[2]Blanford,Geology of Abyssinia, p. 185.
[2]Blanford,Geology of Abyssinia, p. 185.
Another region in which the volcanic phenomena bear a remarkable analogy to those of Central India, just described, is that of Abyssinia. Nor are these tracts so widely separated that they may not be considered as portions of one great volcanic area extending from Abyssinia, through Southern Arabia, into Cutch and the Deccan, in the one direction, while the great volcanic cones of Kenia and Kilimanjaro, with their surrounding tracts of volcanic matter, may be the extreme prolongations in the other. Along this tract volcanic operations are still active in the Gulf of Aden; and cones quite unchanged in form, and evidently of very recent date, abound in many places along the coast both of Arabia and Africa. The volcanic formations of this tract are, however, much more recent than those which occupy the high plateaux of Central and Southern Abyssinia of which we are about to speak.
(a.)Physical Features.—Abyssinia forms a compact region of lofty plateaux intersected by deep valleys, interposed between the basin of the Nile on the west, and the low-lying tract bordering the Red Sea and the Indian Ocean on the east. The plateaux are deeply intersected by valleys and ravines, givingbirth to streams which feed the head waters of the Blue Nile (Bahr el Arak) and the Atbara. Several fine lakes lie in the lap of the mountains, of which the Zana, or Dembia, is the largest, and next Ashangi, visited by the British army on its march to Magdala in 1868, and which, from its form and the volcanic nature of the surrounding hills, appears to occupy the hollow of an extinct crater. The table-land of Abyssinia reaches its highest elevation along the eastern and southern margin, where its average height may be 8,000 to 10,000 feet; but some peaks rise to a height of 12,000 to 15,000 feet in Shoa and Ankobar.[1]
(b.)Basaltic Lava Sheets.—An enormous area of this country seems to be composed of volcanic rocks chiefly in the form of sheets of basaltic lava, which rise into high plateaux, and break off in steep—sometimes precipitous—mural escarpments along the sides of the valleys. These are divisible into the following series:—
(1)The Ashangi Volcanic Series.—The earliest forerunners of the more recent lavas seem to have been erupted in Jurassic times, in the form of sheets of contemporaneous basalt or dolerite amongst the Antola limestones which are of this period. But the great mass of the volcanic rocks are much more recent, and may be confidently referred to the late Cretaceous or early Tertiary epochs. Their resemblance to the great trappean series of Western India, even in minute particulars, is referred to by Mr. Blanford, who suggests the view that they belong to one and the same great series of lava-flows extruded over the surface of this part of the globe.This view is inherently probable. They consist of basalts and dolerites, generally amygdaloidal, with nodules of agate and zeolite, and are frequently coated with green-earth (chlorite). Beds of volcanic ash or breccia also frequently occur, and often contain augite crystals. At Senafé, hills of trachyte passing into claystone and basalt were observed by Mr. Blanford, but it is not clear what are their relations to the plateau-basaltic sheets.[2]
(2)Magdala Volcanic Series.—This is a more recent group of volcanic lavas, chiefly distinguished from the lower, or Ashangi, group, by the occurrence of thick beds of trachyte, usually more or less crystalline, and containing beautiful crystals of sanidine. The beds of trachyte break off in precipitous scarps, and being of great thickness and perfectly horizontal, are unusually conspicuous. Mr. Blanford says, with regard to this group, that there is a remarkable resemblance in its physical aspect to the scenery of the Deccan and the higher valleys of the Western Ghats of India, but the peculiarities of the landscape are exaggerated in Abyssinia. Many of the trachytic beds are brecciated and highly columnar; sedimentary beds are also interstratified with those of volcanic origin. The Magdala group is unconformable to that of Ashangi in some places. A still more recent group of volcanic rocks appears to occur in the neighbourhood of Senafé, consisting of amorphous masses of trachyte, often so fine-grained and compact as to pass into claystone and to resemble sandstone. At Akub Teriki the rocks appear to be in the immediate vicinity of an ancient vent of eruption.
From what has been said, it will be apparent thatAbyssinia offers volcanic phenomena of great interest for the observer. There is considerable variety in the rock masses, in their mode of distribution, and in the scenery which they produce. The extensive horizontal sheets of lava are suggestive of fissure-eruption rather than of eruption through volcanic craters; and although these may have once been in existence, denudation has left no vestiges of them at the present day. In all these respects the resemblance of the volcanic phenomena to those of Peninsular India is remarkably striking; it suggests the view that they are contemporaneous as regards the time of their eruption, and similar as regards their mode of formation.
