Mount ShastaFig. 25.—Mount Shasta (14,511 feet), a snow-clad volcanic cone in California, with Mount Shastina, a secondary crater, on the right; the valley between is filled with glacier-ice.—(After Dutton).
(d.)California.—Proceeding westwards into California, we are again confronted with volcanic phenomena on a stupendous scale. The coast range of mountains, which branches off from the Sierra Nevada at Mount Pinos, on the south, is terminated near the northern extremity of the State by a very lofty mountain of volcanic origin, called Mount Shasta, which attains an elevation of 14,511 feet (seeFig. 25). This mountain was first ascended by Clarence King in 1870,[4]and although forming, as it were, a portion of the Pacific Coast Range, it really rises from the plain in solitary grandeur, its summit covered by snow, and originating several fine glaciers.
The summit of Mount Shasta is a nearly perfect cone, but from its north-west side there juts out a large crater-cone just below the snow-line, between which and the main mass of the mountain there exists a deep depression filled with glacier ice. This secondary crater-cone has been named Mount Shastina, and round its inner side the stream of glacier ice winds itself, sometimes surmounting the rim of the crater, and shooting down masses of iceinto the great caldron. The length of this glacier is about three miles, and its breadth about 4000 feet. Another very lofty volcanic mountain is Mount Rainier, in the Washington territory, consisting of three peaks of which the eastern possesses a crater very perfect throughout its entire circumference. This mountain appears to be formed mainly of trachytic matter. Proceeding further north into British territory, several volcanic mountains near the Pacific Coast are said to exhibit evidence of activity. Of these may be mentioned Mount Edgecombe, in lat. 57°.3; Mount Fairweather, lat. 57°.20 which rises to a height of 14,932 feet; and Mount St. Elias, lat. 60°.5, just within the divisional line between British and Russian territory, and reaching an altitude of 16,860 feet. This, the loftiest of all the volcanoes of the North American continent, except those of Mexico, may be considered as the connecting link in the volcanic chain between the continent and the Aleutian Islands.[5]
(e.)Lake Bonneville.—Returning to Utah we are brought into contact with phenomena of special interest, owing to the inter-relations of volcanic and lacustrine conditions which once prevailed over large tracts of that territory. The present Great Salt Lake, and the smaller neighbouring lakes, those called Utah and Sevier, are but remnants of an originally far greater expanse of inland water, the boundaries of which have been traced out by Mr. C. K. Gilbert, and described under the name of Lake Bonneville.[6]The waters of this lake appear to have reached their highest level at the period of maximum cold of thePost-Pliocene period, when the glaciers descended to its margin, and large streams of glacier water were poured into it. Eruptions of basaltic lava from successive craters appear to have gone on before, during, and after the lacustrine epochs; and the drying up of the waters over the greater extent of their original area, now converted into the Sevier Desert, and their concentration into their present comparatively narrow basins, appears to have proceededpari passuwith the gradual extinction of the volcanic outbursts. Two successive epochs of eruption of basalt appear to have been clearly established—an earlier one of the "Provo Age," when the lava was extruded from the Tabernacle craters, and a later epoch, when the eruptions took place from the Ice Spring craters. The oldest volcanic rock appears to be rhyolite, which peers up in two small hills almost smothered beneath the lake deposits. Its eruption was long anterior to the lake period. On the other hand, the cessation of the eruptions of the later basaltic sheets is evidently an event of such recent date that Mr. Gilbert is led to look forward to their resumption at some future, but not distant, epoch. As he truly observes, we are not to infer that, because the outward manifestations of volcanic action have ceased, the internal causes of those manifestations have passed away. These are still in operation, and must make themselves felt when the internal forces have recovered their exhausted energies; but perhaps not to the same extent as before.
(f.)Region of the Snake River.—The tract of country bordering the Snake River in Idaho and Washington is remarkable for the vast sheets of plateau-basalt with which it is overspread, extendingsometimes in one great flood farther than the eye can reach, and what is still more remarkable, they are often unaccompanied by any visible craters or vents of eruption. In Oregon the plateau-basalt is at least 2,000 feet in thickness, and where traversed by the Columbia River it reaches a thickness of about 3,000 feet. The Snake and Columbia rivers are lined by walls of volcanic rock, basaltic above, trachytic below, for a distance of, in the former, one hundred, in the latter, two hundred, miles. Captain Dutton, in describing the High Plateau of Utah, observes that the lavas appear to have welled up in mighty floods without any of that explosive violence generally characteristic of volcanic action. This extravasated matter has spread over wide fields, deluging the surrounding country like a tide in a bay, and overflowing all inequalities. Here also we have evidence of older volcanic cones buried beneath seas of lava subsequently extruded.
