Paper making machineFig. 788 enlarged(288 kB)Fig.788.is an upright longitudinal section, representing the machine in its most complete state, including the drying steam cylinders, and the compound channelled rollers of Mr. Wilks, subsequently to be described in detail. The figure in the upper line shows it all in train, when the paper is to be wound up wet upon the reelsE,E, which being movable round the centrelof a swing-bar, are presented empty, time about, to receive the tender web. The figure in the under line contains the steam or drying cylinders; the pointsO,O, of whose frame, replace, at the pointsP,P, the wet-reel frame,F,F,P.Ais the vat, or receiver of pulp from the stuff-chest.Bis the knot strainer of Ibotson (p. 936.), to clear the pulp before passing on to the wire.Gis the hog, or agitator in the vat. The arrows show the course of the currents of the pulp in the vat.Iis the apron, or receiver of the water and pulp which escape through the endless wire, and which are returned by a scoop-wheel into the vat.bis the copper lip of the vat, over which the pulp flows to the endless wire, on a leathern apron extending from this lip to about 9 inches over the wire, to support the pulp and prevent its escaping.c,care the bars which bear up the small tube rollers that support the wire.d,dare ruler bars, to support the copper rollers over which the wire revolves.Kis the breast roller, round which the endless wire turns.Nis the point where the shaking motion is given to the machine.Mis the guide roller, having its pivots movable laterally to adjust the wire and keep it parallel.Lis the pulp roller, or “dandy,” to press out water, and to set the paper.r, is the place of the second, when it is used.His the first or wet press, or couching rollers; the wire leaves the paper here, which latter is couched upon the endless feltp; and the endless wireoreturns, passing round the lower couch roller. By Mr. Donkin’s happy invention of placing these rollers obliquely, the water runs freely away, which it did not do when their axes were in a vertical line.e,eare the deckles, which form the edges of the sheet of paper, and prevent the pulp passing away laterally. They regulate the width of the endless sheet.f,fare the revolving deckle straps.Ris the deckle guide, or driving-pulley.g,gare tube rollers, over which the wire passes, which do not partake of the shaking motion; and,h,hare movable rollers for stretching the wire, or brass carriages for keeping the rollersg,gin a proper position.Cis the second press, or dry press, to expel the water in a cold state.K,K, &c., in the view of the lower line, are the steam cylinders for drying the endless sheet.i,iare rollers to convey the paper.j,jare rollers to conduct the felt; which serves to support the paper, and prevent it wrinkling or becoming cockled.D,Dare the hexagonal expanding reels for the steam-dried paper web, one only being used at a time, and made to suit different sizes of sheets.lis their swing fulcrum.F,F,F,F, is the frame of the machine.The deckle straps are worthy of particular notice in this beautiful machine. They are composed of many layers of cotton tape, each one inch broad, and together one half-inch thick, cemented with caoutchouc, so as to be at once perfectly flexible and water-tight.The upper end of each of the two carriages of the rollerLis of a forked shape, and the pivots of the roller are made to turn in the cleft of the forked carriages in such a manner, that the roller may be prevented from having any lateral motion, while it possesses a free vibratory motion upwards and downwards; the whole weight of the rollerLbeing borne by the endless web of woven wire.Ends of rollersThe greatest difficulty formerly experienced in the paper manufacture upon the continuous system of Fourdrinier, was to remove the moisture from the pulp, and condense it with sufficient rapidity, so as to prevent its becoming what is calledwater-galled, and to permit the web to proceed directly to the drying cylinders. Hitherto no invention has answered so well in practice to remove this difficulty as the channelled and perforated pulp rollers or dandies of Mr. John Wilks, the ingenious partner of Mr. Donkin; for which a patent was obtained in 1830. Suppose one of these rollers (seeL, infig.788., andM,M, infig.793.,) is required for a machine which is to make paper 54 inches wide, it must be about 60 inches long, so that its extremities (seefigs.789.and790.) may extend over or beyond each edge of the sheet of paper upon which it is laid. Its diameter may be 7 inches. About 8 grooves, each 1-16th of an inch wide, are made in every inch of the tube; and they are cut to half the thickness of the copper, with a rectangularly shaped tool. A succession of ribs and grooves are thus formed throughout the whole length of the tube. A similar succession is then made across the former, but of 24 in the inch, and on the opposite surface of the metal, which by a peculiar mode of management had been prepared for that purpose. As the latter grooves are cut as deep as the former, those on the inside meet those on the outside, crossing each other at right angles, and thereby producing so many square holes; leaving a series of straight copper ribs on the interior surface of the said tube, traversed by another series of ribs coiled round them on the outside, forming a cylindrical sieve made of one piece of metal. The rough edges of all the ribs must be rounded off with a smooth file into a semicircular form.Figs.789.and790.,A A, are portions of the ribbed copper tube.Fig.789.shows the exterior, andfig.790.the interior surface;b,bandb,bshow the plain part at each of the ends, where it is made fast to the brass rings by rivets or screws;C,Care the rings with arms, and a centre piece in each, for fixing the iron pivot or shaftB; one such pivot is fixed by riveting it in each of the centre pieces of the rings, as shown atc,fig.790.; so that both the said pieces shall be concentric with the rings, and have one common axis with each other, and with the roller. Ata,a, a groove is turned in each of the pivots, for the purpose of suspending a weight by a hook, in order to increase the pressure upon the paper, whenever it may be found necessary.End of rollersFig.791.is an end view, showing the copper tube and its internal ribsA,A; the brass ringsC,C; armD,D,D; centre pieceE, and pivotB.Fig.792.is a section of the said ring, with the arms, &c.The roller is shown atL,fig.788., as lying upon the surface of the wire-web.The relative position of that perforated roller, and the little rollerb, over which it lies, is such that the axis ofLis a little to one side of the axis ofb, and not in the same vertical plane, the latter being about an inch nearer the vat end. Hence, whenever the wire-web is set in progressive motion, it will cause the rollerLto revolve upon its surface; and as the paper is progressively made, it will pass onwards with the web under the surface of the roller. Thus the pulpy layer of paper is condensed by compression under the ribbed roller; while it transmits its moisture through the perforations, it becomes sufficiently compact to endure the action of the wet press rollersH,H, and also acquires the appearance of parallel lines, as if made by hand in a laid mould.Mr. Wilks occasionally employs a second perforated roller in the same paper machine, which is then placed at the dotted linesi,i,i.The patentee has described in the same specification a most ingenious modification of the said roller, by which he can exhaust the air from a hollowed portion of its periphery, and cause the paper in its passage over the roller to undergo the sucking operation of the partial void, so as to be remarkably condensed; but he has not been called upon to apply this second invention, in consequence of the perfect success which he has experienced in the working of the first.The following is a more detailed illustration of Mr. Wilks’ improved roller.Wilks's improved rollerFig.793.represents two parts of his double-cased exhausting cylinder.This consists of two copper tubes, one nicely lining the other; the inner being punched full of round holes, as atK,K, where that tube is shown uncovered: a portion of the inner surface of the same tube is shown atL,L. In this figure also, two portions of the outer tube are shown atM,M, andN,N; the former being an external, and the latter an internal view. Here we see that the external tube is the ribbed perforated one already described; the holes in the inner tube being made in rows to correspond with the grooves in the outer. The holes are so distributed that every hole in one row shall be opposite to the middle of the space left between two holes in the next row, as will appear from inspection of the figure. The diameter of each of the punched holes somewhat exceeds the width of each rib in the inside of the outer cylinder, and every inside groove of this tube coincides with a row of holes in the former, which construction permits the free transudation or percolation of the water out of the pulp. At each end of this double-case cylinder, a part is left atN,N, plain without, and grooved merely in the inside of the outer tube. The smooth surface allows the brass ends to be securely fixed; the outer edge of the brass ring fits tight into the inside of the end of the cylinders.On the inside of each of these rings there are four pieces which project towards the centre or axis of the cylinder; two of which pieces are shown ata,a,fig.793.in section.b,b, is a brass ring with four armsc,c,c,c, and a boss or centre pieced,d. The outer edge of the last-mentioned ring is also turned cylindrical, and of such a diameter as to fit the interior of the former ringo,o. The two rings are securely