Wind-Tunnel Tests, 1901

A reproduction of the 1901 wind tunnel that the Wright Brothers used in their shop at Dayton, Ohio. The narrow, metal-bladed fan was belt-operated from the overhead line shafting (top center), forcing a current of air through the tunnel at about 25 miles an hour. This neat workroom is behind the Wright bicycle shop which was moved from Dayton to Greenfield Village, Dearborn, Mich.

A reproduction of the 1901 wind tunnel that the Wright Brothers used in their shop at Dayton, Ohio. The narrow, metal-bladed fan was belt-operated from the overhead line shafting (top center), forcing a current of air through the tunnel at about 25 miles an hour. This neat workroom is behind the Wright bicycle shop which was moved from Dayton to Greenfield Village, Dearborn, Mich.

Always practical, the brothers did not take up the problem of flight with the expectation of financial profit, and they had no intention of ruining their bicycle business in pursuit of a dream. When Chanute, who was kept fully informed of their researches, offered financial assistance, Wilbur wrote:

For the present we would prefer not to accept it for the reason that if we did not feel that the time spent in this work was a dead loss in a financial sense, we would be unable to resist the temptation to devote more time than our business will stand.

For the present we would prefer not to accept it for the reason that if we did not feel that the time spent in this work was a dead loss in a financial sense, we would be unable to resist the temptation to devote more time than our business will stand.

The 1901 drift balance was used for measuring the drag ratio of Wright model airfoils. This is a reproduction. The original balance is in the Franklin Institute, Philadelphia.

The 1901 drift balance was used for measuring the drag ratio of Wright model airfoils. This is a reproduction. The original balance is in the Franklin Institute, Philadelphia.

Reproduction of lift balance used in 1901 wind tunnel; model airfoil in testing position. The original balance is in the Franklin Institute.

Reproduction of lift balance used in 1901 wind tunnel; model airfoil in testing position. The original balance is in the Franklin Institute.

1901 wind-tunnel data sent by Wilbur Wright to Octave Chanute, Jan. 5 and 7, 1902, with instructions for making computations.

1901 wind-tunnel data sent by Wilbur Wright to Octave Chanute, Jan. 5 and 7, 1902, with instructions for making computations.

Shortly after their return to Dayton, the Wrights undertook a series of scientific experiments which produced knowledge that no one had possessed before and that contributed materially to their solution of the problem of powered flight. Disappointed by the relatively poor results achieved at Kitty Hawk with their 1901 glider, in the construction of which they had relied on Lilienthal’s and other published tables of air pressures, the Wrights decided to start again from scratch by conducting laboratory tests of their own and by evolving their own air pressure tables from measurements made with model airfoils (miniature wing surfaces) using a simple but effective homemade wind tunnel.

Their second wind tunnel—the first was a makeshift affair hurriedly contrived by Orville out of a wooden starch box and was used for just a few days and then only in preliminary tests—consisted of an open-end wooden box 6 feet long and 16 inches square (inside dimensions). Through this box-like tunnel a flat-bladed fan forced a current of air at a speed of about 25 miles an hour. The air entered the tunnel through a funnel-shaped metal section equipped with a honeycomb-type wind straightener to produce a uniform airflow. The most ingenious parts of the Wright wind tunnel were the two balances they designed for measuring the lift and drag of the model air-foils. Using these balances, the forces could be read as angles from a pointer moving over a protractor fixed to the floor of the tunnel.

In a period of about 2 months toward the close of 1901, the Wrights tested more than 200 surfaces. They measured monoplane, biplane, and triplane wing models. Among these shapes were models of the bird-like wing surfaces used by Lilienthal and the tandem arrangement (in which one wing followed the other) used by Langley. They measured lift and drag forces at various angles from 2° to 45°, tangentials, gliding angles, and lift/drag ratios; they tested the effect of aspect ratio and the effect on lift of varying the camber of curvature of the surfaces, and tried a variety of shapes and thicknesses for the leading and trailing edges, for wingtips, and for such structural members as uprights.

As a result of these experiments, all carefully carried out and minutely recorded, they obtained a body of data on air pressures and on the aerodynamic properties of wings, control surfaces, and structural parts. The extent and reliability of the information from these tests far exceeded anything that had ever been available to other experimenters or was to be available for at least another decade. Their friend and correspondent, Octave Chanute, marveled at the speed and accuracy with which this laboratory research was carried out.The Wrights themselves soon came to realize that these scientific experiments, on which they had embarked with considerable reluctance, were in fact the most valuable part of all their work in that they gave them accounts and detailed knowledge on which to base the design of flying machines.

Wilbur Wright in Kill Devil Hills camp building before it was remodeled by adding space for living quarters, Aug. 29, 1902. (1901 glider at right.)

Wilbur Wright in Kill Devil Hills camp building before it was remodeled by adding space for living quarters, Aug. 29, 1902. (1901 glider at right.)

The wind-tunnel experiments concluded in December 1901 made it possible for the Wrights to abandon the trial-and-error method of construction that had gone into their 1900 and 1901 gliders and to solve the basic problem of the correct design for lifting wings. Now they were able to devote their time to the two other major problems that had to be solved before human flight could be accomplished: a system for obtaining full control in the air, and the addition of an engine and propellers to the aircraft.