[1]W. T. Blanford,Geology of Abyssinia, pp. 151-2.
[1]W. T. Blanford,Geology of Abyssinia, pp. 151-2.
[2]Blanford,loc. cit., p. 182.
[2]Blanford,loc. cit., p. 182.
Basalt of the Plateau.—The extensive sheets of plateau-basalt forming portions of the Neuweld range and the elevated table-land of Cape Colony, may be regarded as forerunners of those just described, and possibly contemporaneous with the Ashangi volcanic series of Abyssinia. The great basaltic sheets of the Cape Colony are found capping the highest elevations of the Camderboo and Stormberg ranges, as well as overspreading immense areas of less elevated land, to an extent, according to Professor A. H. Green, of at least 120,000 square miles.[1]Amongst these sheets, innumerable dykes, and masses of solid lava which filled the old vents of eruption, are to be observed. The floor upon which the lava-floods have been poured out generally consists of the "Cave Sandstone," the uppermost of a series of deposits which had previously been laid down over the bed of an extensive lake which occupied this part of Africa during the Mesozoic period. After the deposition of this sandstone, the volcanic forces appear to have burst through the crust, and fromvents and fissures great floods of augitic lava, with beds of tuff, invaded the region occupied by the waters of the lake. The lava-sheets have since undergone extensive denudation, and are intersected by valleys and depressions eroded down through them into the sandstone floor beneath; and though the precise geological period at which they were extruded must remain in doubt, it appears probable that they may be referred to that of the Trias.[2]
[1]Green. "On the Geology of the Cape Colony,"Quart. Jour. Geol. Soc., vol. xliv. (1888).
[1]Green. "On the Geology of the Cape Colony,"Quart. Jour. Geol. Soc., vol. xliv. (1888).
[2]The district lying along the south coast of Africa is described by Andrew G. Bain, in theTrans. Geol. Soc., vol. vii. (1845); but there is little information regarding the volcanic region here referred to.
[2]The district lying along the south coast of Africa is described by Andrew G. Bain, in theTrans. Geol. Soc., vol. vii. (1845); but there is little information regarding the volcanic region here referred to.
It is beyond the scope of this work to describe the volcanic rocks of pre-Tertiary times over various parts of the globe. The subject is far too large to be treated otherwise than in a distinct and separate essay. I will therefore content myself with a brief enumeration of the formations of the British Isles in which contemporaneous volcanic action has been recognised.[1]
There is little evidence of volcanic action throughout the long lapse of time extending backwards from the Cretaceous to the Triassic epochs, that is to say, throughout the Mesozoic or Secondary period, and it is not till we reach the Palæozoic strata that evidence of volcanic action unmistakably presents itself.
Permian Period.—In Ayrshire, and in the western parts of Devonshire, beds of felspathic porphyry, felstone and ash are interstratified with strata believed to be of Permian age. In Devonshire these have only recently been recognised by Dr. Irving and the author as of Permian age, the strata consisting of beds of breccia, lying at the base of the New Red Sandstone. Those of Ayrshire have long been recognised as ofthe same period; as they rest unconformably on the coal measures, and consist of porphyrites, melaphyres, and tuffs of volcanic origin.
Carboniferous Period.—Volcanic rocks occur amongst the coal-measures of England and Scotland, while they are also found interbedded with the Carboniferous Limestone series in Derbyshire, Scotland, and Co. Limerick in Ireland. The rocks consist chiefly of basalt, dolerite, melaphyre and felstone.
Devonian Period.—Volcanic rocks of Devonian age occur in the South of Scotland, consisting of felstone-porphyries and melaphyres; also at Boyle, in Roscommon, and amongst the Glengariff beds near Killarney in Ireland.
Upper Silurian Period.—Volcanic rocks of this stage are only known in Ireland, on the borders of Cos. Mayo and Galway, west of Lough Mask, and at the extreme headland of the Dingle Promontory in Co. Kerry. They consist of porphyrites, felstones and tuffs, or breccias, contemporaneously erupted during the Wenlock and Ludlow stages. Around the flanks of Muilrea, beds of purple quartz-felstone with tuff are interstratified with the Upper Silurian grits and slates.