(g.)Fissures of Eruption.—The absence, or rarity, of volcanic craters or cones of eruption in the neighbourhood of these great sheets has led American geologists to the conclusion that the lavas were in many cases extruded from fissures in the earth's crust rather than from ordinary craters.[7]This view is also urged by Sir A. Geikie, who visited the Utah region of the Snake River in 1880, and has vividly described the impression produced by the sight of these vast fields of basaltic lava. He says, "We found that the older trachytic lavas of the hills had been deeply trenched by the lateral valleys, and that all these valleys had a floor of black basalt that had been poured out as the lastof the molten materials from the now extinct volcanoes. There were no visible cones or vents from which these floods of basalt could have proceeded. We rode for hours by the margin of a vast plain of basalt stretching southward and westward as far as the eye could reach.... I realised the truth of an assertion made first by Richthofen,[8]that our modern volcanoes, such as Vesuvius and Etna, present us with by no means the grandest type of volcanic action, but rather belong to a time of failing activity. There have been periods of tremendous volcanic energy, when instead of escaping from a local vent, like a Vesuvian cone, the lava has found its way to the surface by innumerable fissures opened for it in the solid crust of the globe over thousands of square miles."[9]
(h.)Volcanic History of Western America.—The general succession of volcanic events throughout the region of Western America appears to have been somewhat as follows:—[10]
The earliest volcanic eruptions occurred in the later Eocene epoch and were continued into the succeeding Miocene stage. These consisted of rocks moderately rich in silica, and are grouped under the heads of propylite and andesite. To these succeeded during the Pliocene epoch still more highly silicated rocks of trachytic type, consisting of sanidine and oligoclase trachytes. Then came eruptions of rhyolite during the later Pliocene and Pleistocene epochs; and lastly, after a period of cessation, during which the rocks just described were greatly eroded, came the greateruptions of basaltic lava, deluging the plains, winding round the cones or plateaux of the older lavas, descending into the river valleys and flooding the lake beds, issuing forth from both vents and fissures, and continuing intermittently down almost into the present day—certainly into the period of man's appearance on the scene. Thus the volcanic history of Western America corresponds remarkably to that of the European regions with which we have previously dealt, both as regards the succession of the various lavas and the epochs of their eruption.
(i.)The Yellowstone Park.—The geysers and hot springs of the Yellowstone Park, like those in Iceland and New Zealand, are special manifestations of volcanic action, generally in its secondary or moribund stage. The geysers of the Yellowstone occur on a grand scale; the eruptions are frequent, and the water is projected into the air to a height of over 200 feet. Most of these are intermittent, like the remarkable one known as Old Faithful, the Castle Geyser, and the Giantess Geyser described by Dr. Hayden, which ejects the water to a height of 250 feet. The geyser-waters hold large quantities of silica and sulphur in solution, owing to their high temperature under great pressure, and these minerals are precipitated upon the cooling of the waters in the air, and form circular basins, often gorgeously tinted with red and yellow colours.[11]
[1]J. W. Powell,Exploration of the Cañons of the Colorado, pp. 114, 196. Major Powell describes a fault or fissure through which floods of lava have been forced up from beneath and have been poured over the surface. Many cinder-cones are planted along the line of this fissure.
[1]J. W. Powell,Exploration of the Cañons of the Colorado, pp. 114, 196. Major Powell describes a fault or fissure through which floods of lava have been forced up from beneath and have been poured over the surface. Many cinder-cones are planted along the line of this fissure.
[2]Capt. C. E. Dutton.Sixth Ann. Rep. U.S. Geol. Survey, 1884-85.
[2]Capt. C. E. Dutton.Sixth Ann. Rep. U.S. Geol. Survey, 1884-85.
[3]Dutton,loc. cit., chap. iv. p. 165.
[3]Dutton,loc. cit., chap. iv. p. 165.