The Wrights had faith in the tables of air pressure compiled from their wind-tunnel experiments. Their new knowledge was incorporated into a larger glider which they built based on the aerodynamic data they had gained. Now they wanted to verify those findingsby actual gliding experiments. At the end of August 1902, they were back in camp at Kill Devil Hills for the third season of experiments. Battered by winter gales, their camp needed repairing. They decided to build a 15-foot addition to the combined workshop and glider-storage shed to use as a kitchen and living quarters. Their new living quarters were “royal luxuries” when compared with the tent facilities of previous camps.

The new glider had a wingspan of 32 feet, 1 inch; a considerable increase over the wingspan of 22 feet for the 1901 glider. Its lifting area, 305 square feet, was not much greater than the glider of the previous year. Their wind-tunnel experiments having demonstrated the importance of aspect ratio, the brothers made the wingspan about six times the chord or fore-and-aft measurement instead of three. Weighing 112 pounds, the glider was 16 feet, 1 inch long. In the 1900 and 1901 gliders, the wing-warping mechanism had been worked by movement of the operator’s feet. In the 1902 glider this mechanism operated by sidewise movement of the operator’s hips resting in a cradle on the lower wing. Wilbur wrote his father from camp, “Our new machine is a very great improvement over anything we had built before and over anything any one has built.”

Kitchen in the living quarters of the remodeled camp building at Kill Devil Hills, 1902.

Kitchen in the living quarters of the remodeled camp building at Kill Devil Hills, 1902.

One of the successful glides made in October 1902 with the 1902 glider, camp buildings in distance.

One of the successful glides made in October 1902 with the 1902 glider, camp buildings in distance.

This was the first Wright glider to have a tail, consisting of fixed twin vertical vanes, as well as a front rudder. The tail’s purpose was to overcome the turning difficulties encountered in some of the flights with the 1901 glider by maintaining equal speeds at the two wingtips when the wings were warped. The tail was expected to counterbalance the difference in resistance of the two wingtips. If the wing on one side tended to swerve forward, then the Wrights thought the tail, being more exposed to the wind on the same side, should stop the glider from turning farther.

The tail on this glider, however, caused a new problem that had not occurred in their previous gliders. At times, when struck by a side gust of wind, the glider turned up sidewise and came sliding laterally to the ground in spite of the effort and skill of the operator in using the warping mechanism to control it. The brothers were experiencing tailspins, though that term did not come into use until several years later. When tailspins occurred, the glider would sometimes slide so fast that the movement caused the tail’s fixed vertical vanes to aggravate the turning movement instead of counteracting it by maintaining an equal speed at the opposite wingtips. The result was worse than if there were no fixed vertical tail.

Wilbur Wright making right turn in glide from West Hill, Oct. 24, 1902 (Kill Devil Hill in background.)

Wilbur Wright making right turn in glide from West Hill, Oct. 24, 1902 (Kill Devil Hill in background.)

High glide on Oct. 10, 1902.Courtesy, Smithsonian Institution.

High glide on Oct. 10, 1902.Courtesy, Smithsonian Institution.

While lying awake one night, Orville thought of converting their vertical tail from two fixed vanes to a single movable rudder. When making a turn or recovering lateral balance, this rudder could be moved toward the low wing to compensate for the increased drag imparted to the high wing by its greater angle of attack. Wilbur listened attentively when Orville told him about the idea the next morning. Then, without hesitation, Wilbur not only agreed to the change but immediately proposed the further important modification of interconnecting the rudder control wires with those of the wing-warping. Thus by a single movement the operator could affect both controls. Through the brilliant interplay of two inventive minds, all the essentials of the Wright control system were completed within a few hours.

The combination of warp and rudder control became the key to successful control of their powered machine and to the control of all aircraft since. (Modern airplanes—and indeed Wright planes after the middle of their 1905 experimental season—do not have the aileron and rudder controls permanently interconnected, but these controls can be and are operated in combination when necessary.) Together with the use of the forward elevator, it allowed the Wrights to perform all the basic aerial maneuvers that were necessary for controlled flight. The essential problem of how to control a flying machine about all three axes was now solved.

The trials of the 1902 glider were successful beyond expectation. Nearly 1,000 glider flights were made by the Wrights from Kill Devil, West, and Little Hills. A number of their glides were of more than 600 feet, and a few of them were against a 36-mile-an-hour wind. Flying in winds so strong required great skill on the part of the operator. No previous experimenter had ever dared to try gliding in so stiff a wind. Orville wrote his sister, “We now hold all the records! The largest machine we handled in any kind [of weather, made the longest dis]tance glide (American), the longest time in the air, the smallest angle of descent, and the highest wind!!!” Their record glide for distance was 622½ feet in 26 seconds. Their record glide for angle was an angle of 5° for a glide of 156 feet. The 1902 glider had about twice the dynamic efficiency of any other glider ever built up to that time anywhere in the world.

By the end of the 1902 season of experiments, the Wrights had solved two of the major problems: how properly to design wings and control surfaces and how to control a flying machine about its three axes. Most of the battle was now won. There remained only the major problem of adding the engine and propellers. Before leaving camp, the brothers began designing a new and still larger machine to be powered with a motor.