Lower Silurian Period.—Volcanic action was developed on a grand scale during the Arenig and Caradoc-Bala stages, both in Wales and the Lake district, and in the Llandeilo stage in the South of Scotland. The felspathic lavas, with their associated beds of tuff and breccia, rise into some of the grandest mountain crests of North Wales, such as those of Cader Idris, Aran Mowddwy, Arenig and Moel Wyn. A similar series is also represented in Ireland, ranging from Wicklow to Waterford, forming a double groupof felstones, porphyries, breccias, and ash-beds, with dykes of basalt and dolerite. The same series again appears amidst the Lower Silurian beds of Co. Louth, near Drogheda.
Metamorphic Series presumably of Lower Silurian Age.—If, as seems highly probable, the great metamorphic series of Donegal and Derry are the representatives in time of the Lower Silurian series, some of the great sheets of felspathic and hornblendic trap which they contain are referable to this epoch. These rocks have undergone a change in structure along with the sedimentary strata of which they were originally formed, so that the sheets of (presumably) augitic lava have been converted into hornblende-rock and schist. Similar masses occur in North Mayo, south of Belderg Harbour.
Cambrian Period.—In the Pass of Llanberis, along the banks of Llyn Padarn, masses of quartz-porphyry, felsite and agglomerate, or breccia, indicate volcanic action during this stage. These rocks underlie beds of conglomerate, slate and grit of the Lower Cambrian epoch, and, as Mr. Blake has shown, are clearly of volcanic origin, and pass upwards into the sedimentary strata of the period. A similar group, first recognised by Professor Sedgwick, stretches southwards from Bangor along the southern shore of the Menai Straits. Again, we find the volcanic eruptions of this epoch at St. David's, consisting of diabasic and felsitic lava, with beds of ash; and in the centre of England, amongst the grits and slates of Charnwood Forest presumably of Cambrian age, various felstones, porphyries, and volcanic breccias are found.
Thus it will be seen that every epoch, from the earliest stage of the Cambrian to the Permian, in theBritish Isles, gives evidence of the existence of volcanic action; from which we may infer that the originating cause, whatever it may be, has been in operation throughout all past geological time represented by living forms. The question of the condition of our globe in Archæan times, and earlier, is one which only can be discussed on theoretic ground, and is beyond the scope of this work.
[1]The reader is referred to Sir A. Geikie's Presidential Address to the Geological Society (1891) for the latest view of this subject.
[1]The reader is referred to Sir A. Geikie's Presidential Address to the Geological Society (1891) for the latest view of this subject.
VOLCANIC BAND OF THE MOLUCCAS.Map of MoluccasMap showing the volcanic belt to which Krakatoa belongs. The shaded portion is volcanic.
I propose to introduce here some account of one of the most terrible outbursts of volcanic action that have taken place in modern times; namely, the eruption of the volcano of Krakatoa (a corruption of Rakata) in the strait of Sunda, between the islands of Sumatra and Java, in the year 1883. The Malay Archipelago, of which this island once formed a member, is a region where volcanic action is constant, and where the outbursts are exceptionally violent. With the great island of Borneo as a solid, non-volcanic central core, a line of volcanic islands extends from Chedooba off the coast of Pegu through Sumatra, Java, Sumbawa, Flores, and, reaching the Moluccas, stretches northwards through the Philippines into Japan and Kamtschatka. This is probably the most active volcanic belt in the world, and the recent terrible earthquake and eruption in Japan (November, 1891) gives proof that the volcanic forces are as powerful and destructive as ever.[1]
(a.)Dormant Condition down to 1680.—Down to the year 1680, this island, although from its form and structure evidently volcanic, appears to have been in a dormant state; its sides were covered with luxuriant forests, and numerous habitations dotted its shore. But in May of that year an eruption occurred, owing to which the aspect of Krakatoa as described by Vogel was entirely changed; the surface of the island when this writer passed on his voyage to Sumatra appeared burnt up and arid, while blocks of incandescent rock were being hurled into the air from four distinct points. After this first recorded eruption the island relapsed into a state of repose, and except for a stream of molten lava which issued from the northern extremity, there was no evidence of its dangerous condition. The luxuriant vegetation of the tropics speedily re-established itself, and the volcano was generally regarded as "extinct."[2]History repeats itself; and the history of Vesuvius was repeated in the case of Krakatoa.