[4]Amer. Jour. Science, vol. 3., ser. (1871). A beautiful map of this mountain is given in theFifth Annual Report, U.S. Geol. Survey, 1883-84. Plate 44.
[4]Amer. Jour. Science, vol. 3., ser. (1871). A beautiful map of this mountain is given in theFifth Annual Report, U.S. Geol. Survey, 1883-84. Plate 44.
[5]Daubeny,loc. cit., p. 474.
[5]Daubeny,loc. cit., p. 474.
[6]Gilbert,Monograph U.S. Geol. Survey, vol. i. (1890).
[6]Gilbert,Monograph U.S. Geol. Survey, vol. i. (1890).
[7]Powell,Exploration of the Colorado River, p. 177, etc. (1875). Hayden,Rep. U.S. Geol. Survey of the Colorado, etc.(1871-80).
[7]Powell,Exploration of the Colorado River, p. 177, etc. (1875). Hayden,Rep. U.S. Geol. Survey of the Colorado, etc.(1871-80).
[8]Richthofen,Natural System of Volcanic Rocks, Mem. California Acad. Sciences, vol. i. (1868).
[8]Richthofen,Natural System of Volcanic Rocks, Mem. California Acad. Sciences, vol. i. (1868).
[9]Geikie,Geological Sketches at Home and Abroad, p. 271 (1882).
[9]Geikie,Geological Sketches at Home and Abroad, p. 271 (1882).
[10]Prestwich,Geology, vol. i. p. 370, quoting from Richthofen.
[10]Prestwich,Geology, vol. i. p. 370, quoting from Richthofen.
[11]The origin of geysers is variously explained; see Prestwich,Geology, vol. i. p. 170. They are probably due to heated waters suddenly converted into steam by contact with rock at a high temperature.
[11]The origin of geysers is variously explained; see Prestwich,Geology, vol. i. p. 170. They are probably due to heated waters suddenly converted into steam by contact with rock at a high temperature.
One other region of volcanic action remains to be noticed before passing on to the consideration of those of less recent age. New Zealand is an island wherein seem to be concentrated all the phenomena of volcanic action of past and present time. Though it is doubtful if the term "active," in its full sense, can be applied to any of the existing craters (with two or three exceptions, such as Tongariro and Whakari Island), we find craters and cones in great numbers in perfectly fresh condition, extensive sheets of trachytic and basaltic lavas, ashes, and agglomerates; lava-floods descending from the ruptured craters of ashes and scoriæ; old crater-basins converted into lakes; geysers, hot springs and fumaroles which may be counted by hundreds, and cataracts breaking over barriers of siliceous sinter; and, lastly, lofty volcanic mountains vying in magnitude with Vesuvius and Etna. All these wonderful exhibitions of moribund volcanic action seem to be concentrated in the northern island of Auckland. The southern island, which is the larger, also has its natural attractions, but they are of a different kind; chief of all is the grand range of mountains called, not inappropriately, the "Southern Alps," vying with its European representative in the loftiness of its peaksand the splendour of its snowfields and glaciers, but formed of more ancient and solid rocks than those of the northern island.
(a.)Auckland District.—We are indebted to several naturalists for our knowledge of the volcanic regions of New Zealand, but chiefly to Ferdinand von Hochstetter, whose beautiful maps and graphic descriptions leave nothing to be desired.[1]In this work Hochstetter was assisted by Julius Haast and Sir J. Hector. From their account we learn that the Isthmus of Auckland is one of the most remarkable volcanic districts in the world. It is characterised by a large number of extinct cinder-cones, in a greater or less perfect state of preservation, and giving origin to lava-streams which have poured down the sides of the hills on to the plains. Besides these are others formed of stratified tuff, with interior craters, surrounding in mural cliffs eruptive cones of scoriæ, ashes, and lapilli; these cones are scattered over the isthmus and shores of Waitemata and Manukau. The tuff cones and craters rise from a floor of Tertiary sandstone and shale, the horizontal strata of which are laid open in the precipitous bluffs of Waitemata and Manukau harbours; they sometimes contain fossil shells of the generaPecten,Nucula,Cardium,Turbo, andNeritæ. As the volcanic tuff-beds are intermingled with the Upper Tertiary strata, it is inferred that the first outbursts of volcanic forces occurred when the region was still beneath the waters of the ocean. Cross-sections show that the different layers slope both outwards (parallel to the sides) andinwards towards the bottom of the craters. Sometimes these craters have been converted into lakes, as in the case of those of the Eifel; but generally they are dry or have a floor of morass. Of the crater-lakes, those of Kohuora, five in number, are perhaps the most remarkable; and in the case of two of these the central cones of slag appear as islets rising from the surface of the waters. The fresh-water lake Pupuka has a depth of twenty-eight fathoms. To the north of Auckland Harbour rises out of the waters of the Hauraki Gulf the cone of Rangitoto, 920 feet high, the flanks formed of rugged streams of basalt, and the summit crowned by a circular crater of slag and ash, out of the centre of which rises a second cone with the vent of eruption. This is the largest and newest of the Auckland volcanoes, and appears to have been built up by successive outpourings of basaltic lava from the central orifice, after the general elevation of the island.