It was the 1902 glider that the Wrights pictured and described in the drawings and specifications of their patent, which they applied for in March of the following year. Their patent was established, through the action of the courts in the United States and abroad, as the basic or pioneer airplane patent.

Home again in Dayton, the Wrights were ready to carry out plans begun in camp at Kill Devil Hills for a powered machine. They invited bids for a gasoline engine which would develop 8 to 9 horsepower, weigh no more than 180 pounds or an average of 20 pounds per horsepower, and be free of vibrations. None of the manufacturers to whom they wrote was able to supply them with a motor light enough to meet these specifications. The Wrights therefore designed and built their own motor, with their mechanic, Charles E. Taylor, giving them enthusiastic help in the construction.

The Wright motor used in the first flights of Dec. 17, 1903, after its reconstruction in 1928.

The Wright motor used in the first flights of Dec. 17, 1903, after its reconstruction in 1928.

The engine body and frame of the first “little gas motor” which they began building in December 1902 broke while being tested. Rebuilding the light-weight motor, they shop-tested it in May 1903.In its final form the motor used in the first powered flights had 4 horizontal cylinders of 4-inch bore and 4-inch stroke, with an aluminum-alloy crankcase and water jacket. The fuel tank had a capacity of four-tenths of a gallon of gasoline. The entire power plant including the engine, magneto, radiator, tank, water, fuel, tubing, and accessories weighed a little more than 200 pounds.

Propeller estimates, made by the Wrights 8 months before the flights of December 1903. Their formulas resulted in the highly efficient propellers which were used in the first Wright Flyer. These were 8½ feet from one canvas-covered tip to the other. Top view shows the front, bottom view, the rear.

Propeller estimates, made by the Wrights 8 months before the flights of December 1903. Their formulas resulted in the highly efficient propellers which were used in the first Wright Flyer. These were 8½ feet from one canvas-covered tip to the other. Top view shows the front, bottom view, the rear.

Owing to certain peculiarities of design, after several minutes’ run the engine speed dropped to less than 75 percent of what it was on cranking the motor. The highest engine speed measured developed 15.76 horsepower at 1,200 revolutions per minute in the first 15 seconds after starting the cold motor. After several minutes’ runthe number of revolutions dropped rapidly to 1,090 per minute, developing 11.81 brake horsepower. Even so, the Wrights were pleasantly surprised since they had not counted on more than 8 horsepower capable of driving a machine weighing only about 625 pounds. Having a motor with a power output of about 12 horsepower instead of 8, the Wrights could build the machine to have a larger total weight than 625 pounds.

The motor was started with the aid of a dry-battery coil box. After starting, ignition was provided by a low-tension magneto, friction-driven by the flywheel. No pump was used in the cooling system. The vertical sheet-steel radiator was attached to the central forward upright of the machine.

When the brothers began to consider designing propellers, they unhappily discovered that the forces in action on aerial propellers had never been correctly resolved or defined. Since they did not have sufficient time or funds to develop an efficient propeller by the more costly trial-and-error means, it was necessary for them to study the screw propeller from a theoretical standpoint. By studying the problem, they hoped to develop a theory from which to design the propellers for the powered machine. The problem was not easy, as the Wrights wrote:

What at first seemed a simple problem became more complex the longer we studied it. With the machine moving forward, the air flying backward, the propellers turning sidewise, and nothing standing still, it seemed impossible to find a starting point from which to trace the various simultaneous reactions. Contemplation of it was confusing. After long arguments we often found ourselves in the ludicrous position of each having been converted to the other’s side, with no more agreement than when the discussion began.

What at first seemed a simple problem became more complex the longer we studied it. With the machine moving forward, the air flying backward, the propellers turning sidewise, and nothing standing still, it seemed impossible to find a starting point from which to trace the various simultaneous reactions. Contemplation of it was confusing. After long arguments we often found ourselves in the ludicrous position of each having been converted to the other’s side, with no more agreement than when the discussion began.

However, in a few months the brothers untangled the conflicting factors and calculations. After studying the problem, they felt sure of their ability to design propellers of exactly the right diameter, pitch, and area for their need. Estimates derived from their formulas led to their propellers operating at a higher rate of efficiency (66 percent) than any others of that day. The tremendous expenditure of power that characterized experiments of other aeronautical investigators up to that time were due to inefficient propellers as well as inefficient lifting surfaces.

The Wright propellers, designed according to their own calculations, were the first propellers ever built by anyone for which the performance could be predicted. After tests, their propellers produced not quite 1 percent less thrust than they had calculated. In useful work they gave about two thirds of the power expended—a third more than had been achieved by such men as Sir Hiram Maxim and Dr. Langley.

Arrangement of propeller-driving chains and casings on original Wright 1903 machine displayed in the Smithsonian Institution.Courtesy, Smithsonian Institution.

Arrangement of propeller-driving chains and casings on original Wright 1903 machine displayed in the Smithsonian Institution.Courtesy, Smithsonian Institution.

The brothers decided to use two propellers on their powered machine for two reasons. First, by using two propellers they could secure a reaction against a greater quantity of air and use a larger pitch angle than was possible with one propeller; and second, having the two propellers run in opposite directions, the gyroscopic action of one would neutralize that of the other. The two pusher-type propellers on the 1903 powered machine were mounted on tubular shafts about 10 feet apart, both driven by chains running over sprockets. By crossing one of the chains in a figure eight, the propellers were run in opposite directions to counteract torque. The propellers were made of three laminations of spruce, each 1⅛ inches thick. The wood was glued together and shaped with a hatchet and drawshave.

