,irritable,contractile, andreproductive: that is to say, the amœba must takein food; must digest it, or change its form; must produce some fluid within itself which acts on food; must cast out from itself what is no longer of any use; must convert the digested material into its own substance—perhaps the most wonderful property of living things; must take up into its own substance oxygen, and expel carbonic acid gas (carbon dioxide); and possess the power to respond to a stimulus, or cause of change, the property of changing form, and, finally, the ability to bring into being others like itself.

Fig. 3

Fig. 3. Muscle-cells isolated from the muscular coats of the intestine. Similar cells are found in some part of most of the internal organs, including the bronchial tubes. These cells are less ready in responding to a stimulus, contract more slowly, and tend to remain longer contracted when they pass into this condition than striped muscle cells. (Schäfer.)

Fig. 3. Muscle-cells isolated from the muscular coats of the intestine. Similar cells are found in some part of most of the internal organs, including the bronchial tubes. These cells are less ready in responding to a stimulus, contract more slowly, and tend to remain longer contracted when they pass into this condition than striped muscle cells. (Schäfer.)

Before justifying these statements in detail it will be desirable to say something of the anatomy or structure of a mammal, and we may select man himself, though it is to be remembered that one might apply exactly the same treatment to a dog, pig, mouse, or any other member of this group of animals. The amœba and creatures like it live immersed in water; man, at the bottom of an ocean of air. Both move in their own medium, the amœba creeping with extreme slowness, man moving with a speed incalculably greater. In each case the movements are determined by some cause from without which is termed by physiologists astimulus. The slightest movement of the thin cover-glass placed over the drop of water in which an amœba is immersed, on a microscopic slide, suffices to act as a stimulus, and serves much the same purpose as an electric shock to the muscles of a man. In man an elaborate apparatus exists for the process known as respiration, butin this and in all other cases the mechanism is composed of what is known technically ascells, the latter being the units of structure, the individual bricks of the building, so to speak; and just as any edifice is made up of individual pieces some of which differ from one another while others do not to any appreciable extent, so is it with the body. The individual cells of a muscle are alike in structure and function, but they differ widely from those of a gland or secreting organ, as the liver. But it is to be ever remembered that the statements with which we set out hold: that is, that however cells may differ, they have in all animals certain properties in common. Of the muscle-cell, the liver-cell, and the one-celled animal we may affirm the same properties, but the difference is that while all are secretory the liver-cell is eminently so, and produces bile, which other cells do not; that while it is but feebly contractile, or susceptible of change of form, the muscle-cell is characterized by this property above all others.

The lower we descend in the animal scale the more simple are the mechanisms by which results are attained. The one-celled animal may be said to breathe with its whole body, while the man employs a large number of muscles, not to speak, at present, of other arrangements. But when a muscle is examined under the microscope, it is found to consist of cells, each one of which is physiologically in all essentials like an amœba, so that we may say that a muscle or other tissue ororgan is really a sort of colony of cells of similar structure and function, all working in harmony like a happy family. We actually do find colonies of unicellular animals much like amœba, so that the muscle-cells and all other cells of the body may be compared to amœba and other one-celled animals.

But while in such unicellular creatures all functions are properties of the individual cell, among higher formssystemstake the place of the protoplasm of the single cell. There is a circulatory system, a respiratory system, etc.; but we must once more point out that such systems are made up of cells, so that every function of the highest animal may be finally reduced to what takes place in the unicellular animal. A circulatory system consists of a heart and blood-vessels, all filled with blood, which latter is "the life," as was known from the earliest times; yet this same blood is of no more use for the nourishment of the body while it is contained in those tubes which constitute the blood-vessels than is bread locked up in a pantry to a hungry boy. That which really provides the nutriment for the body is a fluid derived from the blood, a something like the liquid part of blood and known aslymph. This latter is to the cells of any tissue, as a muscle, as is the water filled with the food on which an amœba lives. In like manner, in spite of the complicated apparatus which supplies oxygen and removes carbon dioxide, the respiratory system, respiration is finally the work of thecell, as in amœba; a muscle-cell respires exactly as does the one-celled animal.

When we consider the marvellous complexity of structure of one of the higher animals, and the amazing variety of its functions, the question naturally arises as to how all this is brought about without any sort of clashing of the interests of one part with those of another. Why is it that the stomach has enough and not too much blood? By what means has Nature solved the problem of supplying more oxygen to parts in action than to those at rest? How is it that one set of muscles acts with instead of antagonizing another set, as in any complicated series of movements, such as walking?

To bring about this harmonization, orco-ordination, the nervous system has been provided. As the nervous and muscular systems are of preëminent importance in voice-production, they will now be considered with more detail than it is necessary to give to other systems.

Fig. 4

Fig. 4. Body of a nerve-cell of the spinal cord, specially stained so as to show the minute structure. (Schäfer'sHistology.)

Fig. 4. Body of a nerve-cell of the spinal cord, specially stained so as to show the minute structure. (Schäfer'sHistology.)

Fig. 5

Fig. 5. A large nerve-cell from the spinal cord of the ox, magnified 175 diameters. (Schäfer.)

Fig. 5. A large nerve-cell from the spinal cord of the ox, magnified 175 diameters. (Schäfer.)

Fig. 6

Fig. 6. A cell of another form, from the superficial or outer part of the greater brain (cortex cerebri). The great amount of branching is suggestive of the power to receive and to transmit nervous influences (impulses) from various other cells; in other words, complexity of structure suggests a corresponding complexity of function.

Fig. 6. A cell of another form, from the superficial or outer part of the greater brain (cortex cerebri). The great amount of branching is suggestive of the power to receive and to transmit nervous influences (impulses) from various other cells; in other words, complexity of structure suggests a corresponding complexity of function.

Fig. 7

Fig. 7. Representation of the manner in which a nerve is seen to terminate in a muscle, such ending being one form of "nerve-ending" termed a "muscle plate." It tends to emphasize the close relationship existing between muscle and nerve, and to justify the expression "neuro-muscular mechanism," the nervous system being as important for movements as the muscles. (Schäfer'sHistology.)