held together by four screws.e,eis the hollow iron axle or shaft upon which the cylinder revolves. Its outside is made truly cylindrical, so as to fit the circular holes in the bossesd,d, of the rings and arms at each end of the cylinder. Hence, if the hollow shaft be so fixed that it will not turn, the perforated cylinder is capable of having a rotatory motion given to it round that shaft. This motion is had recourse to, when the vacuum apparatus is employed. But otherwise the cylinder is made fast to the hollow axle by means of two screw clamps. To one end of the cylinder, as atp, a toothed wheel is attached, for communicating a rotatory motion to it, so that its surface motion shall be the same as that of the paper web; otherwise a rubbing motion might ensue, which would wear and injure both.The paper stuff or pulp is allowed to flow from the vatA,fig.788., on to the surface of the endless wire-web, as this is moving along. The lineso,o,fig.788.show the course ofthe motion of the web, which operates as a sieve, separating to a certain degree the water from the pulp, yet leaving the latter in a wet state till it arrives at the first pair of pressing rollersH,H, between which the web with its sheet of paper is squeezed. Thick paper, in passing through these rollers, was formerly often injured by becoming water-galled, from the greater retention of water in certain places than in others. But Messrs. Donkin’s cylinder, as above described, has facilitated vastly the discharge of the water, and enabled the manufacturer to turn off a perfectly uniform smooth paper.Infig.788., immediately below the perforated cylinder, there is a wooden water-trough. Along one side of the trough a copper pipe is laid, of the same length as the cylinder, and parallel to it; the distance between them being about one fourth of an inch. The side of the pipe facing the cylinder is perforated with a line of small holes, which transmit a great many jets of water against the surface of the cylinder, in order to wash it and keep it clean during the whole continuance of the process.The principle adopted by John Dickinson, Esq., of Nash Mill, for making paper, is different from that of Fourdrinier. It consists in causing a polished hollow brass cylinder, perforated with holes or slits, and covered with wire cloth, to revolve over and just in contact with the prepared pulp; so that by connecting the cylinder with a vessel exhausted of its air, the film of pulp, which adheres to the cylinder during its rotation, becomes gently pressed, whereby the paper is supposed to be rendered drier, and of more uniform thickness, than upon the horizontal hand moulds, or travelling wire cloth of Fourdrinier. When subjected merely to agitation, the water is sucked inwards through the cylindric cage, leaving the textile filaments so completely interwoven as, if felted among each other, that they will not separate without breaking, and, when dry, they will form a sheet of paper of a strength and quality relative to the nature and preparation of the pulp. The roll of paper thus formed upon the hollow cylinder is turned off continuously upon a second solid one covered with felt, upon which it is condensed by the pressure of a third revolving cylinder, and is thence delivered to the drying rollers.Such is the general plan of Mr. Dickinson’s paper machines, into which he has introduced numerous improvements since its invention in 1809, many of them secured by patent right; whereby he has been enabled to make papers of first-rate quality, more particularly for theprinting-press. Seeinfrà.In July 1830, Mr. Ibotson of Poyle, paper manufacturer, obtained a patent, seeB,fig.788., which has proved very successful, for a peculiar construction of a sieve or strainer. Instead of wire meshes, he uses a series of bars of gun-metal, laid in the bottom of a box, very closely together, so that the upper surfaces or the flat sides may be in the same plane, the edge of each bar being parallel with its neighbour, leaving parallel slits between them of from about 1-70th to 1-100th of an inch in width, according to the fineness or coarseness of the paper-stuff to be strained. As this stuff is known to consist of an assemblage of very fine flexible fibres of hemp, flax, cotton, &c., mixed with water, and as, even in the pulp of which the best paper is made, the length of the said fibres considerably exceeds the diameter of the meshes of which common strainers are formed, consequently the longest and most useful fibres were formerly lost to the paper manufacturer. Mr. Ibotson’s improved sieve is employed to strain the paper-stuff previously to its being used in the machine above described. (see its place atBin the vat.) When the strainer is at work, a quick vertical and lateral jogging motion is given to it, by machinery similar to the joggling-screens of corn mills.Since the lateral shaking motion of the wire-web in the Fourdrinier machine, as originally made, was injurious to the fabric of the paper, by bringing its fibres more closely together breadthwise than lengthwise, thus tending to produce long ribs, or thick streaks in its substance, Mr. George Dickinson, of Buckland Mill, near Dover, proposed, in the specification of a patent obtained in February, 1828, to give a rapid up-and-down movement to the travelling web of pulp. He does not, however, define with much precision any proper mechanism for effecting this purpose, but claims every plan which may answer this end. He proposes generally to mount the rollers, which conduct the horizontal endless web, upon a vibrating frame. The forepart of this frame is attached, to the standards of the machine, by hinge joints, and the hinder part, or that upon which the pulp is first poured out, is supported by vertical rods, connected with a crank on a shaft below. Rapid rotatory motion being given to this crank-shaft, the hinder part of the frame necessarily receives a quick up-and-down vibratory movement, which causes the water to be shaken out from the web of pulp, and thus sets the fibres of the paper with much greater equality than in the machines formerly constructed. A plan similar to this was long ago introduced into Mr. Donkin’s machines, in which the vibrations were actuated in a much more mechanical way.John Dickinson, Esq., of Nash Mill, obtained a patent in October, 1830, for a method of uniting face to face two sheets of pulp by means of machinery, in order to produce paperof extraordinary thickness. Two vats are to be supplied with paper stuff as usual; in which two hollow barrels or drums are made to revolve upon axles driven by any first mover; an endless felt is conducted by guide rollers, and brought into contact with the drums; the first drum gives off the sheet of paper pulp from its periphery to the felt, which passing over a pressing roller, is conducted by the felt to that part of a second drum which is in contact with another pressing roller. A similar sheet of paper pulp is now given off from the second drum, and it is brought into contact with the former by the pressure of its own roller. The two sheets of paper pulp thus united are carried forward by the felt over a guide roller, and onward to a pair of pressing rollers, where by contact the moist surfaces of the pulp are made to adhere, and to constitute one double thick sheet of paper, which, after passing over the surfaces of hollow drums, heated by steam, becomes dry and compact. The rotatory movements of the two pulp-lifting drums must obviously be simultaneous, but that of the pressing rollers should be a little faster, because the sheets extend by the pressure, and they should be drawn forward as fast as they are delivered, otherwise creases would be formed. Upon this invention is founded Mr. Dickinson’s ingenious method of making safety-paper for Post-office stamps, by introducing silk fibres, &c., between the two laminæ.The following contrivance of the same inventive manufacturer is a peculiarly elegant mechanical arrangement, and is likely to conduce to the perfection of machine-made paper. I have already described Mr. Ibotson’s excellent plan of parallel slits, or gridiron strainers, which has been found to form paper of superior quality, because it permits all the elongated tenacious fibres to pass, which give strength to the paper, while it intercepts the coarser knots and lumps of the paste, that were apt to spoil its surface. Mr. Turner’s circular wire sieves, presently to be noticed, may do good work, but they cannot compete with Mr. Dickinson’s present invention, which consists in causing the diluted paper pulp to pass between longitudinal apertures, about the hundred-and-fifteenth part of an inch wide, upon the surface of a revolving cylinder.The pulp being diluted to a consistency suitable for the paper machine, is delivered into a vat, of which the level is regulated by a waste pipe, so as to keep it nearly full. From this vat there is no other outlet for the pulp, except through the wire-work periphery of the revolving cylinder, and thence out of each of its ends into troughs placed alongside, from which it is conducted to the machine destined to convert it into a paper web.The revolving cylinder is constructed somewhat like a squirrel cage, of circular rods, or an endless spiral wire, strengthened by transverse metallic bars, and so formed that the spaces between the rings are sufficient to allow the slender fibres of the pulp to pass through, but are narrow enough to intercept the knots and other coarse impurities, which must of course remain, and accumulate in the vat. The spaces between the wires of the squirrel cage may vary from the interval above stated, which is intended for the finest paper, to double the distance for the coarser kinds.It