Forms of volcanic tuff conesFig. 26.—Forms of volcanic tuff cones, with their cross-sections, in the Province of Auckland.—No. 1. Simple tuff cone with central crater; No. 2. Outer tuff cone with interior cinder cone and crater; No. 3. The same with lava-stream issuing from the interior cone.—(After Hochstetter.)
Before leaving the description of the tuff-cones, which are a peculiar feature in the volcanic phenomena of New Zealand, and are of many forms and varieties, we must refer to that of Mount Wellington (Maunga Rei). This is a compound volcano, in which the oldest and smallest of the group is a tuff-crater-cone, exhibiting very beautifully the outward slope of its beds. Within this crater arise two cones of cinders, each with small craters. It would appear that after a long interval the larger of the two principal cones, formed of cinders and known as Mount Wellington, burst forth from the southern margin of the older tuff-cone, and, being built up to a height of 850 feet, gradually overspread the sides of its older neighbour. Mount Wellington itself has three craters, and from these large streams of basaltic lava have issued forth in a westerly direction, while a branch entered and partially filled the old tuff-crater to the northwards.
Southwards from Manukau Harbour, and extending a short distance from the coast-line to Taranaki Point, there occurs a plateau of basalt-conglomerate (Basaltkonglomerat), with sheets of basaltic lava overspreading the Tertiary strata. These plateau-basalts are intersected by eruptive masses in the form of dykes, but still there are no craters or cones of eruption to be seen; so that we may infer that the sheets, at least, were extruded from fissures in the manner of those of the Colorado or Idaho regions of America. Proceeding still further south into the interior of the island, we here find a lofty plateau of an average elevation of 2,000 feet, interposed between the Tertiary beds of the Upper and Middle Waikato, and formed of trachytic and pitch-stone tuff, amongst which arise old extinct volcanic cones, such as those of Karioi, Pirongia, Kakepuku, Maunga Tautari, Aroha, and many others. These trachytic lavas would seem to be more ancient than the basaltic, previously described.
(b.)Taupo Lake, and surrounding district.—But of all these volcanic districts, none is more remarkable than that surrounding the Taupo Lake, which lies amidst the Tertiary strata of the Upper Waikato Basin. The surface of this lake is 1,250 feet above that of the ocean, and its margin is enclosed within a border of rhyolite and pitchstone—rising into a mass of the same material 1,800 feet high on the eastern side. The form of the lake does not suggest that it is itself the crater of a volcano, but rather that it was originated by subsidence. On all sides, however, trachytic cones arise, of which the most remarkable group lies to the south of the lake, justin front of the two giant trachytic cones, the loftiest in New Zealand, one called Tongariro, rising about 6,500 feet, and the other Ruapahu, which attains an elevation of over 9,000 feet, with the summit capped by snow. These two lofty cones, standing side by side, are supposed by the Maoris to be the husband and wife to whom were born the group of smaller cones above referred to as occupying the southern shore of Taupo Lake. The volcano of Tongariro may still be considered as in a state of activity, as its two craters (Ngauruhoe and Ketetahi) constantly emit steam, and several solfataras break out on its flanks.[2]
(c.)Roto Mahana.—In a northerly direction from Tongariro, and distant from the coast by a few miles, lies in the Bay of Plenty the second of the active volcanoes of New Zealand, the volcanic island of Whakari (White Island), from the crater of which are constantly erupted vast masses of steam clouds. The distance between these two active craters is 120 nautical miles; and along the tract joining them steam-jets and geysers issue forth from the deep fissures through which the lava sheets have formerly been extruded. Numerous lakes also occupy the larger cavities in the ground; and hot-springs, steam-fumaroles and solfataras burst out in great numbers along the banks of the Roto Mahana Lake and the Kaiwaka River by which it is drained. Amongst such eruptions of hot-water and steam we might expect the formation of siliceous sinter, and the deposition of sulphur and other minerals; nor will our expectations be disappointed.For here we have the wonderful terraces of siliceous sinter deposited by the waters entering Roto Mahana as they descend from the numerous hot-springs or pools near its margin. All travellers concur in describing these terraces as the most wonderful of all the wonders of the Lake district of New Zealand—so great is their extent, and so rich and varied is their colouring.