Fig. 7. Representation of the manner in which a nerve is seen to terminate in a muscle, such ending being one form of "nerve-ending" termed a "muscle plate." It tends to emphasize the close relationship existing between muscle and nerve, and to justify the expression "neuro-muscular mechanism," the nervous system being as important for movements as the muscles. (Schäfer'sHistology.)

Complicated as is the nervous system, modern advances in the sciences of anatomy and physiology have made the comprehension of the subject easier. It is now known that the nervous system, in spite of its wide ramifications, is also made up of cells which are structurally and functionally related to each other, and make connection with every part of the whole community, the body. A nerve-cell, orneurone, may be very complicatedin its structure because of its many branches or extensions from the main body of the cell.

Fig. 8

Fig. 8. Three muscle-fibres lying beside each other, with the small blood-vessels (capillaries) around and between them. Such are the appearances presented under the microscope by skeletal or striped muscles such as those of the larynx. (Schäfer.)

Fig. 8. Three muscle-fibres lying beside each other, with the small blood-vessels (capillaries) around and between them. Such are the appearances presented under the microscope by skeletal or striped muscles such as those of the larynx. (Schäfer.)

It may be said, in general terms, that the nervouscentres, the brain and the spinal cord, which are parts of one anatomical whole, are characterized by the presence of the cell-bodies as well as their extensions, while nerves consist only of the extensions or arms of the cell-bodies. The nerve-cell whose body is in the top of the brain may have an extension or arm which may reach practically to the end of the spinal cord, and there make communication with another cell whose arm, in turn, may reach as far as the toe. Such nerve arms or extensions constitute thenerve-fibres, and bundles of thesenerves, ornerve-trunks.

Usually nerve-fibres make connection with the cells of an organ by a special modification of structure known as anerve-ending. A nervous message or influence (nerve-impulse) may pass either to the centre—i.e., toward a cell-body—or from it; in other words, a nervous impulse may originate in the centre or in some organ more or less distant from it; a nervous impulse may becentralorperipheral. Nearly all central impulses, we now know, arise because of the peripheral ones. One may illustrate this important relation by a telegraph system. The message a railroad operator sends out—e.g., that which determines whether a train is to be held at a certain station or sent on—might depend wholly on information received from another office. The extra flow ofblood to the stomach when food enters it is owing to such a relation of things. The food acts as a stimulus to the ends of the nerve-fibres, and, in consequence, there is an ingoing (afferent) message or impulse, and, by reason of this, an outgoing (efferent) one to the muscle-cells of the small blood-vessels, owing to which they contract less strongly and the calibre of these vessels is increased; hence more blood reaches the smallest vessels of all (capillaries.) Such a physiological relation of things is termedreflex action. For such reflex action there are required structurally at least two neurones or nerve-cells, and functionally a stimulus of a certain strength and quality. Of course, if more blood passes to the stomach there must be less somewhere else, as the total volume of the blood is limited. The value of the knowledge of such a fact is obvious. It must be unwise to exercise vigorously immediately after meals, for this determines blood to the muscles which would serve a better purpose in the digestive organs. For a like reason the singer who would do his best before the public will refrain from taking a large meal before appearing.

As this subject of reflex action is of the highest importance, the reader is advised to make himself thoroughly familiar with the principles involved before perusing the future chapters of this work.Fig. 16shows the structural relations for reflex action. It also indicates how such nervous relations may be complicated by other connections ofthe nerve-cells involved in the reflex action. It will be seen that they make many upward connections with the brain, in consequence of which consciousness may be involved. Ordinarily one is more or less conscious of reflex action, though the will is not involved; in fact, a willed or voluntary action is usually considered the reverse of a reflex or involuntary action. But for a reflex action the brain is not essential. As is well known, a snake's hinder part will move in response to a touch when completely severed from the head end; and movements of considerable complexity can be evoked in a headless frog.

Herein, then, lies the solution of the problem. This is Nature's way of bringing one part into harmonious relations with another. As by a telegraphic system the most distant parts of a vast railway system may be brought into harmonious working, so is it with the body by means of the nervous system. The nerve-centres correspond to the heads of the railway system, or, perhaps more correctly, to the various officials resident in some large city who from this centre regulate the affairs of the whole line.

The muscular system is made up of cells of two kinds, those characteristic of the muscles used in ordinary movements, and those employed for the movements of the internal organs. The muscles of the limbs are made up of striped muscle-cells; those of the stomach, etc., of unstriped cells. These latter are slower to act when stimulated,contract more slowly, and cease to function more tardily when the stimulus is withdrawn.

The muscular mechanisms used by the singer and speaker are of the skeletal variety.

If it be true that the welfare of one part of the body is bound up with that of every other, as are the interests of one member of a firm with those of another, in a great business, it will at once appear that the most perfect results can follow for the voice-user only under certain conditions. However perfect by nature the vocal mechanism, the result in any case must be largely determined by the character of the body as a whole. The man of fine physique generally has naturally more to hope for than one with an ill-developed body.

In the natural working of the body the stimulus to a muscle is nervous; hence we may appropriately, and often to advantage, speak ofneuro-muscularmechanism, the nervous element being as important as the muscular.

In a later chapter it will be shown that the work of the singer and speaker when most successfully carried out must be largely reflex in nature—a fact on which hang weighty considerations with regard to many questions, among them methods of practice, the influence of example, etc.—be he ever so much the natural artist. It will be the writer's aim, however, to give such warnings and advice as may assist each reader in his own best development. Many who began with a comparatively poor physical stock in trade have surpassed theself-satisfied ones who trusted too much to what nature gave them. Singers as well as others would do well to believe thatLabor omnia vincit.

The same fundamental physiological principles apply to the lowest and to the highest animals. To all belong certain properties or qualities. As structure is differentiated, or as one animal differs from another owing to greater or less complexity of form, there is a corresponding differentiation of function, none, however, ever losing the fundamental properties of protoplasm. Each organ comes to perform some one function better than all others. This is specialization, and implies advance among animals as it does in civilization.