has been stated that the pulp enters the revolving cylinders solely through the intervals of the wires in the circumference of the cylinder; these wires or rods are about three-eighths of an inch broad without, and two-eighths within, so that the circular slits diverge internally. The rods are one quarter of an inch thick, and are riveted to the transverse bars in each quadrant of their revolution, as well as at their ends to the necks of the cylinder.During the rotation of the cylinder, its interstices would soon get clogged with the pulp, were not a contrivance introduced for creating a continual vertical agitation in the inside of the cylinder. This is effected by the up-and-down motion of an interior agitator or plunger, nearly long enough to reach from the one end of the cylinder to the other, made of stout copper, and hollow, but water-tight. A metal bar passes through it, to whose projecting arm at each end a strong link is fixed; by these two links it is hung to two levers, in such a way that when the levers move up and down, they raise and depress the agitator, but they can never make it strike the sides of the cylinder. Being heavier than its own bulk of water, the agitator, after being lifted by the levers, sinks suddenly afterwards by its weight alone.The agitator’s range of up-and-down movement should be about one inch and a quarter, and the number of its vibrations about 80 or 100 per minute; the flow of the pulp through the apertures is suddenly checked in its descent, and promoted in its ascent, with the effect of counteracting obstructions between the ribs of the cylinder.The sieve cylinder has a toothed wheel fixed upon the tubular part of one of its ends, which works between two metal flanches made fast to the wooden side of the vat, for the purpose of keeping the pulp away from the wheel; and it is made to revolve by a pinion fixed on a spindle, which going across the vat, is secured by two plummer blocks on the outside of the troughs, and has a rotatory motion given to it by an outside rigger or pulley, by means of a strap from the driving shaft, at the rate of 40 or 50 revolutions per minute. This spindle has also two double eccentrics fixed upon it, immediatelyunder the levers, so that in every revolution it lifts those levers twice, and at the same time lifts the agitator.The diameter of the sieve cylinder is not very material, but 14 inches have been found a convenient size; its length must be regulated according to the magnitude of the machine which it is destined to supply with pulp. One, four feet long in the cage part, is sufficient to supply a machine of the largest size in ordinary use, viz., one capable of making paper 4 feet 6 inches wide. When the cylinder is of this length, it should have a wheel and pinion at each end.Metal flanches are firmly fixed to the sides of the vat, with a water-tight joint, and form the bearings in which the cylinder works.Mr. Turner of Bermondsey, paper-maker, obtained a patent in March, 1831, for a peculiar strainer, designed to arrest the lumps mixed with the finer paper pulp, whereby he can dispense with the usual vat and hog in which the pulp is agitated immediately before it is floated upon the endless wire-web of the Fourdrinier apparatus. His strainer may also be applied advantageously to hand paper machines. He constructs his sieves of a circular form, by combining any desirable number of concentric rings of metal, with small openings between them, from the 50th to the 100th part of an inch wide. In order to facilitate the passage of the fine pulp and water, the sieves receive a vibratory motion up and down, which supersedes the hog employed in other paper-making machines.A mechanism to serve the same purpose as the preceding, in which Mr. Ibotson’s plan of a parallel rod-strainer is modified, was made the subject of a patent by Mr. Henry Brewer, of Surrey Place, Southwark, in March, 1832. He constructs square boxes with gridiron bottoms, and gives a powerful up-and-down vibration in the pulp tub, by levers, rotatory shafts, and cranks.As the contrivance is not deficient in ingenuity, and may be useful, I shall describe this mode of adapting his improved strainers to a vat in which paper is to be made by hand moulds. A hog (or churning rotator) is employed for the purpose of agitating the pulp at the bottom of the vat, in which the sieve is suspended from a crank-shaft, or in any other way, so as to receive the up-and-down vibratory motion for the purpose of straining the pulp. The pulp may be supplied from a chest, and passed through a cock into a trough, by which it is conveyed to the strainers.A pipe from the bottom of the vat leads into a lifter-box, which is designed to convey thin pulp into the sieve, in order to dilute that which is delivered from the chest. This pipe also allows the small lumps, called rolls, to be re-sifted. The pressure of the pulp and water in the vat forces the pulp up the pipe into the lifter-box, whence it is taken by rotatory lifters, and discharged into a trough, where it runs down and mixes with the thick pulp from the chest, as before mentioned. By these means the contents of the vat are completely strained or sifted over again in the course of almost every hour.A patent was obtained for a paper-pulp strainer by Mr. Joseph Amies, of Loose, in the county of Kent, paper manufacturer, who makes the bottoms of his improved strainers with plates of brass or other suitable metal, and forms the apertures for the fine fibres of pulp to pass through, by cutting short slits through such plates, taking care that as much metal is left between the ends of each short slit and the next following as will properly brace or stiffen the ribs of the strainer; and he prefers that the end of one slit shall be nearly opposite to the middle of the two slits next adjoining it, which is commonly called blocking the joints. This is for giving rigidity to the bottom of the strainer, and constitutes the main feature of his improvement. The bottoms of sieves previously constructed with long metallic rods, he considers to be liable to lateral vibration in use, and thus to have permitted knots and lumps to pass through their expanded intervals. This objection is not applicable to Mr. Dickinson’s squirrel-cage strainer, of which the ribs may be made rigid by a sufficient number of transverse bars; nor in fact is it applicable to Mr. Ibotson’s original strainer, as it is admirably constructed by Messrs. Donkin and Co. Each bar which they make being inflexible by a feathered rib, is rendered perfectly straight in its edge by grinding with emery upon a flat disc-wheel of block tin, and of invariable length, by a most ingenious method of turning each set of bars in a lathe. The bars are afterwards adjusted in the metallic sieve-frame, or chest, at any desired distance apart, from the 120th to the 60th of an inch, in such a manner as secures them from all risk of derangement by the vibratory or jogging motion in shaking the pulpy fibres through the lineal intervals between them.Mr. James Brown, paper manufacturer, of Esk mills, near Edinburgh, obtained a patent in May, 1836, for a particular mode of applying suction to the pasty web in the Fourdrinier’s machine. He places a rectangular box transversely beneath the horizontal wire cloth, without the interposition of any perforated covering, such as had beentried in the previously constructed vacuum machines, and which he considers to have impeded their efficacy in condensing the pulp and extracting the water.Upon this and all similar contrivances for making a partial vacuum under the pulpy paper web, it may be justly remarked, that they are more apt to injure than improve the texture of the article; since when the suction is unequally operative, it draws down not only the moisture, but many of the vegetable fibres, causing roughnesses, and even numerous small perforations in the paper.A modification of Mr. Dickinson’s cylinder-mould continuous paper machine was made the subject of a patent in Nov. 1830, by Mr. John Hall, jun., of Dartford, as communicated to him by a foreigner residing abroad. The leading feature of the invention is a mode of supplying the vat in which the wire cylinder is immersed with a copious flow of water, for the purpose of creating a considerable pressure upon the external surface of the cylinder, and thereby causing the fibres of the paper pulp to adhere to the mould.There is a semi-cylindrical trough, in which the mould is immersed, and made to revolve by any convenient means. The pulp is transferred from the vat into that vessel at its bottom part. On the side of the drum-mould opposite to the vat, there is a cistern into which a copious flow of water is delivered, which passes thence into the semi-cylindrical trough. In the interior of the cylindrical mould, a bent or syphon tube is introduced, on the horizontal part of which tube, inside, the mould revolves. This tube is connected at the outside to a pump, by which the water is drawn from the interior of the cylindrical mould. Thus the water in the semi-cylindrical trough, on the outside of the drum, is kept at a considerably higher level than it is within; and consequently the pressure of the water, as it passes through the wire gauze, will, it is supposed, cause the fibres of the paper pulp to adhere to the circumference of the mould. The water which is withdrawn from the interior of the drum by the recurved tube, is conducted round into the cistern, where its discharge is impeded by several vertical partitions, which make the water flow in a gentle stream into the semi-cylindrical mould vat. In order to keep the pulp properly agitated in the mould vat, a segment frame, having rails extended across the vat, is moved