Map of KrakatoaFig. 35.—Map Of The Krakatoa Group Of Islands Before The Eruption Of August 1883 (From Admiralty Chart)
(b.)Eruption of May, 1883.[3]—On the morning of May 20, 1883, the inhabitants of Batavia, of Buitenzorg, and neighbouring localities, were surprised by a confused noise, mingled with detonations resembling the firing of artillery. The phenomena commenced between ten and eleven o'clock in the morning, and soon acquired such intensity as to cause general alarm. The detonations were accompanied by tremblings of the ground, of buildings and various objects contained in dwellings; but it was generally admitted that these did not proceed from earthquake shocks, but from atmospheric vibrations. No deviation of the magnetic needle was observed at the Meteorological Institute of Batavia; but a vertical oscillation was apparent, and persons who listened with the ear placed on the ground, even during the most violent detonations, could hear no subterranean noise whatever. It became clear that the sounds came from some volcano burst into activity; but it is strange that for two whole days it remained uncertain what was the particular volcano to which the phenomena were to be referred. The detonations appeared, indeed, to come from the direction of Krakatoa; but fromSerang, Anjer, and Merak, localities situated much nearer Krakatoa than Batavia, the telegraph announced that neither detonations nor atmospheric vibrations had been perceived. The distance between Batavia and Krakatoa is ninety-three English miles. The doubts thus experienced were, however, soon put to rest by the arrival of an American vessel under the command of A. R. Thomas, and of other ships which hailed from the straits of Sunda. From their accounts it was ascertained that in the direction of Krakatoa the heavens were clouded with ashes, and that a grand column of smoke, illumined from time to time by flashes of flame, arose from above the island. Thus after a repose of more than two hundred years, "the peaceable isle of Krakatoa, inhabited, and covered by thick forests, was suddenly awakened from its condition of fancied security."
Section through KrakatoaFig. 36.—Section from Verlaten Island through Krakatoa, to show the outline before and after the eruption of August, 1888. The continuous line shows the former; the dotted line and shading, the latter; from which it will be observed that the original island has to a large extent disappeared. The line of section is shown inFig. 35.
(c.)Form and Appearance of the Island before the Eruption of 1883.—From surveys made in 1849 and 1881, it would appear that the island of Krakatoa consisted of three mountains or groups of mountains (Figs.35,36); the southern formed by the cone of Rakata (properly so called), rising with a scarped face above the sea to a height of over 800 mètres (2,622 feet). Adjoining this cone, and rising from the centre ofthe island, came the group of Danan, composed of many summits, probably forming part of theenceinte annulaireof a crater. And near the northern extremity of the isle, a third group of mammelated heights could be recognised under the general name of Perboewatan, from which issued several obsidian lava-flows, with a steep slope; these dated back perhaps to the period of the first known eruption of 1680. This large and mountainous island as it existed at the beginning of May, 1883, has been entirely destroyed by the terrible eruptions of that year, with the exception of the peripheric rim (composed of the most ancient of the volcanic rocks, andesite), of which Verlaten Island and Rakata formed a part, and one very small islet, which is noted on the maps as "rots" (rock), and on the new map of the Straits of Sunda of the Dutch Navy as that of "Bootsmansrots."[4]
As shown by the map in the Report of the Royal Society, the group of islands which existed previous to 1883 were but the unsubmerged portions of one vast volcanic crater, built up of a remarkable variety of lava allied to the andesite of the Java volcanoes, but having a larger percentage of silica, and hence falling under the head of "enstatite-dacite."[5]That these volcanic rocks are of very recent origin is shown by the fact, ascertained by Verbeek, that beneath them occur deposits of Post-Tertiary age, and that these in turn rest on the Tertiary strata which are widely distributed through Sumatra, Java, and the adjoining islands. According to the reasoning of Professor Judd, the Krakatoa group at an early period of its history presented the form of a magnificent crater-cone, several miles in circumference at the base, whichsubsequent eruptions shattered into fragments or blew into the air in the form of dust, ashes, and blocks of lava, while the central part collapsed and fell in, leaving a vast circular ring like the ancient crater of Somma (seeFig. 6, p. 43), and he supposes the former eruptions to have been on a scale exceeding in magnificence those which have caused such world-wide interest within the last few years.