The neuro-muscular system is of great moment to the voice-user. He is a specialist as regards the neuro-muscular systems of the vocal mechanism. But the same laws apply to it as to other neuro-muscular mechanisms. It is of great theoretical and practical importance to recognize this, and that one part of the body is related to every other, which relationship is maintained chiefly by the nervous system, and largely through reflex action.

Ifthe old orator was right in consideringdeliveryas the essence of public speaking as an art, it may with equal truth be said of singing, the term being always so extended in signification as to imply what Rossini named as the essential for the singer—voice.

Looking at it from the physiological point of view, we may say that the one absolutely essential thing for singers and speakers is breathing. Without methods of breathing that are correct and adequate there may be a perfect larynx and admirably formed resonance-chambers above the vocal bands, with very unsatisfactory results. The more the writer knows of singers and speakers, the more deeply does he become convinced that singing and speaking may be resolved into the correct use of the breathing apparatus, above all else. Not that this alone will suffice, but it is the most important, and determines more than any other factor the question of success or failure. Breathing is the key-note with which we must begin, and to which we must return again and again.

The extent to which this subject has been misunderstood, misrepresented, and obscured in works on the voice, and its neglect by so large anumber of those who profess to understand how to teach singing and public speaking, are truly amazing. That many should fail to fully appreciate its importance in attaining artistic results is not so surprising as that the process itself should have been so ill understood, especially as it is open to any one to observe in himself, or in our domestic animals, Nature's method of getting air into and out of the body.

Fig. 10

Fig. 10 (Spalteholz). A view of the lower part of the trachea, dividing into the main bronchial tubes, which again branch into a tree-like form. The air-cells are built up around the terminations of the finest bronchial tubes, of which they are a sort of membranous extension.

Fig. 10 (Spalteholz). A view of the lower part of the trachea, dividing into the main bronchial tubes, which again branch into a tree-like form. The air-cells are built up around the terminations of the finest bronchial tubes, of which they are a sort of membranous extension.

Fig. 11

Fig. 11 (Spalteholz). Shows well the relations of heart, lungs, and diaphragm. The lungs have been drawn back, otherwise the heart would be covered almost wholly by them. It will be noted that the heart-covering is attached to the diaphragm. The fact that the stomach and other important organs of the abdomen lie immediately beneath the diaphragm is a significant one for the voice-user. Manifestly, a full stomach and free, vigorous breathing are incompatible.

Fig. 11 (Spalteholz). Shows well the relations of heart, lungs, and diaphragm. The lungs have been drawn back, otherwise the heart would be covered almost wholly by them. It will be noted that the heart-covering is attached to the diaphragm. The fact that the stomach and other important organs of the abdomen lie immediately beneath the diaphragm is a significant one for the voice-user. Manifestly, a full stomach and free, vigorous breathing are incompatible.

This misapprehension is in all probability to be traced to the dependence of the student and teacher on tradition rather than observation—on authority rather than rational judgment. If a great teacher or singer makes any announcement whatever in regard to the technique of his art, it is natural that it should be considered with attention, but it may prove a great misfortune for the individual to accept it without thoughtful consideration. The author will illustrate, from time to time, the truth of the above.

In this and all other chapters of this work the student, by which term I mean every one who is seriously interested in the use of the voice, is recommended to give attention, before reading on any subject, to the illustrations employed, perusing very carefully the explanatory remarks beneath them.

The author considers the summaries at the conclusion of the chapters of much importance. They not only furnish exact and condensed statements of the main facts and principles involved, butafford the reader a test of the extent to which the foregoing chapter has been comprehended. As the author has a horror of what is termed "cramming," he expresses the hope that no student will use these synopses, which have been prepared with much care, for so great a misuse of the mind as cramming implies.

Breathing is essential for life. The oxygen of the air is, of all food-stuffs, the most important. Without it a mammal will perish in less than three minutes; hence there is no need of the body so urgent as that of oxygen. It is also of great moment that the waste—the carbon dioxide, or carbonic acid gas—should be got rid of rapidly; nevertheless, it is not this gas which kills when the air-passages are closed, though it is highly deleterious. The body is a sort of furnace in which combustions are continually going on, and oxygen is as essential for these as for the burning of a candle, and the products are in each case the same.

Whether the voice-user respires, like others, to maintain the functions of the body, or whether he employs the breathing apparatus to produce sound, it is to be borne in mind that he uses the same physical mechanisms, so that the way is at once clear to consider the anatomy and physiology of the breathing organs.

It has been already pointed out that respiration is in all animals, in the end, the same process. The one-celled animal and the muscle-cell respire in the same way, and with the same results—oxidation, combustion, and resulting waste products. In the animal of complicated structure special mechanisms are necessary that the essential oxygen be brought to the blood and the useless carbon dioxide removed. The respiratory organs or tract include the mouth, nose, larynx, trachea, bronchial tubes, and the lung-tissue proper or the air-cells.

The mouth, nose, and larynx, in so far as they are of special importance in voice-production, will be considered later.

The air enters the trachea, or windpipe, through a relatively narrow slit in the larynx, or voice-box, known as theglottis, orchink of the glottis, which is wider when air is being taken in (inspiration) than when it is being expelled (expiration). Life depends on this chink being kept open. The windpipe is composed of a series of cartilaginous or gristly rings connected together by softer tissues. These rings are not entire, but are completed behind by soft tissues including muscle. It follows that this tube is pliable and extensible—a very important provision, especially when large movements of the neck are made, during vigorous exercise, and also in singing and speaking.

The bronchial tubes are the tree-like branches of the trachea, and extend to the air-cells themselves, which may be considered as built up around them in some such fashion as a toy balloon on its wooden stem, but with many infoldings, etc. (Fig. 10). The air-cells are composed of a membranewhich may be compared to the walls of the balloon, but we are of course dealing with living tissue supplied by countless blood-vessels of the most minute calibre, in which the blood is brought very near to the air which passes over them.