The 1903 machine had a wingspan of 40 feet, 4 inches, a camber of 1 in 20; a wing area of 510 square feet; and a length of 21 feet, 1 inch. It weighed 605 pounds without a pilot. The machine was not symmetrical from side to side; the engine was placed on the lower wing to the right of center to reduce the danger of its falling on the pilot. The pilot would ride lying prone as on the glidersbut to the left of center to balance the weight. The right wing was approximately 4 inches longer than the left to provide additional lift to compensate for the engine which weighed 34 pounds more than the pilot.

Fore-and-aft control was by means of the elevator in front, operated by hand lever. The tail of the machine had twin movable rudders instead of a single movable rudder developed in the 1902 glider. These rudders were linked by wires to the wing-warping system. Their coordinated control mechanism was worked by wires attached to a cradle on the lower wing, in which the pilot lay prone. To turn the machine to the left, the pilot moved his body, and with it the cradle, a few inches to the left. This caused the rear right wingtips to be pulled down or warped (thus giving more lift and raising them) and the rear left wingtips to move upward, and at the same time the coordinating mechanism introduced enough left rudder to compensate for yaw. The rudder counteracted the added resistance of the wing with the greater angle and the resulting tendency of the machine to swing in the opposite direction to the desired left turn, as well as aiding the turn on its own account.

Wright 1903 machine (rear view) in the Smithsonian Institution showing attachments on the lower wing.Courtesy, Smithsonian Institution.

Wright 1903 machine (rear view) in the Smithsonian Institution showing attachments on the lower wing.Courtesy, Smithsonian Institution.

Plans of the Wright Brothers 1903 plane.Courtesy, Smithsonian Institution.

Plans of the Wright Brothers 1903 plane.Courtesy, Smithsonian Institution.

Photograph of side view of the plane.

Photograph of side view of the plane.

Photograph of front view of the plane.

Photograph of front view of the plane.

On September 25, 1903, the Wrights arrived once more at their Kill Devil Hills camp. They repaired and again used the living quarters which they had added to the storage building in 1902, called their “summer house.” Their 1902 glider, which they had left stored in this building after that season of experiments, was again housed with them in the building. They erected a new building to house the powered machine alongside the glider-storage and living-quarters building and commenced the chore of assembling the powered machine in its new hangar. Occasionally they took the 1902 glider out for practice. After a few trials each brother was able to make a new world’s record by gliding for more than a minute.

The first weeks in camp were a time of vicissitudes for the Wrights. Assembling the machine and installing the engine and propellers proved an arduous task. When tested, the motor missed so often that the vibrations twisted one of the propeller shafts and jerked the assembly apart. Both shafts had to be sent back to their Dayton bicycle shop to be made stronger. After they had been returned, one broke again, and Orville had to carry the shafts back to Dayton to make new ones of more durable material. The magneto failed to produce a strong enough spark. A stubborn problem was fastening the sprockets to the propeller shafts; the sprockets and the nuts loosened within a few seconds even when they were tightened with a 6-foot lever.

It was then that the weather acted as if it were threatening the brothers not to venture into a new element. A gale swept over theircamp with winds up to 75 miles an hour. As their living quarters rocked with the wind, and rainwater flowed over part of the floor, the Wrights expected to hear the new hangar building next door, which housed the powered machine, crash over completely. “The wind and rain continued through the night,” related Wilbur to his sister, “but we took the advice of the Oberlin coach, ‘Cheer up, boys, there is no hope/’ We went to bed, and both slept soundly.”

Assembling the 1903 machine in the new camp building at Kill Devil Hills, October 1903.

Assembling the 1903 machine in the new camp building at Kill Devil Hills, October 1903.

It became so cold that the brothers had to make a heater from a drum used to hold carbide. Wilbur assured his father:

However we are entirely comfortable, and have no trouble keeping warm at nights. In addition to the classifications of last year, to wit, 1, 2, 3, and 4 blanket nights, we now have 5 blanket nights, & 5 blankets & 2 quilts. Next come 5 blankets, 2 quilts & fire; then 5, 2, fire, & hot-water jug. This as far as we have got so far.

However we are entirely comfortable, and have no trouble keeping warm at nights. In addition to the classifications of last year, to wit, 1, 2, 3, and 4 blanket nights, we now have 5 blanket nights, & 5 blankets & 2 quilts. Next come 5 blankets, 2 quilts & fire; then 5, 2, fire, & hot-water jug. This as far as we have got so far.

The 1903 machine and camp buildings at Kill Devil Hills, Nov. 24, 1903.

The 1903 machine and camp buildings at Kill Devil Hills, Nov. 24, 1903.

At last the weather cleared, the engine began to purr, their hand-made heater functioned better after improvements, and, with the help of a tire cement they had used in their bicycle shop, they “stuck those sprockets so tight I doubt whether they will ever come loose again.” Chanute visited their camp for a few days and wrote November 23, “I believe the new machine of the Wrights to be the most promising attempt at flight that has yet been made.” Both brothers sensed that the goal was in sight.