(d.)Eruption of 26th to 28th of August.—It was, as we have seen, in the month of May that, in the language of Chev. Verbeek, "the volcano of Krakatoa chose to announce in a high voice to the inhabitants of the Archipelago that, although almost nothing amongst the many colossal volcanic mountains of the Indies, it yielded to none of them in regard to its power." These eruptions were, however, only premonitory of the tremendous and terrible explosion which was to commence on Sunday, the 26th of August, and which continued for several days subsequently. A little after noon of that day, a rumbling noise accompanied by short and feeble explosions was heard at Buitenzorg, coming from the direction of Krakatoa; and similar sounds were heard at Anjer and Batavia a little later. Soon these detonations augmented in intensity, especially about five o'clock in the evening; and news was afterwards received that the sounds had been heard in the isle of Java. These sounds increased still more during the night, so that few persons living on the west side of the isle of Java were able to sleep. At seven in the morning there came a crash so formidable, that those who had hoped for a little sleep at Buitenzorg leaped from their beds. Meanwhile the sky, which had up to this time been clear, became overcast, so that by ten o'clock itbecame necessary to have recourse to lamps, and the air became charged with vapour. Occasional shocks of earthquake were now felt. Darkness became general all over the straits and the bordering coasts. Showers of ashes began to fall. The repeated shocks of earthquake, and the rapid discharges of subterranean artillery, all combined to show that an eruption of even greater violence than that of May was in progress at the isle of Krakatoa.
But the most interested witnesses to this terrible outburst were those on board the ships plying through the straits. Amongst these was theCharles Bal, a British vessel under the command of Captain Watson. This ship was ten miles south of the volcano on Sunday afternoon, and therefore well in sight of the island at the time when the volcano had entered upon its paroxysmal state of action. Captain Watson describes the island as being covered by a dense black cloud, while sounds like the discharges of artillery occurred at intervals of a second of time; and a crackling noise (probably arising from the impact of fragments of rock ascending and descending in the atmosphere) was heard by those on board. These appearances became so threatening towards five o'clock in the evening, that the commander feared to continue his voyage and began to shorten sail. From five to six o'clock a rain of pumice in large pieces, quite warm, fell upon the ship, which was one of those that escaped destruction during this terrible night.[6]
(e.)Electrical Phenomena.—During this eruption, electrical phenomena of great splendour were observed.Captain Wooldbridge, viewing the eruption in the afternoon of the 26th from a distance of forty miles, speaks of a great vapour-cloud looking like an immense wall being momentarily lighted up "by bursts of forked lightning like large serpents rushing through the air. After sunset this dark wall resembled a blood-red curtain, with edges of all shades of yellow, the whole of a murky tinge, through which gleamed fierce flashes of lightning." As Professor Judd observes, the abundant generation of atmospheric electricity is a familiar phenomenon in all volcanic eruptions on a grand scale. The steam-jets rushing through the orifices of the earth's crust constitute an enormous hydro-electrical engine, and the friction of the ejected materials striking against one another in their ascent and descent also does much in the way of generating electricity.[7]It has been estimated by several observers that the column of watery vapour ascended to a height of from twelve to seventeen and even twenty-three miles; and on reaching the upper strata of the atmosphere, it spread itself out in a vast canopy resembling "the pine-tree" form of Vesuvian eruptions; and throughout the long night of the 27th this canopy continued to extend laterally, and the particles of dust which it enclosed began to descend slowly through the air.
(f.)Formation of Waves.—This tremendous outburst of volcanic forces, which to a greater or less extent influenced the entire surface of the globe, gave rise to waves which traversed both air and ocean; and in consequence of the large number of observatories scattered all over the globe, and the excellence and delicacy of the instruments of observation, we areput in possession of the remarkable results which have been obtained from the collection of the observations in the hands of competent specialists. The results are relatedin extensoin the Report of the Royal Society, illustrated by maps and diagrams, and are worthy of careful study by those interested in terrestrial phenomena. A brief summary is all that can be given here, but it will probably suffice to bring home to the reader the magnitude and grandeur of the eruption.