to and fro; as the drum mould goes round, the fibres of the pulp are forced against its circumference, and as the water passes through, the fibres adhere, forming the sheet of paper, which, on arriving at a couching roller above, is taken up as usual by an endless felt, conducted away to the drying apparatus, and thence to the reel to be wound up.The patentee claims merely the application of a pump to draw the water from the interior of the mould drum, and to throw it upon its external surface.A rag-cutting and lacerating machine was patented by Mr. Henry Davy, of Camberwell, in September, 1833, being a communication from a foreigner residing abroad. The machine consists of an endless feeding-cloth, by which the rough rags supplied by the attendants are progressively conducted forwards to a pair of feed-rollers (seeCotton,spinning), and on passing through these rollers, the rags are subjected to the operation of rotatory cutters, acting against a fixed or ledger blade, which cut and tear them to pieces. Thence the rags pass down an inclined sieve, upon which they are agitated to separate the dust. The cleaned fragments are delivered on to a horizontal screen or sorting table, to suffer examination. When picked here, they are ready for the pulp-engine. A distinct representation of this machine is given in Newton’s Journal, conjoined series, vol. iv. pl.IX.fig.1.Mr. Jean Jacques Jequier obtained a patent in August, 1831, for a mode of making paper on the continuous machine with wire-marks. The proposed improvement consists merely in the introduction of a felted pressing roller, to act upon the paper after it has been discharged from the mould, and need not therefore be particularly described.In August, 1830, Mr. Thomas Barratt, paper-maker, of St. Mary Cray, in the county of Kent, obtained a patent for an apparatus by which paper may be manufactured in a continuous sheet, with the water-mark and maker’s name, so as to resemble in every respect paper made by hand, in moulds the size of each separate sheet. On the wire web, at equal distances apart, repetitions of the maker’s name or other device is placed, according to the size of the paper when cut up into single sheets. In manufacturing such paper, the ordinary method of winding upon a reel cannot be employed; and therefore the patentee has contrived a compensating reel, whose diameter diminishes at each revolution, equal to the thickness of a sheet of paper. See Newton’s Journal, C. S. vol. vii. p. 285.For Mr. Lemuel Wellman Wright’s series of improvements in the manufacture of paper, specified in his patent of November, 1834, I must refer to the above Journal, C. S., vol. viii. p. 86.A committee of theSociété d’Encouragement, of Paris, made researches upon the best composition for sizing paper in the vat, and gave the following recipe:—100kilogrammesofdry paper stuff.12—starch.1—rosin, previously dissolved in 500 grammes of carbonate of soda.18pails of water.M. Braconnot proposed the following formula in the 23d volume of theAnnales de Chimie et de Physique:—To 100 parts of dry stuff, properly diffused through water, add a boiling uniform solution of 8 parts of flour, with as much caustic potash as will render the liquor clear. Add to it one part of white soap previously dissolved in hot water. At the same time heat half a part of rosin with the requisite quantity of weak potash lye for dissolving the rosin; mix both solutions together, and pour into them one part of alum dissolved in a little water.Those who colour prints, size them previously with the following composition:—4 ounces of glue, and 4 ounces of white soap dissolved in 3 English pints of hot water. When the solution is complete, two ounces of pounded alum must be added, and as soon as the composition is made homogeneous by stirring, it is ready for use. It is applied cold with a sponge, or rather with a flat camel’s hair brush. Ackermann’s liquor, as analyzed by Vauquelin, may be made for sizing paper as follows:—100kilogrammesofdry stuff.4—glue.8—resinous soap.8—alum.The soap is made from 4·8 kilos. of pounded rosin, and 2·22 crystals of carbonate of soda, dissolved in 100 litres of water. It is then boiled till the mixture becomes quite uniform; the glue, previously softened by 12 hours’ maceration in cold water, is to be next added; and when this is totally dissolved, the solution of alum in hot water is poured in. Three quarts of this size were introduced into the vat with the stuff, and well mixed with it. The paper manufactured with this paste seemed to be of excellent quality, and well sized.The Chinese, in manufacturing paper, sometimes employ linen rags, as we do; at other times, the fibres of the young bamboo; of the mulberry; the envelope of the silk-worm cocoon; also a tree, unknown to our botanists, which the natives callchuorko-chu; cotton down, and especially the cotton tree. The processes pursued in China to make paper with the inner bark of theirpaper-tree(Broussonetia-papyrifera,) or Chinese mulberry, have been described at great length in the bulletin of the Société d’Encouragement, for 1826, p. 226; but they will hardly prove serviceable to a European manufacturer. That tree has been acclimated in France.Chinese paper is not so well made as the good paper of Europe; it is not so white, it is thinner, and more brittle, but extremely soft and silky. The longitudinal tenacity of its filaments, however, renders it fitter for the engraver than our best paper. The Chinese, after triturating, grinding, and boiling the bamboo, set the paste to ferment in a heap covered with mats. Chinese paper is readily recognised, because it is smooth on one side, and bears on the other, the marks of the brush with which it is finished, upon smooth tables, in order to dry it flat. The kind employed for engravings is in sheets four feet long, and two broad. It is made of the bamboo; their myrtle-tree paper would be too strong for this purpose.Tracing Paper.The best paper of this kind, sometimes superfluously called vegetable paper, is made of the refuse of the flax mills, and prepared by the engine without fermentation. It thus forms a semi-transparent paste, and affords a transparent paper. Bank-note paper is made of the same materials, but they always undergo a bleaching with chloride of lime. Great nicety is required in drying this kind of paper. For this purpose, each sheet must be put between two sheets of gray paper in the press; and this gray paper must be renewed several times, to prevent the bank-note paper from creasing.Paper of Safety or Surety; Papier de Sureté.This subject has occupied the attention of the French Academy for many years, in consequence of the number of frauds committed upon the stamp revenue in France. One of the best methods of making a paper which would evince whether any part of a writing traced upon it had been tampered with or discharged, is to mix in the vat two kinds of pulp, the one perfectly white, the other dyed of any colour easily affected by chlorine, acids, and alkalis. The latter stuff being mingled with the former in any desired proportion, will furnish a material for making a paper which will contain coloured points distributed throughout all its substance, ready to show, by the changes they suffer, whether any chemical reaction has been employed.Quantity of Paper charged with Duties of Excise, in the United Kingdom, in1834.1835.1836.lbs.lbs.lbs.First class54,053,72156,179,55566,202,689Second class16,552,1687,863,09515,906,258Pasteboard, millboard, &c.49,39249,77236,340yards.yards.yards.Stained8,749,1448,247,9318,032,577£s.d.£s.d.£s.d.Amount of duty,first class675,671100702,24490651,69900—second class103,45100111,6440099,41400—pasteboard, &c.54,6890054,54815039,55700—stained63,79516060,1410022,11200The late reduction of the duty, from 3d.to 11⁄2d.per lb., upon paper of the first class, viz., on all descriptions of it, except that made out of tarred ropes only, has been already attended with considerable benefit to the manufacture, and would have acted with much greater effect, but for the American crisis. The gross amount of the paper duty in the year ending 5th January, 1836, was 831,057l., and in the year ending 5th January, 1838, it was 554,497l.; instead of being little more than one half, as might have been the case from the reduction of the duty, which only came into full operation in the year 1837. At the same time that the tax on common paper was reduced, that upon stained paper was repealed altogether. The effect of the diminution consequently made in the price of paper-hangings, has been so great as nearly to double the consumption of the country, while the manufacture appears to be still rapidly on the increase.Declared Value of Stationery and Printed Books exported inYears.Stationery.PrintedBooks.Total.1827£195,110£107,199£302,3091828208,532102,874311,4061829190,652109,878300,5301830171,84895,874267,7221831179,216101,110280,3261832177,71893,038270,7561833211,518124,535336,0531834211,459122,595334,0541835259,105148,318407,4231836301,121178,945480,066Till the paper trade shall escape entirely from the clutches of its antient dry-nurse, the excise, neither it nor the book trade can acquire the same ascendancy in exportation which all other articles of British manufactures have over the French.The Value of Stationery exported in France, from 1833, was,—Cartons lustrés (polished pasteboards for the cloth manufacture)18,992francsCartons en feuilles (pasteboard in sheets)6,352—Cartons moulés (papier-maché)215,376—Cartons coupés et assemblés54,184—Wrapping paper178,544—White paper, and rayé (ruled) pour musique2,903,075—Coloured paper in reams58,541—Stained paper (paper hangings) inrouleaux,1,885,387—Silk paper3,240—Total (=£208,000)5,323,621francs.