The powered machine’s undercarriage (landing gear) consisted of two runners, or sledlike skids, instead of wheels. These were extended farther out in front of the wings than were the landing skids on the gliders to guard against the machine rolling over in landing. Four feet, eight inches apart, the two runners were ideal for landing as skids on the soft beach sands. But for take-offs, it was necessary to build a single-rail starting track 60 feet long on which ran a small truck which held the machine about 8 inches off the ground. The easily movable starting rail was constructed of four 15-foot 2 × 4’s set on edge, with the upper surface topped by a thin strip of metal.

The truck which supported the skids of the plane during the takeoff consisted of two parts: a crossbeam plank about 6 feet long laid across a smaller piece of wood forming the truck’s undercarriage which moved along the track on two rollers made from modified bicycle hubs. For take-offs, the machine was lifted onto the truck with the plane’s undercarriage skids resting on the two opposite ends of the crossbeam. A modified bicycle hub was attached to the forward crosspiece of the plane between its skids to prevent the machine from nosing over on the launching track. A wire from the truck attached to the end of the starting track held the plane back while the engine was warmed up. Then the restraining wire was released by the pilot. The airplane, riding on the truck, started forward along the rail. If all went well, the machine was airborne and hence lifted off the truck before reaching the end of the starting track; while the truck, remaining on the track, continued on and ran off the rail.

With the new propeller shafts installed, the powered machine was ready for its first testing on December 12. However, the wind was too light for the machine to take-off from the level ground near their camp with a run of only 60 feet permitted by the starting track. Nor did they have enough time before dark to take the machine to one of the nearby Kill Devil Hills, where, by placing the track on a steeply inclined slope, enough speed could be promptly attained for starting in calm air. The following day was Sunday, which the brothers spent resting and reading, hoping for suitable weather for flying the next day so that they could be home by Christmas.

On December 14 it was again too calm to permit a start from level ground near the camp. The Wrights, therefore, decided to takethe machine to the north side of Kill Devil Hill about a quarter of a mile away to make their first attempt to fly in a power-driven machine. They had arranged to signal nearby life-savers to inform them when the first trial was ready to start. A signal was placed on one of the camp buildings that could be seen by personnel on duty about a mile away at the Kill Devil Hills Life Saving Station.

The first Wright Flyer rests on the starting track at Kill Devil Hill prior to the trial of Dec. 14, 1903. The four men from the Kill Devil Hills Life Saving Station helped move the machine from the campsite to the hill. The two boys ran home on hearing the engine start.

The first Wright Flyer rests on the starting track at Kill Devil Hill prior to the trial of Dec. 14, 1903. The four men from the Kill Devil Hills Life Saving Station helped move the machine from the campsite to the hill. The two boys ran home on hearing the engine start.

The Wrights were soon joined by five lifesavers who helped to transport the machine from camp to Kill Devil Hill. Setting the 605-pound machine on the truck atop the starting track, they ran the truck to the end of the track and added the rear section of the track to the front end. By relaying sections of the track, the machine rode on the truck to the site chosen for the test, 150 feet up the side of the hill.

The truck, with the machine thereon, facing downhill, was fastened with a wire to the end of the starting track, so that it could not start until released by the pilot. The engine was started to make sure it was in proper condition. Two small boys, with a dog, who had come with the lifesavers, “made a hurried departure over the hill for home on hearing the engine start.” Each brother was eager for the chance to make the first trial, so a coin was tossed to determine which of them it should be; Wilbur won.

Wilbur took his place as pilot while Orville held a wing to steady the machine during the run on the track. The restraining wire was released, the machine started forward quickly on the rail, leaving Orville behind. After a run of 35 or 40 feet, the airplane took off. Wilbur turned the machine up too suddenly after leaving the track, before it had gained enough speed. It climbed a few feet, stalled, and settled to the ground at the foot of the hill after being in the air just 3½ seconds. This trial was considered unsuccessful because the machine landed at a point at the base of the hill many feet lower than that from which it had started on the side of the hill. Wilbur wrote of his trial:

Wilbur Wright in damaged machine near the base of Kill Devil Hill after unsuccessful trial of Dec. 14, 1903. Repairs were completed by the afternoon of December 16, but poor wind conditions prevented another trial until the following day.

Wilbur Wright in damaged machine near the base of Kill Devil Hill after unsuccessful trial of Dec. 14, 1903. Repairs were completed by the afternoon of December 16, but poor wind conditions prevented another trial until the following day.

Crew members of the Kill Devil Hills Life Saving Station, about 1900. In 1903, lifesavers from this station witnessed the attempt on December 14 and saw the successful flights of December 17.

Crew members of the Kill Devil Hills Life Saving Station, about 1900. In 1903, lifesavers from this station witnessed the attempt on December 14 and saw the successful flights of December 17.

However the real trouble was an error in judgment, in turning up too suddenly after leaving the track, and as the machine had barely speed enough for support already, this slowed it down so much that before I could correct the error, the machine began to come down, though turned up at a big angle. Toward the end it began to speed up again but it was too late, and it struck the ground while moving a little to one side, due to wind and a rather bad start.