Throughout, the respiratory tract is lined with mucous membrane. Mucous membranes are so named because they secrete mucus, the fluid which moistens the nose, mouth, and all parts of the respiratory tract. When one suffers from a cold the mucous membrane, in the early stages, may become dry from failure of this natural secretion; hence sneezing, coughing, etc., as the air then acts as an irritant.

At no time do we breathe pure oxygen, but "air"—i.e., a mixture of 21 parts of the former with 79 parts of an inert gas, nitrogen; and there is always in the air more oxygen than the blood actually takes from it in the air-cells.

The intaking of air is termed by physiologistsinspiration, and its expulsionexpiration, the whole process beingrespiration. Expiration takes a very little longer than inspiration, and the rapidity of respiration depends on the needs of the body. The more active the exercise, the more rapidly vital processes go on, the more ventilation of the tissues is required and the more is actually effected. When one is at rest breathing takes place at the rate of from 14 to 18 inspirations and expirations in the minute; but of all the processes of the body none is more variable thanrespiration, and of necessity, for every modification of action, every movement, implies a demand for an increased quantity of oxygen. It is not surprising, therefore, that the very exercise of singing tends in itself to put one out of breath.

Fig. 12

Fig. 12. In the above, the shaded outlines indicate the shape of the bony cage of the chest during inspiration, and the lighter ones the same during expiration. The alterations in the position of the ribs and in the diameters of the chest, giving rise to its greater capacity during inspiration, are evident.

Fig. 12. In the above, the shaded outlines indicate the shape of the bony cage of the chest during inspiration, and the lighter ones the same during expiration. The alterations in the position of the ribs and in the diameters of the chest, giving rise to its greater capacity during inspiration, are evident.

Attention will now be directed to some facts that it is of the utmost importance to clearly understand, if one is to know how to breathe and the reasons for the method employed. The lungs are contained in a cavity the walls of which are made up of a domed muscular (and tendinous) structure below, and elsewhere of bony and cartilaginous tissues filled in with soft structures, chiefly muscles. This cage is lined within by a smooth membrane which is kept constantly moist by its own secretion. The lungs are covered by a similar membrane, both of these fitting closely like the hand to a glove, so that there are two smooth membranes in opposition. It cannot be too well remembered that these two, the inner surface of the chest walls and the outer surface of the lungs, are in the closest contact. This is so whatever the changes that take place in the size and shape of the chest. The lungs are concave below, and so fit accurately to the fleshy partition between the chest and the abdomen which constitutes the lower boundary of the chest, if we may use the term "chest" somewhat loosely. Above, suiting the shape of the chest, the lungs are somewhat conical.

The pressure of the air tends of itself to expand the lungs, which are highly elastic, even when onedoes not breathe at all. But if more air is to enter there must be additional space provided; hence greater expansion of the lungs can only follow an enlargement of the chest cavity in one or in all directions. These are spoken of asdiameters. It follows that it is possible to conceive of the chest being enlarged in three, and only three, directions; so that it may be increased in size in its vertical, its transverse, and its antero-posterior diameter, or diameter from before backwards.

Fig. 13

Fig. 13. This figure is intended to indicate, in a purely diagrammatic way, by dotted lines, the position of the diaphragm (1) when inspiration is moderate, and (2) when very deep. The unbroken curved line above the dotted ones indicates the position of the diaphragm (only approximately, of course) after expiration.

Fig. 13. This figure is intended to indicate, in a purely diagrammatic way, by dotted lines, the position of the diaphragm (1) when inspiration is moderate, and (2) when very deep. The unbroken curved line above the dotted ones indicates the position of the diaphragm (only approximately, of course) after expiration.

This expansion, as in the case of all other movements, can be effected only by muscles, or, to speak more accurately, by neuro-muscular mechanisms. Exactly what muscles are employed may be learned from the accompanying illustrations and by observation. While it is highly important to know in a general way which muscles are chiefly concerned, or, rather, where they are situated, it cannot be deemed essential for every reader to learn their names, attachments, etc., down to the minutest details, as in the case of a student of anatomy proper. The author does, however, deem it of the highest importance that the student should learn by actual observation on his own person that his chest does expand in each of the three directions indicated above.

It is not necessary to dissect to observe muscles; in fact, they can be seen in action only on the living subject. All who would really understand breathing should study the chest when divested of all clothing and before a sufficiently large mirror.He may then observe the following during a fairly deep inspiration:

1. The chest is enlarged as a whole.

2. The abdominal walls move outward.

3. The ribs pass from a more oblique to a less oblique position, and may become almost horizontal; their upper edges are also turned out slightly, though this is not so easy to observe.

4. Again, in the case of a very deep and sudden inspiration, the abdomen and the lower ribs also are drawn inward.

The changes above referred to are brought about in this way:

1. The total enlargement is due to the action of many muscles which function in harmony with each other.

2. The chief changes are brought about by those muscles attached between the ribs (intercostales); but these act more efficiently owing to the coöperation of other muscles which steady the ribs and chest generally, such as those attached to the shoulder-bones and the upper ribs; indeed, the most powerful inspiration possible can only be effected when most of the other muscles of the body are brought into action. One may observe that even the arms and legs are called into requisition when a tenor sings his highest tone as forcibly as possible, though this is often overdone in a way to be condemned. Art should not be reduced to a gymnastic feat.

The most important muscle of inspiration is thediaphragm, or midriff, because it produces a greater change in the size of the chest than any other single muscle. Some animals can get the oxygen they require to maintain life by the action of this large muscle alone, when all other respiratory muscles are paralyzed. As it is so important, and above all to the voice-user, it merits special consideration.

In studying the action of a muscle it is necessary to note itspoints of attachmentto harder structures, either bone or cartilage. Nearly always one such point is more fixed than the other, and from this the muscle pulls when it contracts.