Paper making machineFig. 788 enlarged(288 kB)
Fig. 788 enlarged(288 kB)
Fig.788.is an upright longitudinal section, representing the machine in its most complete state, including the drying steam cylinders, and the compound channelled rollers of Mr. Wilks, subsequently to be described in detail. The figure in the upper line shows it all in train, when the paper is to be wound up wet upon the reelsE,E, which being movable round the centrelof a swing-bar, are presented empty, time about, to receive the tender web. The figure in the under line contains the steam or drying cylinders; the pointsO,O, of whose frame, replace, at the pointsP,P, the wet-reel frame,F,F,P.
Ais the vat, or receiver of pulp from the stuff-chest.
Bis the knot strainer of Ibotson (p. 936.), to clear the pulp before passing on to the wire.
Gis the hog, or agitator in the vat. The arrows show the course of the currents of the pulp in the vat.
Iis the apron, or receiver of the water and pulp which escape through the endless wire, and which are returned by a scoop-wheel into the vat.
bis the copper lip of the vat, over which the pulp flows to the endless wire, on a leathern apron extending from this lip to about 9 inches over the wire, to support the pulp and prevent its escaping.
c,care the bars which bear up the small tube rollers that support the wire.
d,dare ruler bars, to support the copper rollers over which the wire revolves.
Kis the breast roller, round which the endless wire turns.
Nis the point where the shaking motion is given to the machine.
Mis the guide roller, having its pivots movable laterally to adjust the wire and keep it parallel.
Lis the pulp roller, or “dandy,” to press out water, and to set the paper.r, is the place of the second, when it is used.
His the first or wet press, or couching rollers; the wire leaves the paper here, which latter is couched upon the endless feltp; and the endless wireoreturns, passing round the lower couch roller. By Mr. Donkin’s happy invention of placing these rollers obliquely, the water runs freely away, which it did not do when their axes were in a vertical line.
e,eare the deckles, which form the edges of the sheet of paper, and prevent the pulp passing away laterally. They regulate the width of the endless sheet.
f,fare the revolving deckle straps.
Ris the deckle guide, or driving-pulley.
g,gare tube rollers, over which the wire passes, which do not partake of the shaking motion; and,
h,hare movable rollers for stretching the wire, or brass carriages for keeping the rollersg,gin a proper position.
Cis the second press, or dry press, to expel the water in a cold state.
K,K, &c., in the view of the lower line, are the steam cylinders for drying the endless sheet.
i,iare rollers to convey the paper.
j,jare rollers to conduct the felt; which serves to support the paper, and prevent it wrinkling or becoming cockled.
D,Dare the hexagonal expanding reels for the steam-dried paper web, one only being used at a time, and made to suit different sizes of sheets.lis their swing fulcrum.
F,F,F,F, is the frame of the machine.
The deckle straps are worthy of particular notice in this beautiful machine. They are composed of many layers of cotton tape, each one inch broad, and together one half-inch thick, cemented with caoutchouc, so as to be at once perfectly flexible and water-tight.
The upper end of each of the two carriages of the rollerLis of a forked shape, and the pivots of the roller are made to turn in the cleft of the forked carriages in such a manner, that the roller may be prevented from having any lateral motion, while it possesses a free vibratory motion upwards and downwards; the whole weight of the rollerLbeing borne by the endless web of woven wire.
Ends of rollers
The greatest difficulty formerly experienced in the paper manufacture upon the continuous system of Fourdrinier, was to remove the moisture from the pulp, and condense it with sufficient rapidity, so as to prevent its becoming what is calledwater-galled, and to permit the web to proceed directly to the drying cylinders. Hitherto no invention has answered so well in practice to remove this difficulty as the channelled and perforated pulp rollers or dandies of Mr. John Wilks, the ingenious partner of Mr. Donkin; for which a patent was obtained in 1830. Suppose one of these rollers (seeL, infig.788., andM,M, infig.793.,) is required for a machine which is to make paper 54 inches wide, it must be about 60 inches long, so that its extremities (seefigs.789.and790.) may extend over or beyond each edge of the sheet of paper upon which it is laid. Its diameter may be 7 inches. About 8 grooves, each 1-16th of an inch wide, are made in every inch of the tube; and they are cut to half the thickness of the copper, with a rectangularly shaped tool. A succession of ribs and grooves are thus formed throughout the whole length of the tube. A similar succession is then made across the former, but of 24 in the inch, and on the opposite surface of the metal, which by a peculiar mode of management had been prepared for that purpose. As the latter grooves are cut as deep as the former, those on the inside meet those on the outside, crossing each other at right angles, and thereby producing so many square holes; leaving a series of straight copper ribs on the interior surface of the said tube, traversed by another series of ribs coiled round them on the outside, forming a cylindrical sieve made of one piece of metal. The rough edges of all the ribs must be rounded off with a smooth file into a semicircular form.Figs.789.and790.,A A, are portions of the ribbed copper tube.Fig.789.shows the exterior, andfig.790.the interior surface;b,bandb,bshow the plain part at each of the ends, where it is made fast to the brass rings by rivets or screws;C,Care the rings with arms, and a centre piece in each, for fixing the iron pivot or shaftB; one such pivot is fixed by riveting it in each of the centre pieces of the rings, as shown atc,fig.790.; so that both the said pieces shall be concentric with the rings, and have one common axis with each other, and with the roller. Ata,a, a groove is turned in each of the pivots, for the purpose of suspending a weight by a hook, in order to increase the pressure upon the paper, whenever it may be found necessary.
End of rollers
Fig.791.is an end view, showing the copper tube and its internal ribsA,A; the brass ringsC,C; armD,D,D; centre pieceE, and pivotB.Fig.792.is a section of the said ring, with the arms, &c.
The roller is shown atL,fig.788., as lying upon the surface of the wire-web.The relative position of that perforated roller, and the little rollerb, over which it lies, is such that the axis ofLis a little to one side of the axis ofb, and not in the same vertical plane, the latter being about an inch nearer the vat end. Hence, whenever the wire-web is set in progressive motion, it will cause the rollerLto revolve upon its surface; and as the paper is progressively made, it will pass onwards with the web under the surface of the roller. Thus the pulpy layer of paper is condensed by compression under the ribbed roller; while it transmits its moisture through the perforations, it becomes sufficiently compact to endure the action of the wet press rollersH,H, and also acquires the appearance of parallel lines, as if made by hand in a laid mould.
Mr. Wilks occasionally employs a second perforated roller in the same paper machine, which is then placed at the dotted linesi,i,i.
The patentee has described in the same specification a most ingenious modification of the said roller, by which he can exhaust the air from a hollowed portion of its periphery, and cause the paper in its passage over the roller to undergo the sucking operation of the partial void, so as to be remarkably condensed; but he has not been called upon to apply this second invention, in consequence of the perfect success which he has experienced in the working of the first.
The following is a more detailed illustration of Mr. Wilks’ improved roller.
Wilks's improved roller
Fig.793.represents two parts of his double-cased exhausting cylinder.