The beautiful map of Roto Mahana on an enlarged scale by Hochstetter shows no fewer than ten large sinter terraces descending towards the margin of this lake, besides several mud-springs, fumaroles, and solfataras. But the largest and most celebrated of all the sinter terraces has within the last few years been buried from view beneath a flood of volcanic trass, or mud, an event which was as unexpected as it was unwelcome. In May, 1887, the mountain of Tarawera, which rises to the north-east of Roto Mahana, and on the line of eruption above described, suddenly burst forth into violent activity, covering the country for miles around with clouds of ashes, and, pouring down torrents of mud, completely enveloped the beautiful terrace of sinter which had previously been one of the wonders of New Zealand. By the same eruption several human beings were entombed, and their residences destroyed.
The waters of Roto Mahana, together with the hot-springs and fountains are fed from rain, and from the waters of Taupo Lake, which, sinking through fissures in the ground, come in contact with the interior heated matter, and thus steam at high temperature and pressure is generated.[3]
(d.)Moribund condition of New Zealand Volcanoes.—From what has been said, it will be inferred that in the case of New Zealand, as in those of Auvergne, the Eifel and Lower Rhine, Arabia, and Western America, we have an example of a region wherein the volcanic forces are well-nigh spent, but in which they were in a state of extraordinary activity throughout the later Tertiary, down to the commencement of the present epoch. In most of these cases the secondary phenomena of vulcanicity are abundantly manifest; but the great exhibitions of igneous action, when the plains were devastated by sheets of lava, and cones and craters were piled up through hundreds and thousands of feet, have for the present, at least, passed away.
[1]Geol.-topographischer Atlas von Neu-Seeland, von Dr. Ferd. von Hochstetter und Dr. A. Petermann. Gotha: Justus Perthes (1863). AlsoNew Zealand, trans. by E. Sauter, Stuttgart (1867).
[1]Geol.-topographischer Atlas von Neu-Seeland, von Dr. Ferd. von Hochstetter und Dr. A. Petermann. Gotha: Justus Perthes (1863). AlsoNew Zealand, trans. by E. Sauter, Stuttgart (1867).
[2]Tongariro was visited in 1851 by Mr. H. Dyson, who describes the eruption of steam.
[2]Tongariro was visited in 1851 by Mr. H. Dyson, who describes the eruption of steam.
[3]Mr. Froude figures and describes the two terraces, the "White" and "Pink," inOceana, 2nd edition, pp. 285-291.
[3]Mr. Froude figures and describes the two terraces, the "White" and "Pink," inOceana, 2nd edition, pp. 285-291.
It is an easy transition to pass from the consideration of European and other dormant, or extinct, volcanic regions to those of the British Isles, though the volcanic forces may have become in this latter instance quiescent for a somewhat longer period. In all the cases we have been considering, whether those of Central Italy, of the Rhine and Moselle, of Auvergne, or of Syria and Arabia, the cones and craters of eruption are generally present entire, or but slightly modified in form and size by the effects of time. But in the case of the Tertiary volcanic districts of the British Isles this is not so. On the contrary, these more prominent features of vulcanicity over the surface of the ground have been removed by the agents of denudation, and our observations are confined to the phenomena presented by extensive sheets of lava and beds of ash, or the stumps and necks of former vents of eruption,together with dykes of trap by which the plateau-lavas are everywhere traversed or intersected.