The vibrations or waves generated in August, 1883, at Krakatoa may be arranged under three heads: (1) Atmospheric Waves; (2) Sound Waves; and (3) Oceanic Waves; which I will touch upon in the order here stated.
(1)Atmospheric Waves.—These phenomena have been ably handled by General Strachey,[8]from a large number of observations extending all over the globe. From these it has been clearly established that an atmospheric wave, originating at Krakatoa as a centre, expanded outwards in a circular form and travelled onwards till it became a great circle at a distance of 180 degrees from its point of origin, after which it still advanced, but now gradually contracting to a node at the antipodes of Krakatoa; that is to say, at a point over the surface of North America, situated in lat. 6° N. and long. 72° W. (or thereabout). Having attained this position, the wave was reflected or reproduced, expanding outwards for 180 degrees and travelling backwards again to Krakatoa, from which it again started, and returning to its original form again overspread the globe. This wonderful repetition, due to the spherical form of the earth, wasobserved no fewer than seven times, though with such diminished force as ultimately to be outside the range of observation by the most sensitive instruments. It is one of the triumphs of modern scientific appliances that the course of such a wave, generated in a fluid surrounding a globe, which might be demonstrated on mathematical principles, has been actually determined by experiments carried on over so great an area.
(2)Sound Waves.—If the sound-waves produced at the time of maximum eruption were not quite as far-reaching as those of the air, they were certainly sufficiently surprising to be almost incredible, were it not that they rest, both as regards time and character, upon incontestible authority. The sound of the eruption, resembling that of the discharge of artillery, was heard not only over nearly all parts of Sumatra, Java, and the coast of Borneo opposite the Straits of Sunda, but at places over two thousand miles distant from the scene of the explosions. Detailed accounts, collected with great care, are given in the Report of the Royal Society, from which the following are selected as examples:—
1. At the port of Acheen, at the northern extremity of Sumatra, distant 1,073 miles, it was supposed that the port was being attacked, and the troops were put under arms.2. At Singapore, distant 522 miles, two steamers were dispatched to look out for the vessel which was supposed to be firing guns as signals of distress.3. At Bankok, in Siam, distant 1,413 miles, the report was heard on the 27th; as also at Labuan, in Borneo, distant 1,037 miles.4. At places in the Philippine Islands, distant about 1,450 miles, detonations were heard on the 27th, at the time of the eruption.
1. At the port of Acheen, at the northern extremity of Sumatra, distant 1,073 miles, it was supposed that the port was being attacked, and the troops were put under arms.
2. At Singapore, distant 522 miles, two steamers were dispatched to look out for the vessel which was supposed to be firing guns as signals of distress.
3. At Bankok, in Siam, distant 1,413 miles, the report was heard on the 27th; as also at Labuan, in Borneo, distant 1,037 miles.
4. At places in the Philippine Islands, distant about 1,450 miles, detonations were heard on the 27th, at the time of the eruption.
The above places lie northwards of Krakatoa. Inthe opposite direction, we have the following examples:—
5. At Perth, in Western Australia, distant 1,092 miles, sounds as of guns firing at sea were heard; and at the Victorian Plains, distant about 1,700 miles, similar sounds were heard.6. In South Australia, at Alice's Springs, Undoolga, and other places at distances of over 2,000 miles, the sounds of the eruption were also heard.7. In a westerly direction at Dutch Bay, Ceylon, distant 2,058 miles, the sounds were heard between 7 a.m. and 10 a.m. on the morning of the 27th of August.8. Lastly, at the Chagos Islands, distant 2,267 miles, the detonations were audible between 10 and 11 a.m. of the same day.
5. At Perth, in Western Australia, distant 1,092 miles, sounds as of guns firing at sea were heard; and at the Victorian Plains, distant about 1,700 miles, similar sounds were heard.
6. In South Australia, at Alice's Springs, Undoolga, and other places at distances of over 2,000 miles, the sounds of the eruption were also heard.
7. In a westerly direction at Dutch Bay, Ceylon, distant 2,058 miles, the sounds were heard between 7 a.m. and 10 a.m. on the morning of the 27th of August.
8. Lastly, at the Chagos Islands, distant 2,267 miles, the detonations were audible between 10 and 11 a.m. of the same day.