This consists of two copper tubes, one nicely lining the other; the inner being punched full of round holes, as atK,K, where that tube is shown uncovered: a portion of the inner surface of the same tube is shown atL,L. In this figure also, two portions of the outer tube are shown atM,M, andN,N; the former being an external, and the latter an internal view. Here we see that the external tube is the ribbed perforated one already described; the holes in the inner tube being made in rows to correspond with the grooves in the outer. The holes are so distributed that every hole in one row shall be opposite to the middle of the space left between two holes in the next row, as will appear from inspection of the figure. The diameter of each of the punched holes somewhat exceeds the width of each rib in the inside of the outer cylinder, and every inside groove of this tube coincides with a row of holes in the former, which construction permits the free transudation or percolation of the water out of the pulp. At each end of this double-case cylinder, a part is left atN,N, plain without, and grooved merely in the inside of the outer tube. The smooth surface allows the brass ends to be securely fixed; the outer edge of the brass ring fits tight into the inside of the end of the cylinders.
On the inside of each of these rings there are four pieces which project towards the centre or axis of the cylinder; two of which pieces are shown ata,a,fig.793.in section.b,b, is a brass ring with four armsc,c,c,c, and a boss or centre pieced,d. The outer edge of the last-mentioned ring is also turned cylindrical, and of such a diameter as to fit the interior of the former ringo,o. The two rings are securely held together by four screws.e,eis the hollow iron axle or shaft upon which the cylinder revolves. Its outside is made truly cylindrical, so as to fit the circular holes in the bossesd,d, of the rings and arms at each end of the cylinder. Hence, if the hollow shaft be so fixed that it will not turn, the perforated cylinder is capable of having a rotatory motion given to it round that shaft. This motion is had recourse to, when the vacuum apparatus is employed. But otherwise the cylinder is made fast to the hollow axle by means of two screw clamps. To one end of the cylinder, as atp, a toothed wheel is attached, for communicating a rotatory motion to it, so that its surface motion shall be the same as that of the paper web; otherwise a rubbing motion might ensue, which would wear and injure both.
The paper stuff or pulp is allowed to flow from the vatA,fig.788., on to the surface of the endless wire-web, as this is moving along. The lineso,o,fig.788.show the course ofthe motion of the web, which operates as a sieve, separating to a certain degree the water from the pulp, yet leaving the latter in a wet state till it arrives at the first pair of pressing rollersH,H, between which the web with its sheet of paper is squeezed. Thick paper, in passing through these rollers, was formerly often injured by becoming water-galled, from the greater retention of water in certain places than in others. But Messrs. Donkin’s cylinder, as above described, has facilitated vastly the discharge of the water, and enabled the manufacturer to turn off a perfectly uniform smooth paper.
Infig.788., immediately below the perforated cylinder, there is a wooden water-trough. Along one side of the trough a copper pipe is laid, of the same length as the cylinder, and parallel to it; the distance between them being about one fourth of an inch. The side of the pipe facing the cylinder is perforated with a line of small holes, which transmit a great many jets of water against the surface of the cylinder, in order to wash it and keep it clean during the whole continuance of the process.
The principle adopted by John Dickinson, Esq., of Nash Mill, for making paper, is different from that of Fourdrinier. It consists in causing a polished hollow brass cylinder, perforated with holes or slits, and covered with wire cloth, to revolve over and just in contact with the prepared pulp; so that by connecting the cylinder with a vessel exhausted of its air, the film of pulp, which adheres to the cylinder during its rotation, becomes gently pressed, whereby the paper is supposed to be rendered drier, and of more uniform thickness, than upon the horizontal hand moulds, or travelling wire cloth of Fourdrinier. When subjected merely to agitation, the water is sucked inwards through the cylindric cage, leaving the textile filaments so completely interwoven as, if felted among each other, that they will not separate without breaking, and, when dry, they will form a sheet of paper of a strength and quality relative to the nature and preparation of the pulp. The roll of paper thus formed upon the hollow cylinder is turned off continuously upon a second solid one covered with felt, upon which it is condensed by the pressure of a third revolving cylinder, and is thence delivered to the drying rollers.
Such is the general plan of Mr. Dickinson’s paper machines, into which he has introduced numerous improvements since its invention in 1809, many of them secured by patent right; whereby he has been enabled to make papers of first-rate quality, more particularly for theprinting-press. Seeinfrà.
In July 1830, Mr. Ibotson of Poyle, paper manufacturer, obtained a patent, seeB,fig.788., which has proved very successful, for a peculiar construction of a sieve or strainer. Instead of wire meshes, he uses a series of bars of gun-metal, laid in the bottom of a box, very closely together, so that the upper surfaces or the flat sides may be in the same plane, the edge of each bar being parallel with its neighbour, leaving parallel slits between them of from about 1-70th to 1-100th of an inch in width, according to the fineness or coarseness of the paper-stuff to be strained. As this stuff is known to consist of an assemblage of very fine flexible fibres of hemp, flax, cotton, &c., mixed with water, and as, even in the pulp of which the best paper is made, the length of the said fibres considerably exceeds the diameter of the meshes of which common strainers are formed, consequently the longest and most useful fibres were formerly lost to the paper manufacturer. Mr. Ibotson’s improved sieve is employed to strain the paper-stuff previously to its being used in the machine above described. (see its place atBin the vat.) When the strainer is at work, a quick vertical and lateral jogging motion is given to it, by machinery similar to the joggling-screens of corn mills.
Since the lateral shaking motion of the wire-web in the Fourdrinier machine, as originally made, was injurious to the fabric of the paper, by bringing its fibres more closely together breadthwise than lengthwise, thus tending to produce long ribs, or thick streaks in its substance, Mr. George Dickinson, of Buckland Mill, near Dover, proposed, in the specification of a patent obtained in February, 1828, to give a rapid up-and-down movement to the travelling web of pulp. He does not, however, define with much precision any proper mechanism for effecting this purpose, but claims every plan which may answer this end. He proposes generally to mount the rollers, which conduct the horizontal endless web, upon a vibrating frame. The forepart of this frame is attached, to the standards of the machine, by hinge joints, and the hinder part, or that upon which the pulp is first poured out, is supported by vertical rods, connected with a crank on a shaft below. Rapid rotatory motion being given to this crank-shaft, the hinder part of the frame necessarily receives a quick up-and-down vibratory movement, which causes the water to be shaken out from the web of pulp, and thus sets the fibres of the paper with much greater equality than in the machines formerly constructed. A plan similar to this was long ago introduced into Mr. Donkin’s machines, in which the vibrations were actuated in a much more mechanical way.
John Dickinson, Esq., of Nash Mill, obtained a patent in October, 1830, for a method of uniting face to face two sheets of pulp by means of machinery, in order to produce paperof extraordinary thickness. Two vats are to be supplied with paper stuff as usual; in which two hollow barrels or drums are made to revolve upon axles driven by any first mover; an endless felt is conducted by guide rollers, and brought into contact with the drums; the first drum gives off the sheet of paper pulp from its periphery to the felt, which passing over a pressing roller, is conducted by the felt to that part of a second drum which is in contact with another pressing roller. A similar sheet of paper pulp is now given off from the second drum, and it is brought into contact with the former by the pressure of its own roller. The two sheets of paper pulp thus united are carried forward by the felt over a guide roller, and onward to a pair of pressing rollers, where by contact the moist surfaces of the pulp are made to adhere, and to constitute one double thick sheet of paper, which, after passing over the surfaces of hollow drums, heated by steam, becomes dry and compact. The rotatory movements of the two pulp-lifting drums must obviously be simultaneous, but that of the pressing rollers should be a little faster, because the sheets extend by the pressure, and they should be drawn forward as fast as they are delivered, otherwise creases would be formed. Upon this invention is founded Mr. Dickinson’s ingenious method of making safety-paper for Post-office stamps, by introducing silk fibres, &c., between the two laminæ.
The following contrivance of the same inventive manufacturer is a peculiarly elegant mechanical arrangement, and is likely to conduce to the perfection of machine-made paper. I have already described Mr. Ibotson’s excellent plan of parallel slits, or gridiron strainers, which has been found to form paper of superior quality, because it permits all the elongated tenacious fibres to pass, which give strength to the paper, while it intercepts the coarser knots and lumps of the paste, that were apt to spoil its surface. Mr. Turner’s circular wire sieves, presently to be noticed, may do good work, but they cannot compete with Mr. Dickinson’s present invention, which consists in causing the diluted paper pulp to pass between longitudinal apertures, about the hundred-and-fifteenth part of an inch wide, upon the surface of a revolving cylinder.