However the real trouble was an error in judgment, in turning up too suddenly after leaving the track, and as the machine had barely speed enough for support already, this slowed it down so much that before I could correct the error, the machine began to come down, though turned up at a big angle. Toward the end it began to speed up again but it was too late, and it struck the ground while moving a little to one side, due to wind and a rather bad start.

In landing, one of the skids and several other parts were broken, preventing a second attempt that day. Repairs were completed by noon of the 16th, but the wind was too calm to fly the machine that afternoon. The brothers, however, were confident of soon making a successful flight. “There is now no question of final success,” Wilbur wrote his father, though Langley had recently made two attempts to fly and had failed in both. “This did not disturb or hurry us in the least,” Orville commented on Langley’s attempts. “We knew that he had to have better scientific data than was contained in his published works to successfully build a man-carrying flying machine.”

Thursday, December 17 dawned, and was to go down in history as a day when a great engineering feat was accomplished. It was a cold day with winds of 22 to 27 miles an hour blowing from the north. Puddles of water near the camp were covered with ice. The Wrights waited indoors, hoping the winds would diminish. But they continued brisk, and at 10 in the morning the brothers decided to attempt a flight, fully realizing the difficulties and dangers of flying a relatively untried machine in so high a wind.

In strong winds, hills were not needed to launch the machine, since the force of the winds would enable the machine to take off on the short starting track from level ground. Indeed, the winds were almost too gusty to launch the machine at all that day, but the brothers estimated that the added dangers while in flight would be compensated in part by the slower speed in landing caused by flying into stiff winds. As a safety precaution, they decided to fly as close to the ground as possible. They were superb flyers, courageous, but never foolhardy.

A signal was again displayed to notify the men at the Kill Devil Hills Life Saving Station that further trials were intended. They took the machine out of the hanger, and laid the 60-foot startingtrack in a south-to-north direction on a smooth stretch of level ground less than 100 feet west of the hanger and more than 1,000 feet north of Kill Devil Hill. They chose this location for the trials because the ground had recently been covered with water, and because it was so level that little preparation was necessary to lay the track. Both the starting track and the machine resting on the truck faced directly into the north wind. The restraining wire was attached from the truck to the south end of the track.

Getting ready for the first flight, Dec. 17, 1903. From a diorama in the Wright Brothers National Memorial Visitor Center.

Getting ready for the first flight, Dec. 17, 1903. From a diorama in the Wright Brothers National Memorial Visitor Center.

Before the brothers were quite ready to fly the machine, John T. Daniels, Willie S. Dough, and Adam D. Etheridge, personnel from the Kill Devil Hills Life Saving Station, arrived to see the trials; with them came William C. Brinkley of Manteo, and John T. Moore, a boy from Nags Head. The right to the first trial belonged to Orville; Wilbur had used his turn in the unsuccessful attempt on December 14. Orville put his camera on a tripod before climbing aboard the machine, and told Daniels to press the button when the machine had risen directly in front of the camera.

After running the engine and propellers a few minutes, the take-off attempt was ready. At 10:35 a.m., Orville lay prone on the lower wing with hips in the cradle that operated the control mechanisms. He released the restraining wire and the machine started down the 60-foot track, traveling slowly into the headwind at about 7 or 8 miles an hour—so slow that Wilbur was able to run alongside holding the right wing to balance the machine on the track. After a run of 40 feet on the track, the machine took off. When the airplane had risen about 2 feet above ground, Daniels snapped the famous photograph of the conquest of the air. The plane then climbed 10 feet into the sky, while Orville struggled with the controlling mechanisms to keep it from rising too high in such an irregular, gusty wind.

The first flight.

The first flight.

Orville sought to fly a level flight course, though buffeted by the strong headwind. However, when turning the rudder up or down, the plane turned too far either way and flew an erratic up-and-down course, first quickly rising about 10 feet, then suddenly darting close to the ground. The first successful flight ended with a sudden dart to the ground after having flown 120 feet from the take-off point in 12 seconds time at a groundspeed of 6.8 miles an hour and an airspeed of 30 miles an hour. In the words of Orville Wright:

This flight lasted only 12 seconds, but it was nevertheless the first in the history of the world in which a machine carrying a man had raised itself by its own power into the air in full flight, had sailed forward without reduction of speed, and had finally landed at a point as high as that from which it started.

This flight lasted only 12 seconds, but it was nevertheless the first in the history of the world in which a machine carrying a man had raised itself by its own power into the air in full flight, had sailed forward without reduction of speed, and had finally landed at a point as high as that from which it started.

Orville found that the new, almost untried, controlling mechanisms operated more powerfully than the previous controls he had used in gliders. He also learned that the front rudder was balanced too near the center. Because of its tendency to turn itself when started, the unfamiliar powered machine’s front rudder turned more than was necessary.

The airplane had been slightly damaged on landing. Quick repairs were made. With the help of the onlookers, the machine was brought back to the track and prepared for a second flight. Wilbur took his turn at 11:20 a.m., and flew about 175 feet in about 12 seconds. He also flew an up-and-down course, similar to the first flight, while operating the unfamiliar controls. The speed over the ground during the second flight was slightly faster than that of the first flight because the winds were diminishing. The airplane was carried back to the starting track and prepared for a third flight.

Third flight of Dec. 17, 1903, Orville Wright at the controls. No photograph was taken of the day’s second flight, in which Wilbur Wright was operator.