The diaphragm is peculiar in that it is somewhat circular in shape and is more or less tendinous or sinew-like in the middle. Being attached to the spinal column behind and to the lower six or seven ribs, when the muscle contracts it becomes less domed in shape—less convex upward—and of course descends to a variable degree depending on the extent of the muscular contraction. As to whether the ribs, and with them the abdominal muscles, are drawn in or the reverse, is determined wholly by the degree of force with which the contraction takes place and the extent to which it is resisted. Throughout the body muscles are arranged in sets which may either coöperate with or antagonize each other, as required. The forcible bending of one's arm by another person may be resisted by one through the use of certainmuscles. In this the action of the muscles which bend the arm is imitated by the agent seeking to perform this movement for us. The muscles acting in opposition to certain others are said to be theirantagonists.

Were the diaphragm to contract moderately the ribs would be but little drawn in, even if no muscles acted as antagonists. But, as a matter of fact, this domed muscle descends at the same time as the ribs ascend, because of the action of the muscles attached to them. The diaphragm being concave below toward the abdomen, the contents of this cavity fit closely to its under surface. There are found the liver, stomach, intestines, etc.—a part of great practical importance, as will be shown presently.

Naturally, in breathing, the organs of the abdomen, especially those above, are pressed down somewhat with the descent of the diaphragm in inspiration, and, in turn, push out the abdominal walls. If, however, the midriff contract so powerfully that the lower ribs are drawn inward, the abdominal walls follow them. Although the actual extent of the descent of the diaphragm is small in itself, since the total surface is large it effects a very considerable enlargement of the chest in the vertical diameter.

The capacity of the lungs for air is a very variable quantity:

1. The quantity of air taken in with a single inspiration in quiet breathing (tidal air) is about 20-30 cubic inches.

2. The quantity taken in with the deepest possible inspiration (complemental air) is about 100 cubic inches.

3. The quantity that may be expelled by the most forcible expiration (supplemental air) is about 100 cubic inches.

4. The quantity that can under no circumstances be expelled (residual air) is about 100 cubic inches.

5. The quantity that can be expelled after the most forcible inspiration—i.e., the amount of air that can be moved—indicates thevital capacity. This varies very much with the individual, and depends not a little on the elasticity of the chest walls, and so diminishes with age. It follows that youth is the best period for the development of the chest, and the time to learn that special breath-control so essential to good singing and speaking.

When the ribs have been raised by inspiration and the abdominal organs pressed down by the diaphragm, the chest, on the cessation of the act, tends to resume its former shape, owing to elastic recoil quite apart from all muscular action; in other words, inspiration is active, expiration largely passive. With the voice-user, especially the singer, expiration becomes the more important, and the more difficult to control, as will be shown later.

It must now be apparent that such use of the voice as is necessitated by speaking for the public, or by singing, still more, perhaps, must tend to the general welfare of the body—i.e., the hygiene ofrespiration is evident from the physiology. Actual experience proves this to be the case. The author has known the greatest improvement in health and vigor follow on the judicious use of the voice, owing largely to a more active respiration. It also follows, however, that exhaustion may result from the excessive use of the respiratory muscles, as with any others, even when the method of chest-expansion is quite correct. Before condemning any vocal method one does well to inquire in regard to the extent to which it has been employed, as well as the circumstances of thevoice-user. A poor clergyman worried with the fear of being supplanted by another man, or a singer unable to secure employment, possibly from lack of means to advertise himself, is not likely to grow fat under any method of vocal exercise, be it ever so physiological; while the prima donna who has chanced to please the popular taste and become a favorite may "wax fat and kick."

Fig. 14

Figs. 14, A and B, are to be compared: that on the left shows the position of the diaphragm, abdominal walls, etc., during expiration; the one on the right, during inspiration. The relative quantities of air in the chest in each case are approximately indicated by the shaded areas.

Figs. 14, A and B, are to be compared: that on the left shows the position of the diaphragm, abdominal walls, etc., during expiration; the one on the right, during inspiration. The relative quantities of air in the chest in each case are approximately indicated by the shaded areas.

Whenone takes into account the large number of muscles employed in respiration, and remembers that these muscles must act in perfect harmony with each other if the great end is to be attained, he naturally inquires how this complex series of muscular contractions has been brought into concerted action so as to result in that physiological unity known as breathing.

It is impossible to conceive of such results being effected except through the influence of the nervous system, which acts as a sort of regulator throughout the whole economy. All the parts of the respiratory tract are supplied with nerves, which are of both kinds—those which carry nervous impulses or messages from and those which convey them to the nervous centres concerned; in other words, to and from the bodies of the nerve-cells whose extensions are termed nerves. These centres are the central offices where the information is received and from which orders are issued, so to speak.

The chief respiratory centre—thecentre—is situated in that portion of the brain just above the spinal cord, in its continuation, in fact, and is known as themedulla oblongata, orbulb. Butwhile this is the head centre, at which the ingoing (afferent) impulses are received and from which the outgoing (efferent) ones proceed, it makes use of many other collections of nerve-cells, or subordinate centres—e.g., those whose nerve-extensions or nerve-fibres proceed from the spinal cord to the muscles of respiration.

Fig. 15

Fig. 15. The purpose of this diagram is to indicate the relation between ingoing (afferent) and outgoing (efferent) nervous influences (impulses)—in other words, to illustratereflex action. The paths of the ingoing impulses are indicated by black lines, and those of the outgoing ones by red lines, the point of termination being shown by an arrow-tip. The result of an ingoing message may be either favorable or unfavorable. The nervous impulse that reaches the brain through the eye may be either exhilarating or depressing. The experienced singer is usually stimulated by the sight of an audience, while the beginner may be rendered nervous, and this may express itself in many and widely distant parts of the body. An unfavorable message may reach the diaphragm or intercostal muscles, and render breathing shallow, irregular, or, in the worst cases, almost gasping. The heart or stomach, even the muscles of the larynx, the limbs, etc., may be affected, and trembling be the result. On the other hand, the laryngeal and other muscles may be toned up, and the voice rendered better than usual, as a result of applause—i.e., by nervous impulses through the ear—or, again, by the sight of a friend. Even a very tight glove or a pinching shoe may suffice to hamper the action of the muscles required for singing or speaking. All this is a result of reflex action—i.e., outgoing messages set up by ingoing ones—the "centre" being either the brain or the spinal cord. From all this it is evident that the singer or speaker must guard against everything unfavorable, to an extent that an ordinary person need not. The stomach, as the diagram is also meant to show, may express itself on the brain, and give rise, as in fact it often does, owing to indiscretion in eating, to unpleasant outward effects on the muscles required in singing or speaking. Of course, no attempt has been made in the above figure to express anatomical forms and relations exactly.