The pulp being diluted to a consistency suitable for the paper machine, is delivered into a vat, of which the level is regulated by a waste pipe, so as to keep it nearly full. From this vat there is no other outlet for the pulp, except through the wire-work periphery of the revolving cylinder, and thence out of each of its ends into troughs placed alongside, from which it is conducted to the machine destined to convert it into a paper web.
The revolving cylinder is constructed somewhat like a squirrel cage, of circular rods, or an endless spiral wire, strengthened by transverse metallic bars, and so formed that the spaces between the rings are sufficient to allow the slender fibres of the pulp to pass through, but are narrow enough to intercept the knots and other coarse impurities, which must of course remain, and accumulate in the vat. The spaces between the wires of the squirrel cage may vary from the interval above stated, which is intended for the finest paper, to double the distance for the coarser kinds.
It has been stated that the pulp enters the revolving cylinders solely through the intervals of the wires in the circumference of the cylinder; these wires or rods are about three-eighths of an inch broad without, and two-eighths within, so that the circular slits diverge internally. The rods are one quarter of an inch thick, and are riveted to the transverse bars in each quadrant of their revolution, as well as at their ends to the necks of the cylinder.
During the rotation of the cylinder, its interstices would soon get clogged with the pulp, were not a contrivance introduced for creating a continual vertical agitation in the inside of the cylinder. This is effected by the up-and-down motion of an interior agitator or plunger, nearly long enough to reach from the one end of the cylinder to the other, made of stout copper, and hollow, but water-tight. A metal bar passes through it, to whose projecting arm at each end a strong link is fixed; by these two links it is hung to two levers, in such a way that when the levers move up and down, they raise and depress the agitator, but they can never make it strike the sides of the cylinder. Being heavier than its own bulk of water, the agitator, after being lifted by the levers, sinks suddenly afterwards by its weight alone.
The agitator’s range of up-and-down movement should be about one inch and a quarter, and the number of its vibrations about 80 or 100 per minute; the flow of the pulp through the apertures is suddenly checked in its descent, and promoted in its ascent, with the effect of counteracting obstructions between the ribs of the cylinder.
The sieve cylinder has a toothed wheel fixed upon the tubular part of one of its ends, which works between two metal flanches made fast to the wooden side of the vat, for the purpose of keeping the pulp away from the wheel; and it is made to revolve by a pinion fixed on a spindle, which going across the vat, is secured by two plummer blocks on the outside of the troughs, and has a rotatory motion given to it by an outside rigger or pulley, by means of a strap from the driving shaft, at the rate of 40 or 50 revolutions per minute. This spindle has also two double eccentrics fixed upon it, immediatelyunder the levers, so that in every revolution it lifts those levers twice, and at the same time lifts the agitator.
The diameter of the sieve cylinder is not very material, but 14 inches have been found a convenient size; its length must be regulated according to the magnitude of the machine which it is destined to supply with pulp. One, four feet long in the cage part, is sufficient to supply a machine of the largest size in ordinary use, viz., one capable of making paper 4 feet 6 inches wide. When the cylinder is of this length, it should have a wheel and pinion at each end.
Metal flanches are firmly fixed to the sides of the vat, with a water-tight joint, and form the bearings in which the cylinder works.
Mr. Turner of Bermondsey, paper-maker, obtained a patent in March, 1831, for a peculiar strainer, designed to arrest the lumps mixed with the finer paper pulp, whereby he can dispense with the usual vat and hog in which the pulp is agitated immediately before it is floated upon the endless wire-web of the Fourdrinier apparatus. His strainer may also be applied advantageously to hand paper machines. He constructs his sieves of a circular form, by combining any desirable number of concentric rings of metal, with small openings between them, from the 50th to the 100th part of an inch wide. In order to facilitate the passage of the fine pulp and water, the sieves receive a vibratory motion up and down, which supersedes the hog employed in other paper-making machines.
A mechanism to serve the same purpose as the preceding, in which Mr. Ibotson’s plan of a parallel rod-strainer is modified, was made the subject of a patent by Mr. Henry Brewer, of Surrey Place, Southwark, in March, 1832. He constructs square boxes with gridiron bottoms, and gives a powerful up-and-down vibration in the pulp tub, by levers, rotatory shafts, and cranks.
As the contrivance is not deficient in ingenuity, and may be useful, I shall describe this mode of adapting his improved strainers to a vat in which paper is to be made by hand moulds. A hog (or churning rotator) is employed for the purpose of agitating the pulp at the bottom of the vat, in which the sieve is suspended from a crank-shaft, or in any other way, so as to receive the up-and-down vibratory motion for the purpose of straining the pulp. The pulp may be supplied from a chest, and passed through a cock into a trough, by which it is conveyed to the strainers.
A pipe from the bottom of the vat leads into a lifter-box, which is designed to convey thin pulp into the sieve, in order to dilute that which is delivered from the chest. This pipe also allows the small lumps, called rolls, to be re-sifted. The pressure of the pulp and water in the vat forces the pulp up the pipe into the lifter-box, whence it is taken by rotatory lifters, and discharged into a trough, where it runs down and mixes with the thick pulp from the chest, as before mentioned. By these means the contents of the vat are completely strained or sifted over again in the course of almost every hour.
A patent was obtained for a paper-pulp strainer by Mr. Joseph Amies, of Loose, in the county of Kent, paper manufacturer, who makes the bottoms of his improved strainers with plates of brass or other suitable metal, and forms the apertures for the fine fibres of pulp to pass through, by cutting short slits through such plates, taking care that as much metal is left between the ends of each short slit and the next following as will properly brace or stiffen the ribs of the strainer; and he prefers that the end of one slit shall be nearly opposite to the middle of the two slits next adjoining it, which is commonly called blocking the joints. This is for giving rigidity to the bottom of the strainer, and constitutes the main feature of his improvement. The bottoms of sieves previously constructed with long metallic rods, he considers to be liable to lateral vibration in use, and thus to have permitted knots and lumps to pass through their expanded intervals. This objection is not applicable to Mr. Dickinson’s squirrel-cage strainer, of which the ribs may be made rigid by a sufficient number of transverse bars; nor in fact is it applicable to Mr. Ibotson’s original strainer, as it is admirably constructed by Messrs. Donkin and Co. Each bar which they make being inflexible by a feathered rib, is rendered perfectly straight in its edge by grinding with emery upon a flat disc-wheel of block tin, and of invariable length, by a most ingenious method of turning each set of bars in a lathe. The bars are afterwards adjusted in the metallic sieve-frame, or chest, at any desired distance apart, from the 120th to the 60th of an inch, in such a manner as secures them from all risk of derangement by the vibratory or jogging motion in shaking the pulpy fibres through the lineal intervals between them.
Mr. James Brown, paper manufacturer, of Esk mills, near Edinburgh, obtained a patent in May, 1836, for a particular mode of applying suction to the pasty web in the Fourdrinier’s machine. He places a rectangular box transversely beneath the horizontal wire cloth, without the interposition of any perforated covering, such as had beentried in the previously constructed vacuum machines, and which he considers to have impeded their efficacy in condensing the pulp and extracting the water.
Upon this and all similar contrivances for making a partial vacuum under the pulpy paper web, it may be justly remarked, that they are more apt to injure than improve the texture of the article; since when the suction is unequally operative, it draws down not only the moisture, but many of the vegetable fibres, causing roughnesses, and even numerous small perforations in the paper.
A modification of Mr. Dickinson’s cylinder-mould continuous paper machine was made the subject of a patent in Nov. 1830, by Mr. John Hall, jun., of Dartford, as communicated to him by a foreigner residing abroad. The leading feature of the invention is a mode of supplying the vat in which the wire cylinder is immersed with a copious flow of water, for the purpose of creating a considerable pressure upon the external surface of the cylinder, and thereby causing the fibres of the paper pulp to adhere to the mould.