Some of the above distances are so great that we may fail to realise them; but they will be more easily appreciated, perhaps, if we change the localities to our own side of the globe, and take two or three cases with similar distances. Then, if the eruption had taken place amongst the volcanoes of the Canaries, the detonations would have been heard at Gibraltar, at Lisbon, at Portsmouth, Southampton, Cork, and probably at Dublin and Liverpool; or, again, supposing the eruption had taken place on the coast of Iceland, the report would have been heard all over the western and northern coasts of the British Isles, as well as at Amsterdam and the Hague. The enormous distance to which the sound travelled in the case of Krakatoa was greatly due to the fact that the explosions took place at the surface of the sea, and the sound was carried along that surface uninterruptedly to the localities recorded; a range of mountains intervening would have cut off the sound-wave at a comparatively short distance from its source.
(3)Oceanic Waves.—As may be supposed, theeruption gave rise to great agitation of the ocean waters with various degrees of vertical oscillation; but according to the conclusions of Captain Wharton, founded on numerous data, the greatest wave seems to have originated at Krakatoa about 10 a.m. on the 27th of August, rising on the coasts of the Straits of Sunda to a height of fifty feet above the ordinary sea-level. This wave appears to have been observed over at least half the globe. It travelled westwards to the coast of Hindostan and Southern Arabia, ultimately reaching the coasts of France and England. Eastwards it struck the coast of Australia, New Zealand, the Sandwich Islands, Alaska, and the western coast of North America; so that it was only the continent of North and South America which formed a barrier (and that not absolute) to the circulation of this oceanic wave all over the globe. The destruction to life and property caused by this wave along the coasts of Sunda was very great. Combined with the earthquake shocks (which, however, were not very severe), the tremendous storm of wind, the fall of ashes and cinders, and the changes in the sea-bed, it produced in the Straits of Sunda for some time after the eruption a disastrous transformation. Lighthouses had been swept away; all the old familiar landmarks on the shore were obscured by a vast deposit of volcanic dust; the sea itself was encumbered with enormous quantities of floating pumice, in many places of such thickness that no vessel could force its way through them; and for months after the eruption one of the principal channels was greatly obstructed by two islands which had arisen in its midst. The Sebesi channel was completely blocked by banks composed of volcanic materials, and two portions ofthese banks rose above the sea as islands, which received the name of "Steers Island" and "Calmeyer Island"; but these, by the action of the waves, have since been completely swept away, and the materials strewn over the bed of the sea.[9]
(g.)Atmospheric Effects.—But the face of nature, even in her most terrific and repulsive aspect, is seldom altogether unrelieved by some traces of beauty. In contrast to the fearful and disastrous phenomena just described, is to be placed the splendour of the heavens, witnessed all over the central regions of the globe throughout a period of several months after the eruption of 1883, which has been ably treated by the Hon. Rollo Russell and Mr. C. D. Archibald, in the Royal Society's Report.
When the particles of lava and ashes mingled with vapour were projected into the air with a velocity greater than that of a ball discharged from the largest Armstrong gun, these materials were carried by the prevalent trade-winds in a westerly direction, and some of them fell on the deck of ships sailing in the Indian Ocean as far as long. 80° E., as in the case of theBritish Empire—on which the particles fell on the 29th of August, at a distance of 1,600 miles from Krakatoa. But far beyond this limit, the finer particles of dust (or rather minute crystals of felspar and other minerals), mingled with vapour of water, were carried by the higher currents of the air as far as the Seychelles and Africa,—not only the East coast, but also the West, as Cape Coast Castle on the Gold Coast; to Paramaribo, Trinidad, Panama, the Sandwich Isles,Ceylon and British India, at all of which places during the month of September the sun assumed tints of blue or green, as did also the moon just before and after the appearance of the stars;[10]and from the latter end of September and for several months, the sky was remarkable for its magnificent coloration; passing from crimson through purple to yellow, and melting away in azure tints which were visible in Europe and the British Isles; while a large corona was observed round both the sun and moon. These beautiful sky effects were objects of general observation throughout the latter part of the year 1883 and commencement of the following year.