Fig. 15. The purpose of this diagram is to indicate the relation between ingoing (afferent) and outgoing (efferent) nervous influences (impulses)—in other words, to illustratereflex action. The paths of the ingoing impulses are indicated by black lines, and those of the outgoing ones by red lines, the point of termination being shown by an arrow-tip. The result of an ingoing message may be either favorable or unfavorable. The nervous impulse that reaches the brain through the eye may be either exhilarating or depressing. The experienced singer is usually stimulated by the sight of an audience, while the beginner may be rendered nervous, and this may express itself in many and widely distant parts of the body. An unfavorable message may reach the diaphragm or intercostal muscles, and render breathing shallow, irregular, or, in the worst cases, almost gasping. The heart or stomach, even the muscles of the larynx, the limbs, etc., may be affected, and trembling be the result. On the other hand, the laryngeal and other muscles may be toned up, and the voice rendered better than usual, as a result of applause—i.e., by nervous impulses through the ear—or, again, by the sight of a friend. Even a very tight glove or a pinching shoe may suffice to hamper the action of the muscles required for singing or speaking. All this is a result of reflex action—i.e., outgoing messages set up by ingoing ones—the "centre" being either the brain or the spinal cord. From all this it is evident that the singer or speaker must guard against everything unfavorable, to an extent that an ordinary person need not. The stomach, as the diagram is also meant to show, may express itself on the brain, and give rise, as in fact it often does, owing to indiscretion in eating, to unpleasant outward effects on the muscles required in singing or speaking. Of course, no attempt has been made in the above figure to express anatomical forms and relations exactly.

When all the ingoing impulses from the lungs, etc., are cut off, if respiration does not actually cease, it is carried out in a way so ineffective that life cannot be long sustained. It follows that as the muscular contractions necessary for the chest and other respiratory movements are dependent on the impulses passing in from the lungs, etc., breathing belongs to the class of movements known as reflex—chiefly so, at all events. It will thus be seen that respiration is a sort of self-regulative process, the movements being in proportion to the needs of the body. The greater the need for oxygen, the more are the nerve-terminals in the lungs and the centre itself stimulated, with, as a result, corresponding outgoing impulses to muscles.

As the respiratory centre is readily reached by impulses from every part of the body, like one who keeps open house, there are many different sorts of visitors, not all desirable. If, for example, a drop of a fluid that produces no special effect when on the tongue gets into the larynx, trachea, or lungs, the most violent coughing follows. This is one illustration of theprotectivecharacter of many reflexes. This violent action ofthe respiratory apparatus is not in itself a desirable thing, because it disturbs if it does not exhaust, but it is preferable to the inflammation that might result if the fluid, a bread-crumb, etc., were to pass into the lungs.

In like manner, the deep breath and the "Oh!" that follow a fear-inspiring sight, a very loud noise, or a severe pinch of the skin, are examples of reflex action. They are quite independent of the will, though in some cases they may be prevented by it.

This reflex nature of breathing throws much light on many matters of great interest to the speaker and singer, some of which, as the formation of good habits of breathing, will be considered later. Unfortunately for the nervous débutant, his breathing is anything but what he could wish it. The pale face and almost gasping respiration, in the worst cases, are not unknown to the experienced observer. In such cases the preventive (inhibitory) influence of certain ingoing impulses is but too obvious. Such undesirable messages may pass in through the eyes when the young singer looks out on the throng that may either approve or condemn; or they may originate within, and pass from the higher part of the brain to the lower breathing centre. The beginner may have high ideals of art, and fear that they will be but ill realized in his performance. His ideals in this instance do not help but hinder, for they interfere with the regular action of the breathingcentre. A few deep breaths after the platform has been reached greatly help under such circumstances. It is also wise for the singer to avoid those songs that begin softly and require long breaths and very evenly sustained tones. It is much better to begin with a selection that brings the breathing organs into fairly active exercise at once. One feeble, hesitating, or otherwise ineffective tone is in itself a stimulus of the wrong kind, sending in unfavorable messages which are only too apt to reach the breathing and other centres concerned in voice-production; but of this subject of nervousness again.

It is important to realize that sounds, whether musical or the reverse, are produced by the outgoing stream of breath, by an expiratory effort. Breath is taken in by the voice-producer in order to be converted into that expiratory force which, playing on the vocal bands, causes them to vibrate or pass into the rapid movements which give rise to similar movements of the air in the cavities above the larynx, the resonance-chambers, and on which the final result as regards sound is dependent. Important as is inspiration to the speaker and singer, expiration is much more so. Many persons fill the lungs well, but do not understand how to husband their resources, and so waste breath instead of converting every particle into sound, so to speak. After the larynx has been studied the importance of the expiratory blast will be better understood.

For the voice-user, it cannot be too soon realized thatall breath that does not become sound is wasted, or, to express the same truth otherwise, the sole purpose of breathing is to cause effective vibrations of the vocal bands. In these two words,effective vibrations, lies the whole secret of voice production, the whole purpose of training, the key to the highest technical results, the cause of success or failure for those who speak or sing.

Before the larynx, the apparatus that produces sound-vibrations, can be effectively employed, the source of power, the bellows, must be developed. To some Nature has been generous—they have large chests; to others she has given a smaller wind-chest, but has perhaps compensated by providing an especially fine voice-box. Happy are they who have both, and thrice happy those who have all three requirements: a fine chest, a well-constructed larynx, and beautifully formed resonance-chambers. If with all these there are the musical ear and the artistic temperament, we have the singer who is born great. These are the very few. To most it must be—if greatness at all—greatness thrust upon them, greatness the result of long and patient effort to attain perfect development. Indeed, even those with the most complete natural outfit can only reach the highest results of which they are capable by long and patient application. Those who do not believe in attainment only through labor would do well to abandon an art career, as there is already a great deal too much poor speaking and bad singing.