The volcanic region of the British Isles extends at intervals from the North-east of Ireland through the Island of Mull and adjoining districts on the mainland of Morvern and Ardnamurchan into the Isle of Skye, and comprises several smaller islets; the whole being included in the general name of the Inner Hebrides. It is doubtful if the volcanic lavas of Co. Antrim were ever physically connected with those of the west of Scotland, though they may be considered as contemporary with them; and in all cases the existing tracts of volcanic rock are mere fragments of those originally formed by the extrusion of lavas from vents of eruption. In addition to these, there are large areas of volcanic rock overspread by the waters of the ocean.
(a.)Geological Age.—The British volcanic eruptions now under consideration are all later than the Cretaceous period. Throughout Antrim, and in parts of Mull, the lavas are found resting on highly eroded faces either of the Upper Chalk (Fig. 27), or, where it has been altogether denuded away, on still older Mesozoic strata. From the relations of the basaltic sheets of Antrim to the Upper Chalk, it is clear that the latter formation, after its deposition beneath the waters of the Cretaceous seas, was elevated into dry land and exposed to a long period of subaërial erosion before the first sheets of lava invaded the surface of the ground. We are, therefore, tolerably safe in considering the first eruptions to belong to the Tertiary period; but the evidence, derived as it is exclusively from plant remains, is somewhat conflicting as to the precise epoch to which the lavas and beds of tuffcontaining the plant-remains are to be referred. The probabilities appear to be that they are of Miocene age; and if so, the trachytic lavas, which in Antrim are older than those containing plants, may be referred to a still earlier epoch—namely, that of the Eocene.[1]As plant remains are not very distinctive, the question regarding the exact time of the first volcanic eruptions will probably remain for ever undecided; but we are not likely to be much in error if we consider the entire volcanic period to range from the close of the Eocene to that of the Miocene; by far the greater mass of the volcanic rocks being referable to the latter epoch.
In describing the British volcanic districts it will be most convenient to deal with them in three divisions—viz., those of Antrim, Mull, and Skye, commencing with Antrim.[2]
(b.)Volcanic Area.—The great sheets of basalt and other volcanic products of the North-east of Ireland overspread almost the whole of the County Antrim, and adjoining districts of Londonderry and Tyrone, breaking off in a fine mural escarpment along thenorthern shore of Belfast Lough and the sea coast throughout the whole of its range from Larne Harbour to Lough Foyle; the only direction in which these features subside into the general level of the country being around the shores of Lough Neagh. Several outliers of the volcanic sheets are to be found at intervals around the great central plateau; such as those of Rathlin Island, Island Magee, and Scrabo Hill in Co. Down. The area of the basaltic plateau may be roughly estimated at 2,000 square miles.
The White RocksFig. 27.—"The White Rocks," Portrush, Co. Antrim, showing the plateau-basalt resting on an eroded surface of the Upper Chalk, with bands of flint.—(From a photograph.)
The truncated edges of this marginal escarpment rising to levels of 1,000 to 1,260 feet, as in the case of Benevenagh in Co. Derry, and 1,825 feet at Mullaghmore, attest an originally greatly more extended range of the basaltic sheets; and it is not improbable that at the close of the Miocene epoch they extended right across the present estuary of Lough Foyle to the flanks of the mountains of Inishowen in Donegal in one direction, and to those of Slieve Croob in the other. In the direction of Scotland the promontories of Kintyre and Islay doubtless formed a part of the original margin. Throughout this vast area the volcanic lavas rest on an exceedingly varied rocky floor, both as regards composition and geological age. (SeeFig. 28.) Throughout the central, southern, eastern, and northern parts of their extent, the Chalk formation may be considered to form this floor; but in the direction of Armagh and Tyrone, towards the southwestern margin, the basaltic sheets are found resting indiscriminately on Silurian, Carboniferous, and Triassic strata. The general relations of the plateau-basalts to the underlying formations show, that at the close of the Cretaceous period there had been considerable terrestrial disturbances and great subaërialdenudation, resulting in some cases in the complete destruction of the whole of the Cretaceous strata, before the lava floods were poured out; owing to which, these latter are found resting on formations of older date than the Cretaceous.[3]
Volcanic plateau of AntrimFig. 28.—Section across the volcanic plateau of Antrim, from the Highlands of Inishowen, Co. Donegal, on the N.W., to Belfast Lough on the S.E., to show the relations of the volcanic rocks to the older formations.—B. Basaltic sheets breaking off in high escarpments; T. Trachyte porphyry of Tardree mountain rising from below the newer plateau-basalts; C. Upper Chalk with flints; N.R. New Red marl and sandstone (Trias); M. Metamorphic beds of quartzite, various schists and crystalline limestone; F. Large fault.