Third flight of Dec. 17, 1903, Orville Wright at the controls. No photograph was taken of the day’s second flight, in which Wilbur Wright was operator.

End of fourth and longest flight of Dec. 17, 1903. Distance: 852 feet; time: 59 seconds.

End of fourth and longest flight of Dec. 17, 1903. Distance: 852 feet; time: 59 seconds.

Close-up of 1903 machine at end of last flight, rudder frame broken in landing.Courtesy, Smithsonian Institution.

Close-up of 1903 machine at end of last flight, rudder frame broken in landing.Courtesy, Smithsonian Institution.

Orville Wright’s diary showing Dec. 17, 1903 entry. This account is the only contemporary written record of these momentous flights.

Orville Wright’s diary showing Dec. 17, 1903 entry. This account is the only contemporary written record of these momentous flights.

At 11:40 a.m., Orville made the third flight, flying a steadier course than that of the two previous flights. All was going nicely when a sudden gust of wind from the side lifted the airplane higher by 12 to 15 feet, turning it sidewise in an alarming manner. With the plane flying sidewise, Orville warped the wingtips to recover lateral balance, and pointed the plane down to land as quickly as possible. The new lateral control was more effective than he hadexpected. The plane not only leveled off, but the wing that had been high dropped more than he had intended, and it struck the ground shortly before the plane landed. The third flight was about 200 feet in about 15 seconds.

(Orville Wright’s diary—December 17 entry, continued)

(Orville Wright’s diary—December 17 entry, continued)

Wilbur started on the fourth flight at noon. He flew the first few hundred feet on an up-and-down course similar to the first two flights. But after flying 300 feet from the take-off point, the airplane was brought under control. The plane flew a fairly even course for an additional 500 feet, with little undulation to disturb its level flight. While in flight about 800 feet from the take-off point, the airplane commenced pitching again, and, in one of itsdarts downward, struck the ground. The fourth flight measured 852 feet over the ground; the time in the air was 59 seconds.

(Orville Wright’s diary—December 17 entry, continued)

(Orville Wright’s diary—December 17 entry, continued)

The four successful flights made on December 17 were short because the Wrights, not desiring to fly a new machine at much height in strong winds, sometimes found it impossible to correct the up-and-down motion of the airplane before it struck the ground. Wilbur remarked:

Those who understand the real significance of the conditions under which we worked will be surprised rather at the length than the shortness of the flights made with an unfamiliar machine after less than oneminute’s practice. The machine possesses greater capacity of being controlled than any of our former machines.

Those who understand the real significance of the conditions under which we worked will be surprised rather at the length than the shortness of the flights made with an unfamiliar machine after less than oneminute’s practice. The machine possesses greater capacity of being controlled than any of our former machines.

(Orville Wright’s diary—December 17 entry, continued)

(Orville Wright’s diary—December 17 entry, continued)

They carried the airplane back to camp and set it up a few feet west of the hangar. While the Wrights and onlookers were discussing the flights, a sudden gust of wind struck the plane and turned it over a number of times, damaging it badly. The airplane could not be repaired in time for any more flights that year; indeed, it was never flown again. Daniels gained the dubious honor of becoming the first airplane casualty when he was slightly scratched and bruised while caught inside the machine between the wings in anattempt to stop the plane as it rolled over. Subsequent events were vivid in Daniels’ mind while reminiscing of his “first—and God help me—my last flight.” He relates:

I found myself caught in them wires and the machine blowing across the beach heading for the ocean, landing first on one end and then on the other, rolling over and over, and me getting more tangled up in it all the time. I tell you, I was plumb scared. When the thing did stop for half a second I nearly broke up every wire and upright getting out of it.

I found myself caught in them wires and the machine blowing across the beach heading for the ocean, landing first on one end and then on the other, rolling over and over, and me getting more tangled up in it all the time. I tell you, I was plumb scared. When the thing did stop for half a second I nearly broke up every wire and upright getting out of it.

Orville made this matter-of-fact entry in his diary: “After dinner we went to Kitty Hawk to send off telegram to M. W. While there we called on Capt. and Mrs. Hobbs, Dr. Cogswell and the station men.” Toward evening that day Bishop Milton Wright in Dayton received the telegram from his sons:

Success four flights Thursday morning all against twenty-one mile wind started from level with engine power alone average speed through air thirty-one miles longest 57 seconds inform press home Christmas. Orevelle Wright.

Success four flights Thursday morning all against twenty-one mile wind started from level with engine power alone average speed through air thirty-one miles longest 57 seconds inform press home Christmas. Orevelle Wright.

In the transmission of the telegram, 57 seconds was incorrectly given for the 59-second record flight, and Orville’s name was misspelled. The Norfolk telegraph operator leaked the news to a local paper, theVirginian-Pilot. The resulting story produced a series of false reports as to the length and duration of the December 17 flights. Practically none of the information contained in the telegram was used, except that the Wrights had flown.

The Bishop gave out a biographical note:

Wilbur is 36, Orville 32, and they are as inseparable as twins. For several years they have read up on aeronautics as a physician would read his books, and they have studied, discussed, and experimented together. Natural workmen, they have invented, constructed, and operated their gliders, and finally their ‘Wright Flyer,’ jointly, all at their own personal expense. About equal credit is due each.