Thefirst great requisite for a voice-user is a well-developed chest; the next, complete control of it, or, to put it otherwise, the art of breathing, as briefly explained above.

The chest may be large enough, yet not be, in the physiological sense, developed. The voice-user is a sort of athlete, a specialist whose chest muscles must be strong and not covered up by very much superfluous tissue in the form of fat, etc. Whatever the public may think of the goodly form, the singer must remember that fat is practically of no use to any one in voice-production, and may prove a great hindrance, possibly in some cases being a coöperative cause of thattremoloso fatal to good singing.

The voice-user should eschew ease and take plenty of exercise, but most of all must he use those forms of exercise which develop the breathing apparatus and tend to keep it in the best condition. Walking, running, and hill climbing are all excellent, but do not in themselves suffice to develop the chest to the utmost.

To the beginner the following exercises are strongly recommended. They are highly important for all, whether beginners or not, who wouldhave the best development of the breathing apparatus.

Deep breathing, such a use of the respiratory organs as leads to the greatest possible expansion of the chest, should be learned and practised, if not absolutely before vocal exercises are attempted, at all events as soon after as possible. As in all cases where muscles are employed, the exercise should begraduated. It may be even harmful to attempt to fill the chest to its utmost capacity at once. It is better to breathe very moderately for several days. Any such symptoms as dizziness or headache accompanying or following the exercises indicate that they have been too vigorous, too long continued, or carried out under unsuitable conditions. Above all must the air be pure, and the body absolutely unhampered—most of all, the chest—by any form of clothing. Last century most ladies and some men applied to the chest a form of apparatus known as corsets, under the mistaken belief that they were for women a necessary support and improved the figure. They no doubt were responsible for much lack of development, and feeble health, and, as has been proved by examination of the body after death, led to compression of the liver and other organs. No voice-user should use such an effective means of preventing the very thing he should most desire, a full and free use of the breathing apparatus.

Before carrying out the exercises suggested or others equally good, the student is recommended to be weighed, and especially to have the chest carefullymeasured. This can be done with sufficient accuracy by the use of a tape-measure. It will be well to take the circumference a few inches above and below a certain point, so that it may be ascertained that the chest expands in every region. The measurements should be taken under the following conditions:

1. The chest should be almost or wholly divested of clothing.

2. Its circumference is to be ascertained—(a) when the breath has been allowed to pass out gently, and before a new breath is taken; (b) with the deepest possible inspiration; (c) after the deepest possible expiration, which has been preceded by a similar inspiration.

After about three weeks the individual should be again measured, by the same person, in exactly the same way, in order to learn whether there has been development or not, and, if so, how much. It is important that the measurements should be made at exactly the same horizontal planes, and with this end in view it is desirable to put a small mark of some kind on the chest, which may remain till the next measurements are made.

The method of breathing recommended is as follows:

1. Inhale very slowly through the nostrils, withclosed mouth, counting mentally one, two, three, four, etc., with regularity.

2. Hold the breath thus taken, but only for a short time, counting in the same manner as before.

3. Exhale slowly, still counting.

After a few moments' rest the exercise may be again carried out in the same way. These exercises may be in series, several times a day.

The following warnings are especially to be observed:

1. Never continue any exercise when there is a sense of discomfort of any kind whatever. Such usually indicates that it is being carried out too vigorously.

2. Increase the depth of the inspirations daily, but not very rapidly.

3. The inspirations and expirations should both be carried out very slowly at first.

4. Cease the exercise before any sense of fatigue is experienced. Fatigue is Nature's warning, and should be always obeyed. It indicates that the waste products which result from the use of the muscles are accumulating and proving harmful.

After a week of such exercises the following modification of them is recommended:

1. Inhale with the lips slightly apart.

2. Gradually increase the length of the time the breath is held, but let it never exceed a few seconds.

3. Through open lips allow the breath to pass out, but with extreme slowness. The student should try to increase this last, somewhat, daily, as it is above all what is required in singing, and also in speaking, though to a somewhat less degree—a slow, regulated expulsion of the breath.

If when the chest is full of air the subject gently raises the arms over the head, or directs them backward, he will experience a sense of pressure on the chest. If this be carefully done, its effect is to strengthen, and it is especially valuable for those inclined to stoop. The recommendation to inspire through the open lips applies only when one is in a room, or in the open air when it is warm enough and free from dust. But the student should learn to inspire through the slightly open mouth, as to breathe through the nose in speaking, and especially in singing, is objectionable for several reasons which can be better explained later; so that the rule is tobreathe through the nose when not using the voice, and through the mouth when one does.

Though all the exercises thus far referred to tend to develop the diaphragm and abdominal muscles, these may be strengthened by special exercises. The diaphragm is the soft floor of the chest, and must at once bear the strain of the air that acts on the approximated vocal bands, and assist in applying that pressure with just the amount of force required, and no more; hence it is important that this muscle be both strong andunder perfect control. This large central muscle is probably not only the most generally effective of all the respiratory muscles, but has an action more precise and often more delicate, more nicely controlled, than that of any other. It is possible to make very powerful movements of this muscle, and an exercise that will cause it to descend deeply and remain in a tense condition is valuable. To effect this, one pushes it down as far as possible, and holds it there for a few seconds, then permits it to relax gradually. The extent to which this is successful can be inferred from the degree to which the abdominal wall bulges forward.

The sudden though slight movements required in those forms of vocalization that bear more or less resemblance to what vocalists termstaccato, and which are so effective in dramatic speaking and singing, can be prepared for by larger but sudden movements of the diaphragm, as when one taking a full breath imitates coughing movements, but in a regular and measured way, the throat being used but little. At the same time, or separately, the abdominal muscles may be effectively exercised by being drawn in and thrust out with considerable force.