[1]Mr. J. Starkie Gardner, from a recent comparison of the plant-remains of Antrim and Mull, concludes that "that they might belong to any age between the beginning and the end of the warmer Eocene period; and that they cannot be of earlier, and are unlikely to be of later, date."—Trans. Palæont. Soc., vol. xxxvii. (1883).
[1]Mr. J. Starkie Gardner, from a recent comparison of the plant-remains of Antrim and Mull, concludes that "that they might belong to any age between the beginning and the end of the warmer Eocene period; and that they cannot be of earlier, and are unlikely to be of later, date."—Trans. Palæont. Soc., vol. xxxvii. (1883).
[2]Having dealt with this district rather fully inThe Physical Geology and Geography of Ireland(Edit. 1891, p. 81), and also in my Presidential Address (Section C.) at the meeting of the British Association, 1874, a brief review of the subject will be sufficient here, the reader being referred to the former treatises for fuller details. The following should also be consulted: Gen. Portlock,Geology of Londonderry and Tyrone(1843); Sir A. Geikie, "History of Volcanic Action during the Tertiary Period in the British Isles,"Trans. Roy. Soc. Edinburgh, 1888; and theDescriptive Memoirsof the Geological Survey relating to this tract of country.
[2]Having dealt with this district rather fully inThe Physical Geology and Geography of Ireland(Edit. 1891, p. 81), and also in my Presidential Address (Section C.) at the meeting of the British Association, 1874, a brief review of the subject will be sufficient here, the reader being referred to the former treatises for fuller details. The following should also be consulted: Gen. Portlock,Geology of Londonderry and Tyrone(1843); Sir A. Geikie, "History of Volcanic Action during the Tertiary Period in the British Isles,"Trans. Roy. Soc. Edinburgh, 1888; and theDescriptive Memoirsof the Geological Survey relating to this tract of country.
[3]Owing to the superposition of the basaltic masses on beds of chalk throughout a long line of coast, we are presented with the curious spectacle of the whitest rocks in nature overlain by the blackest, as may be seen in the cliffs at Larne, Glenarm, Kinbane and Portrush. (SeeFig. 27.)
[3]Owing to the superposition of the basaltic masses on beds of chalk throughout a long line of coast, we are presented with the curious spectacle of the whitest rocks in nature overlain by the blackest, as may be seen in the cliffs at Larne, Glenarm, Kinbane and Portrush. (SeeFig. 27.)
(c.)First Stage.—The earliest eruptions of lava in the North-east of Ireland belonged to the highly acid varieties, consisting of quartz-trachyte with tridymite.[1]This rock rises to the surface at Tardree and Brown Dod hills and Templepatrick. It consists of a light-greyish felsitic paste enclosing grains of smoke-quartz, crystals of sanidine, plagioclase and biotite, with a little magnetite and apatite. It is a rock of peculiar interest from the fact that it is almost unique in the British Islands, and has its petrological counterpart rather amongst the volcanic hills of the Siebengebirge than elsewhere. It is generally consolidated with the columnar structure.
Quarry at TemplepatrickFig. 29.—Part of the section shown in the quarry at Templepatrick, showing the superposition of the basalt (d) to the trachyte (b), with the intervening bed of flint gravel (c). All these rocks are seen to rest upon an eroded surface of the Chalk formation (a).
The trachyte appears to have been extruded from one or more vents in a viscous condition, the principal vent being probably situated under Tardree mountain, where the rock occurs in greatest mass, and it probably arose as a dome-shaped mass, with a somewhat extended margin, above the floor of Chalk which formed the surface of the ground.[2](Fig. 27.) At Templepatrick the columnar trachyte may be observed resting on the Chalk, or upon a layer of flint gravel interposed between the two rocks, and which has been thrust out of position by a later intrusion of basalt coming in from the side.[3]It is to be observed, however, that the trachytic lavas nowhere appear cropping out along with the sheets of basalt around the escarpments overlooking the sea, or inland; showing that they did not spread very far from theirvents of eruption; a fact illustrating the lower viscosity, or fluidity, of the acid lavas as compared with those of the basic type.