The explanation of these phenomena may be briefly stated. The fine particles, consisting for the most part of translucent crystals, or fragments of crystals, formed a canopy high up in the atmosphere, being gradually spread over both sides of the equator till it formed a broad belt, through which the rays of the sun and moon were refracted. Towards dawn and sunset they were refracted and reflected from the facets of the crystal, and thus underwent decomposition into the prismatic colours; as do the rays of the sun when refracted and reflected from the particles of moisture in a rain-cloud. The subject is one which cannot be fully dealt with here, and is rather outside the scope of this work.
(h.)Origin of the Eruption.—The ultimate cause of volcanic eruptions is treated in a subsequent chapter, nor is that of Krakatoa essentially different from others. It was remarkable, however, both for the magnitude of the forces evoked and the stupendousscale of the resulting phenomena. It is evident that water played an important part in these phenomena, though not as the prime mover;—any more than water in the boiler of a locomotive is the prime mover in the generation of the steam. Without the fuel in the furnace the steam would not be produced; and the amount of steam generated will be proportional to the quantity and heat of the fuel in the furnace and the quantity of water in the boiler. In the case of Krakatoa, both these elements were enormous and inexhaustible. The volcanic chimney (or system of chimneys), being situated on an island, was readily accessible to the waters of the ocean when fissures gave them access to the interior molten matter. That such fissures were opened we may well believe. The earthquakes which occurred at the beginning of May, and later on, on the 27th of that month, may indicate movements of the crust by which water gained access. It appears that in May the only crater in a state of activity was that of Perboewatan; in June another crater came into action, connected with Danan in the centre of the island, and in August a third burst forth. Thus there was progressive activity up to the commencement of the grand eruption of the 26th of that month.[11]During this last paroxysmal stage, the centre of the island gave way and sunk down, when the waters of the ocean gained free access, and meeting with the columns of molten matter rising from below originated the prodigious masses of steam which rose into the air.
(i.)Cause of the Detonations.—The detonations which accompanied the last great eruption are repeatedly referred to in all the accounts. Thesemay have been due, not only to the sudden explosions of steam directly produced by the ocean water coming in contact with the molten lava, but by dissociation of the vapour of water at the critical point of temperature into its elements of oxygen and hydrogen; the reunion of these elements at the required temperature would also result in explosions.
The phenomena attending this great volcanic eruption, so carefully tabulated and critically examined, will henceforth be referred to as constituting an epoch in the history of volcanic action over the globe, and be of immense value for reference and comparison.
[1]The eruption of Krakatoa has been the subject of an elaborate Report published by the Royal Society, and is also described in a work by Chevalier R. D. M. Verbeek, Ingenieur en Chef des Mines, and published by order of the Governor-General of the Netherland Indies (1886). See also an Article by Sir R. S. Ball in theContemporary Reviewfor November, 1888.
[1]The eruption of Krakatoa has been the subject of an elaborate Report published by the Royal Society, and is also described in a work by Chevalier R. D. M. Verbeek, Ingenieur en Chef des Mines, and published by order of the Governor-General of the Netherland Indies (1886). See also an Article by Sir R. S. Ball in theContemporary Reviewfor November, 1888.
[2]Verbeek,loc. cit., p. 4.
[2]Verbeek,loc. cit., p. 4.
[3]The account of this eruption is a free translation from Verbeek.
[3]The account of this eruption is a free translation from Verbeek.
[4]Verbeek,loc. cit., p. 160.
[4]Verbeek,loc. cit., p. 160.
[5]Judd,Rep. R. S.
[5]Judd,Rep. R. S.
[6]A fuller account by Prof. Judd will be found in theReport of the Royal Society, p. 14. Several vessels at anchor were driven ashore on the straits owing to the strong wind which arose.
[6]A fuller account by Prof. Judd will be found in theReport of the Royal Society, p. 14. Several vessels at anchor were driven ashore on the straits owing to the strong wind which arose.
[7]Judd,Report, p. 21.
[7]Judd,Report, p. 21.
[8]Report, Part ii.
[8]Report, Part ii.
[9]In this eruption, 36,380 human beings perished, of whom 37 were Europeans; 163 villages (kampoengs) were entirely, and 132 partially, destroyed.—Verbeek,loc. cit., p. 79.
[9]In this eruption, 36,380 human beings perished, of whom 37 were Europeans; 163 villages (kampoengs) were entirely, and 132 partially, destroyed.—Verbeek,loc. cit., p. 79.