Wilbur is 36, Orville 32, and they are as inseparable as twins. For several years they have read up on aeronautics as a physician would read his books, and they have studied, discussed, and experimented together. Natural workmen, they have invented, constructed, and operated their gliders, and finally their ‘Wright Flyer,’ jointly, all at their own personal expense. About equal credit is due each.

The world took little note of the Wrights’ tremendous achievement and years passed before its full significance was realized. After reading the Wrights’ telegram, the Associated Press representative in Dayton remarked, “Fifty-seven seconds, hey? If it had been fifty-seven minutes then it might have been a news item.” Three years after the first flight an editorial appeared in the December 15, 1906, issue of theScientific American, which included the following:

In all the history of invention, there is probably no parallel to the unostentatious manner in which the Wright brothers of Dayton, Ohio, ushered into the world their epoch-making invention of the first successful aeroplane flying-machine.

In all the history of invention, there is probably no parallel to the unostentatious manner in which the Wright brothers of Dayton, Ohio, ushered into the world their epoch-making invention of the first successful aeroplane flying-machine.

Orville Wright wired his father to announce the successful flights of Dec. 17, 1903.

Orville Wright wired his father to announce the successful flights of Dec. 17, 1903.

Form No. 100.THE WESTERN UNION TELEGRAPH COMPANY.———INCORPORATED———23,000 OFFICES IN AMERICA.CABLE SERVICE TO ALL THE WORLD.This Company TRANSMITS and DELIVERS messages only on conditions limiting its liability, which have been assented to by the sender of the following message.Errors can be guarded against only by repeating a message back to the sending station for comparison, and the Company will not hold itself liable for errors or delays in transmission or delivery ofUnrepeated Messages, beyond the amount of tolls paid thereon, nor in any case where the claim is not presented in writing within sixty days after the message is filed with the Company for transmission.This is an UNREPEATED MESSAGE, and is delivered by request of the sender under the conditions named above.ROBERT C. CLOWRY, President and General Manager.RECEIVEDat176 C KA CS 33 Paid.Via Norfolk VaKitty Hawk N C Dec 17Bishop M Wright7 Hawthorne StSuccess four flights thursday morning all against twenty one mile wind started from Level with engine power alone average speed through air thirty one miles longest 57 seconds inform Press home Christmas.Orevelle Wright   525P

Form No. 100.

THE WESTERN UNION TELEGRAPH COMPANY.———INCORPORATED———23,000 OFFICES IN AMERICA.CABLE SERVICE TO ALL THE WORLD.

This Company TRANSMITS and DELIVERS messages only on conditions limiting its liability, which have been assented to by the sender of the following message.

Errors can be guarded against only by repeating a message back to the sending station for comparison, and the Company will not hold itself liable for errors or delays in transmission or delivery ofUnrepeated Messages, beyond the amount of tolls paid thereon, nor in any case where the claim is not presented in writing within sixty days after the message is filed with the Company for transmission.

This is an UNREPEATED MESSAGE, and is delivered by request of the sender under the conditions named above.ROBERT C. CLOWRY, President and General Manager.

RECEIVEDat

176 C KA CS 33 Paid.Via Norfolk VaKitty Hawk N C Dec 17Bishop M Wright7 Hawthorne StSuccess four flights thursday morning all against twenty one mile wind started from Level with engine power alone average speed through air thirty one miles longest 57 seconds inform Press home Christmas.Orevelle Wright   525P

176 C KA CS 33 Paid.Via Norfolk VaKitty Hawk N C Dec 17Bishop M Wright7 Hawthorne St

176 C KA CS 33 Paid.Via Norfolk Va

Kitty Hawk N C Dec 17

Bishop M Wright

7 Hawthorne St

Success four flights thursday morning all against twenty one mile wind started from Level with engine power alone average speed through air thirty one miles longest 57 seconds inform Press home Christmas.

Orevelle Wright   525P

After 1903, the Wrights carved brilliant careers in aeronautics and helped found the aviation industry. The successful flights made at Kill Devil Hills in December 1903 encouraged them to make improvements on a new plane called Flyer No. 2. About 100 flights were flown near Dayton in 1904. These totaled only 45 minutes in the air, although they made two 5-minute flights. Experimenting chiefly with control and maneuver, many complete circuits of the small flying field were made.

A new and improved plane, Flyer No. 3, was built in 1905. On October 5 they made a record flight of 24⅕ miles, while the plane was in the air 38 minutes and 3 seconds. The era of the airplane was well on the way. The lessons and successes at Kill Devil Hills in December 1903 were fast making the crowded skies of the Air Age possible.

Believing their invention was now perfected for practical use, the Wrights wanted the United States Government to have a world monopoly on their patents, and more important, on all the aerodynamic, design, and pilotage secrets they knew relating to the airplane. As early as 1905 they had received overtures from representatives of foreign governments. The United States Army turned down their first offers without making an effort to investigate whether the airplane had been brought to a stage of practical operation. But disbelief was on the wane. In February 1908 the United States War Department made a contract with the brothers for an airplane. Only 3 weeks later the Wrights closed a contract with a Frenchman to form a syndicate for the rights to manufacture, sell, or license the use of the Wright airplane in France.


Back to IndexNext