There is a semi-cylindrical trough, in which the mould is immersed, and made to revolve by any convenient means. The pulp is transferred from the vat into that vessel at its bottom part. On the side of the drum-mould opposite to the vat, there is a cistern into which a copious flow of water is delivered, which passes thence into the semi-cylindrical trough. In the interior of the cylindrical mould, a bent or syphon tube is introduced, on the horizontal part of which tube, inside, the mould revolves. This tube is connected at the outside to a pump, by which the water is drawn from the interior of the cylindrical mould. Thus the water in the semi-cylindrical trough, on the outside of the drum, is kept at a considerably higher level than it is within; and consequently the pressure of the water, as it passes through the wire gauze, will, it is supposed, cause the fibres of the paper pulp to adhere to the circumference of the mould. The water which is withdrawn from the interior of the drum by the recurved tube, is conducted round into the cistern, where its discharge is impeded by several vertical partitions, which make the water flow in a gentle stream into the semi-cylindrical mould vat. In order to keep the pulp properly agitated in the mould vat, a segment frame, having rails extended across the vat, is moved to and fro; as the drum mould goes round, the fibres of the pulp are forced against its circumference, and as the water passes through, the fibres adhere, forming the sheet of paper, which, on arriving at a couching roller above, is taken up as usual by an endless felt, conducted away to the drying apparatus, and thence to the reel to be wound up.
The patentee claims merely the application of a pump to draw the water from the interior of the mould drum, and to throw it upon its external surface.
A rag-cutting and lacerating machine was patented by Mr. Henry Davy, of Camberwell, in September, 1833, being a communication from a foreigner residing abroad. The machine consists of an endless feeding-cloth, by which the rough rags supplied by the attendants are progressively conducted forwards to a pair of feed-rollers (seeCotton,spinning), and on passing through these rollers, the rags are subjected to the operation of rotatory cutters, acting against a fixed or ledger blade, which cut and tear them to pieces. Thence the rags pass down an inclined sieve, upon which they are agitated to separate the dust. The cleaned fragments are delivered on to a horizontal screen or sorting table, to suffer examination. When picked here, they are ready for the pulp-engine. A distinct representation of this machine is given in Newton’s Journal, conjoined series, vol. iv. pl.IX.fig.1.
Mr. Jean Jacques Jequier obtained a patent in August, 1831, for a mode of making paper on the continuous machine with wire-marks. The proposed improvement consists merely in the introduction of a felted pressing roller, to act upon the paper after it has been discharged from the mould, and need not therefore be particularly described.
In August, 1830, Mr. Thomas Barratt, paper-maker, of St. Mary Cray, in the county of Kent, obtained a patent for an apparatus by which paper may be manufactured in a continuous sheet, with the water-mark and maker’s name, so as to resemble in every respect paper made by hand, in moulds the size of each separate sheet. On the wire web, at equal distances apart, repetitions of the maker’s name or other device is placed, according to the size of the paper when cut up into single sheets. In manufacturing such paper, the ordinary method of winding upon a reel cannot be employed; and therefore the patentee has contrived a compensating reel, whose diameter diminishes at each revolution, equal to the thickness of a sheet of paper. See Newton’s Journal, C. S. vol. vii. p. 285.
For Mr. Lemuel Wellman Wright’s series of improvements in the manufacture of paper, specified in his patent of November, 1834, I must refer to the above Journal, C. S., vol. viii. p. 86.
A committee of theSociété d’Encouragement, of Paris, made researches upon the best composition for sizing paper in the vat, and gave the following recipe:—
M. Braconnot proposed the following formula in the 23d volume of theAnnales de Chimie et de Physique:—To 100 parts of dry stuff, properly diffused through water, add a boiling uniform solution of 8 parts of flour, with as much caustic potash as will render the liquor clear. Add to it one part of white soap previously dissolved in hot water. At the same time heat half a part of rosin with the requisite quantity of weak potash lye for dissolving the rosin; mix both solutions together, and pour into them one part of alum dissolved in a little water.
Those who colour prints, size them previously with the following composition:—4 ounces of glue, and 4 ounces of white soap dissolved in 3 English pints of hot water. When the solution is complete, two ounces of pounded alum must be added, and as soon as the composition is made homogeneous by stirring, it is ready for use. It is applied cold with a sponge, or rather with a flat camel’s hair brush. Ackermann’s liquor, as analyzed by Vauquelin, may be made for sizing paper as follows:—
The soap is made from 4·8 kilos. of pounded rosin, and 2·22 crystals of carbonate of soda, dissolved in 100 litres of water. It is then boiled till the mixture becomes quite uniform; the glue, previously softened by 12 hours’ maceration in cold water, is to be next added; and when this is totally dissolved, the solution of alum in hot water is poured in. Three quarts of this size were introduced into the vat with the stuff, and well mixed with it. The paper manufactured with this paste seemed to be of excellent quality, and well sized.
The Chinese, in manufacturing paper, sometimes employ linen rags, as we do; at other times, the fibres of the young bamboo; of the mulberry; the envelope of the silk-worm cocoon; also a tree, unknown to our botanists, which the natives callchuorko-chu; cotton down, and especially the cotton tree. The processes pursued in China to make paper with the inner bark of theirpaper-tree(Broussonetia-papyrifera,) or Chinese mulberry, have been described at great length in the bulletin of the Société d’Encouragement, for 1826, p. 226; but they will hardly prove serviceable to a European manufacturer. That tree has been acclimated in France.
Chinese paper is not so well made as the good paper of Europe; it is not so white, it is thinner, and more brittle, but extremely soft and silky. The longitudinal tenacity of its filaments, however, renders it fitter for the engraver than our best paper. The Chinese, after triturating, grinding, and boiling the bamboo, set the paste to ferment in a heap covered with mats. Chinese paper is readily recognised, because it is smooth on one side, and bears on the other, the marks of the brush with which it is finished, upon smooth tables, in order to dry it flat. The kind employed for engravings is in sheets four feet long, and two broad. It is made of the bamboo; their myrtle-tree paper would be too strong for this purpose.
Tracing Paper.
The best paper of this kind, sometimes superfluously called vegetable paper, is made of the refuse of the flax mills, and prepared by the engine without fermentation. It thus forms a semi-transparent paste, and affords a transparent paper. Bank-note paper is made of the same materials, but they always undergo a bleaching with chloride of lime. Great nicety is required in drying this kind of paper. For this purpose, each sheet must be put between two sheets of gray paper in the press; and this gray paper must be renewed several times, to prevent the bank-note paper from creasing.
Paper of Safety or Surety; Papier de Sureté.
This subject has occupied the attention of the French Academy for many years, in consequence of the number of frauds committed upon the stamp revenue in France. One of the best methods of making a paper which would evince whether any part of a writing traced upon it had been tampered with or discharged, is to mix in the vat two kinds of pulp, the one perfectly white, the other dyed of any colour easily affected by chlorine, acids, and alkalis. The latter stuff being mingled with the former in any desired proportion, will furnish a material for making a paper which will contain coloured points distributed throughout all its substance, ready to show, by the changes they suffer, whether any chemical reaction has been employed.
Quantity of Paper charged with Duties of Excise, in the United Kingdom, in
The late reduction of the duty, from 3d.to 11⁄2d.per lb., upon paper of the first class, viz., on all descriptions of it, except that made out of tarred ropes only, has been already attended with considerable benefit to the manufacture, and would have acted with much greater effect, but for the American crisis. The gross amount of the paper duty in the year ending 5th January, 1836, was 831,057l., and in the year ending 5th January, 1838, it was 554,497l.; instead of being little more than one half, as might have been the case from the reduction of the duty, which only came into full operation in the year 1837. At the same time that the tax on common paper was reduced, that upon stained paper was repealed altogether. The effect of the diminution consequently made in the price of paper-hangings, has been so great as nearly to double the consumption of the country, while the manufacture appears to be still rapidly on the increase.
Declared Value of Stationery and Printed Books exported in
Till the paper trade shall escape entirely from the clutches of its antient dry-nurse, the excise, neither it nor the book trade can acquire the same ascendancy in exportation which all other articles of British manufactures have over the French.
The Value of Stationery exported in France, from 1833, was,—