(d.)Second Stage.—After an interval, probably of long duration, a second eruption of volcanic matter took place over the entire area; but now the acid lavas of the first stage are replaced by basic lavas. Now, for the first time, vast masses of basalt and dolerite are extruded both from vents of eruption and fissures; and, owing to their extreme viscosity, spread themselves far and wide until they reach the margin of some uprising ground of old Palæozoic or Metamorphic rocks by which the volcanic plain is almost surrounded. The great lava sheets thus produced are generally more or less amorphous, vesicular and amygdaloidal, often exhibiting the globular concentric structure, and weathering rapidly to a kind of ferruginous sand or clay under the influence of the atmosphere. Successive extrusions of these lavas produce successive beds, which are piled one over the other in some places to a depth of 600 feet; and at the close of the stage, when the volcanic forces had for the time exhausted themselves, the whole of the North-east of Ireland must have presented an aspect not unlike that of one of those great tracts of similar lava in the region of Idaho and the Snake River in Western America, described in a previous chapter.
(e.)Third Stage (Inter-volcanic).—The third stage may be described as inter-volcanic. Owing to the formation of a basin, probably not deep, and with gently sloping sides, a large lake was formed over the centre of the area above described. Its floor was basalt, and the streams from the surrounding uplands carried down leaves and stems of trees, strewing themover its bed. Occasionally eruptions of ash took place from small vents, forming the ash-beds with plants found at Ballypallidy, Glenarm, and along the coast as at Carrick-a-raide. The streams also brought down sand and gravel from the uprising domes of trachyte, and deposited them over the lake-bed along with the erupted ashes.[4]The epoch we are now referring to was one of economic importance; as, towards its close, there was an extensive deposition of pisolitic iron-ore over the floor of the lake, sometimes to the depth of two or three feet. This ore has been extensively worked in recent years.
Cliffs above the Giant's CausewayFig. 30.—Cliff section above the Giant's Causeway, coast of Co. Antrim, showing successive tiers of basaltic lava, with intervening bands of bole.
(f.)Fourth Stage (Volcanic).—The last stage described was brought to a termination by a second outburst of basic lavas on a scale probably even grander than the preceding. These lavas consisting of basalt and dolerite, with their varieties, and extruded from vents and fissures, spread themselves in all directions over the pre-existing lake deposits or the older sheets of augitic lava, and probably entirely buried the trachytic hills. These later sheets solidified into more solid masses than those of the second stage. They form successive terraces with columnar structure, each terrace differing from that above and below it in the size and length of the columns, and separated by thin bands of "bole" (decomposed lava), often reddish in colour, clearly defining the limits of the successive lava-flows. Nowhere throughout the entire volcanic area are these successive terraces so finely laid open to view as along the north coast of Antrim, where the lofty mural cliffs, worn back into successive bays with intervening headlands by theirresistible force of the Atlantic waves, present to the spectator a vertical section from 300 to 400 feet in height, in which the successive tiers of columnar basalt, separated by thin bands of bole, are seen to rise one above the other from the water's edge to the summit of the cliff, as shown inFig. 30. Here, also, at the western extremity of the line of cliffs we find that remarkable group of vertical basaltic columns, stretching from the base of the cliff into the Atlantic, and known far and wide by the name of "The Giant's Causeway," the upper ends of the columns forming a tolerably level surface, gently sloping seawards, and having very much the aspect of an artificial tesselated pavement on a huge scale. A portion of the Causeway, with the cliff in the background, is shown in the figure (Fig. 31). The columns are remarkable for their symmetry, being generally hexagonal, though occasionally they are pentagons, and each column is horizontally traversed by joints of the ball-and-socket form, thus dividing them into distinct courses of natural masonry. These are very well shown in the accompanying view of the remarkable basaltic pillars known as "The Chimneys," which stand up from the margin of the headland adjoining the Causeway, monuments of past denudation, as they originally formed individuals amongst the group belonging to one of the terraces in the adjoining coast.[5](Fig. 32).