None of these movements are elegant—they scarcely put one in an artistic light; but they are highly effective in strengthening parts every voice-user must employ.

To furnish adequate support for the diaphragm and chest in a very vigorous use of the voice, as inthe most trying passages a tragic actor has to speak or a vocalist to sing, the abdominal muscles must remain more or less tense, and to do so effectually they must have strength beyond that possessed by the corresponding muscles in ordinary persons; hence the desirability of employing special exercises to increase their vigor. Hill climbing and bicycling also tend to this end, but the latter is for many reasons not a form of exercise to be recommended to one who wishes to attain the highest results with the voice. Wind, dust, a stooping position, excessive heat of the body, etc., are all among the many factors of risk for the delicate vocal mechanism.

As the expiratory blast is so important in voice-production, the exercises above recommended should be followed by others in which this principle is specially recognized.

1. Inspire so as to fill the chest to the fullest with considerable rapidity; then allow the breath-stream to pass out with the utmost slowness.

2. Fill the chest with special reference to its lower or its upper part, as desired, and very rapidly, letting the breath flow out slowly.

The primary purpose of respiration in all animals is the same—namely, to furnish oxygen and remove carbon dioxide (carbonic acid). The lowest animals, as the amœba, breathe by the wholesurface of the body. In all vertebrates the anatomical mechanism is essentially the same: a membrane (covered with flat cells) in which the blood is distributed in the minutest blood-vessels (capillaries). Respiration is finally effected in the tissues (cells) of the body. The more active the animal, or the higher in the scale, the more need of frequent interchange between the air, the blood, and the tissues.

The respiratory organs in mammals are the mouth, nose, larynx, trachea, bronchial tubes, and lung-tissue or air-cells proper. The windpipe is made up of cartilaginous rings completed by membrane, muscle, etc. (behind). The bronchial tubes are the continuation of the windpipe, and branch tree-like until they become very fine. The air-cells are built round these latter. The lung-tissue is highly elastic. The lungs are made up of an elastic membrane, covered with flat cells, and very abundantly supplied with a mesh-work of the finest blood-vessels. The whole of the respiratory tract as far as the air-cells is lined by mucous membrane.

The air consists essentially of 21 parts of oxygen and 79 parts of nitrogen, with a variable quantity of watery vapor. Only a small portion of the total oxygen of the air is removed before it is exhaled. The respiratory act consists of (1) inspiration, and (2) expiration; the latter is of a little longer duration than the former. The rate of breathing in man is from 14 to 18 per minute, inthe resting state, or about one respiration to three or four heart-beats. The quantity of air inspired depends on (1) the size of the thorax, and (2) the extent of its movements. These are effected solely by muscular contractions, and give rise to an increase in all the diameters of the thorax. The lungs are closely applied (but not attached) to the inside of the chest wall, and remain so under all circumstances. When the chest cavity is enlarged by inspiration, the air, pressing down into the elastic lungs, expands them as much as possible, that is, as much as the chest walls will allow; but the lungs are never at any time either filled with or emptied of air to their utmost capacity. At most, the amount of expansion is very moderate.

The Quantity of Air in the Lungs.

1. The quantity of air inspired in quiet breathing is about 20-30 cubic inches.

2. The quantity that can be added to this by a deep inspiration is about 100 cubic inches.

3. The quantity that can be expelled by a forcible expiration is about 100 cubic inches.

4. The quantity that cannot be expelled at all is about 100 cubic inches.

The above are named: (1) The tidal air; (2) complemental air; (3) supplemental air; (4) residual air. The quantity that can be expelled by the most forcible expiration after the most forcible inspiration, that is, the air that can be moved,indicating the "vital capacity," is about 225-250 inches.

The chest is enlarged by the muscles of inspiration, the principal of which is the diaphragm or midriff. This muscle (tendinous in the centre) is attached to the spinal column (behind) and to the last six or seven ribs. When it contracts it becomes less domed upward, and is pressed down more or less on the contents of the abdomen; hence the walls of the latter move outward. During ordinary inspiration the lower ribs are steadied by other muscles, so that no indrawing of these ribs takes place, but a very forcible expiration makes such indrawing very noticeable. In addition to the enlargement of the chest by the descent of the diaphragm, the ribs are elevated and everted by the muscles attached to them, with the total result that the chest cavity is enlarged in all its three diameters during inspiration. The first rib is fixed by muscles from above. During extremely forced inspiration a large proportion of all the muscles of the body may act. Ordinary expiration is the result largely of the elastic recoil of the chest walls, only a few muscles taking part. The diaphragm ascends and becomes more domed. During forced expiration many other muscles are called into action. It is of importance for the singer and speaker to note: (1) That the chest cavity should be increased in all its directions; (2) that the muscular action should be easy and under perfect control, but also vigorous whenrequired; (3) that the breath be taken through the nostrils when the individual is not actually vocalizing or about to do so; (4) that the breath be kept in or let out in the proportion required.

Breathing is a reflex or involuntary act. The respiratory centre, consisting of an expiratory and inspiratory division, is situated in the bulb, or medulla oblongata, the portion of the brain just above the spinal cord. All the ingoing nervous impulses affect respiration through the outgoing impulses that pass along the nerves to the muscles; that is, the ingoing impulses pass up by the nerves from the lungs to the centre, and thence along other nerves to the respiratory muscles. The condition of the blood determines the activity of the respiratory centre, but the incoming impulses regulate this activity. The respiratory centre can be approached from every part of the body.

Hygiene.

Every thing that favors the full and free expansion of the chest in a pure atmosphere is favorable, and the reverse unfavorable. Corsets are against the laws of beauty, are unnecessary for support, and may by compression injure and displace important organs, as the liver, stomach, etc.; and must interfere with the fullest expansion of the chest. They have militated against the physical, and indirectly the moral and mental advancement of the race.

Practical Exercises.

I. Measurements of the chest.

II. Exercises to strengthen muscles, promote complete expansion, regulate inflow and outflow of air, etc.


Back to IndexNext