Chapter 31

CAPSTAN. (Cabestan, Fr.;Spille, Germ.) A machine whereon the cable is wound successively in weighing the anchor of a vessel. It is a species of wheel and axle; the axle being vertical, and pierced with holes near its top for the insertion of the ends of horizontal levers, called handspikes, which represent the wheel. These are turned by the force of men moving in a circle. The power applied to the lever is to the resistance to be overcome, (the weight of the anchor, for example,) when the forces are in equilibrio, as the radius of the cylinder round which the cable is coiled is to the circumference described by the power.It is manifest that the radius of the axle must be augmented in this computation by half the diameter of the cable, which is supposed to lie always one coil thick upon it. The force of a man, thus applied, has been commonly estimated as equal to the traction of 27 pounds hanging over a pulley.Friction being so variable a quantity in capstans, renders the exact calculation of its mechanical effect somewhat uncertain.A stout man, stationed near the bottom of the axle, holds fast the loose part of the cable, which has already made two or three turns; and, being aided by its friction upon the wood, he both prevents it from slipping backwards, and uncoils each turn as it is progressively made.Mr. Hindmarsh, master mariner of Newcastle, obtained a patent, in February, 1827, for a contrivance to enable a capstan or windlass to be occasionally worked with increased mechanical advantage. With this view, he placed toothed wheel-work, partly in the drum-head of the capstan, and partly in the upper part of the barrel, upon which the cable is coiled and uncoiled in successive portions.The drum-head, and also the barrel, turn loosely upon a central spindle, independent of each other, and are connected together either by the toothed geer, or by bolts. On raising or withdrawing the connecting pinion from the toothed wheels, and then locking the drum-head and barrel together, the capstan works with a power equal only to that exerted by the men at the capstan-bars, as an ordinary capstan; but on lowering the pinion into geer with the wheel-work, and withdrawing the bolts which locked the drum-head to the barrel, the power exerted by the men becomes increased in proportion to the diameter and numbers of teeth in the wheels and pinions.CapstanFig.255.is the external appearance of this capstan.Fig.256.a horizontal view of the toothed geer at the top of the barrel. The barrel, with the whelpsa a, turns loosely upon a verticle spindle fixed into the deck of the vessel. The drum-headbalso turns loosely upon the same spindle. The circular framec c, infig.256., in which the axes of the toothed wheelsd d dare mounted, is fixed to the central spindle. The rime e e, with internal teeth, is made fast to the top of the barrel; and the pinionf, which slides upon the spindle, is connected to the drum-head.When it is intended to work the capstan with ordinary power, the pinionfis raised up into the recess of the drum-head, by means of a screwg,fig.255., which throws it out of geer with the toothed wheels, and it is then locked up by a pinz: the boltsh hare now introduced, for the purpose of fastening the drum-head and barrel together, when it becomes an ordinary capstan.But when it is required that the same number of men shall exert a greater power, the boltshare withdrawn, and the pinionflowered into geer, with the toothed wheels. The rotation of the drum-head, then carrying the pinion round, causes it to drive the toothed wheelsd d d; and these working into the toothed rime e, attached to the barrel, cause the barrel to revolve with an increased power.Thus, under particular circumstances, a smaller number of men at the capstan orwindlass (which is to be constructed upon the same principle) will be enabled to haul in the cable and anchor, or warp off the vessel, which is an important object to be effected.In 1819, Captain Phillips obtained a patent for certain improvements in capstans, a part of which invention is precisely the same as this in principle, though slightly varied in its adaptation.James Brown, ship-rigger, in his capstan, patented in 1833, instead of applying the moving power by handspikes, having fixed two rims of teeth round the top of the capstan, acts upon them by a rotatory worm, or pinions turned by a winch.CapstanFig.257.is an elevation of this capstan, andfig.258.is a horizontal top view. a is an upright shaft, fixed firmly to the deck, serving as an axle round which the body of the capstan revolves. A framec, fixed to the top of a stationary shafta, above the body of the capstan, carries the driving apparatus.The upper part of the body of the capstan has a ring of oblique teethdformed round its edge; and above this, on the top of the capstan, is a ring of bevel teethe. A horizontal shaftf, mounted in the top framec, has a worm or endless screw, which takes into the teeth of the ringd; and a short axleg, having its bearings in the central shafta, and in the framec, carries a bevel pinion, which takes into the bevel teeth of the ringc.The bearings of the shaftf, in the top frame, are in long slots, with angular returns, something like the fastening of a bayonet, which is for the purpose of enabling the shaft to be readily lifted in and out of geer with the teeth of the ringd: the outer bearing of the axlegof the bevel pinion is also supported in the framec, in a similar way, in order to put it in and out of geer with the teeth of the bevel ringe. A mode of shifting these is essential; because the two toothed rings, and their driving worm and pinion, give different speeds, and, of course, cannot be both in operation at the same time.The worm of the shaftf, being placed in geer with the teeth of the ringd, on applying rotatory power thereto, by means of winches attached to the ends of the shaft, the barrel or body of the capstan will be made to revolve with a slow motion, but with great power; and thus two men at the winches will do the same work as many men with capstan bars in the ordinary way.If a quicker movement than that of the endless screw is desired, then the driving power may be applied by a winch to the axlegof the bevel pinion, that pinion being put into geer with the bevel ringe, and the endless screw withdrawn. It should, however, be here remarked, that the patentee proposes to employ two short axlesg, placed opposite to each other, with bevel pinions acting in the bevel-toothed ring, though only one is shown in the figure to avoid confusion. He also contemplates a modification of the same contrivance, in which four short axlesg, placed at right angles, with pinions taking into a bevel ring, may be employed, and made effective in giving rotatory motion to the barrel of a capstan by means of winches applied to the outer ends of the axle, and turned by the labour of four men.

CAPSTAN. (Cabestan, Fr.;Spille, Germ.) A machine whereon the cable is wound successively in weighing the anchor of a vessel. It is a species of wheel and axle; the axle being vertical, and pierced with holes near its top for the insertion of the ends of horizontal levers, called handspikes, which represent the wheel. These are turned by the force of men moving in a circle. The power applied to the lever is to the resistance to be overcome, (the weight of the anchor, for example,) when the forces are in equilibrio, as the radius of the cylinder round which the cable is coiled is to the circumference described by the power.

It is manifest that the radius of the axle must be augmented in this computation by half the diameter of the cable, which is supposed to lie always one coil thick upon it. The force of a man, thus applied, has been commonly estimated as equal to the traction of 27 pounds hanging over a pulley.

Friction being so variable a quantity in capstans, renders the exact calculation of its mechanical effect somewhat uncertain.

A stout man, stationed near the bottom of the axle, holds fast the loose part of the cable, which has already made two or three turns; and, being aided by its friction upon the wood, he both prevents it from slipping backwards, and uncoils each turn as it is progressively made.

Mr. Hindmarsh, master mariner of Newcastle, obtained a patent, in February, 1827, for a contrivance to enable a capstan or windlass to be occasionally worked with increased mechanical advantage. With this view, he placed toothed wheel-work, partly in the drum-head of the capstan, and partly in the upper part of the barrel, upon which the cable is coiled and uncoiled in successive portions.

The drum-head, and also the barrel, turn loosely upon a central spindle, independent of each other, and are connected together either by the toothed geer, or by bolts. On raising or withdrawing the connecting pinion from the toothed wheels, and then locking the drum-head and barrel together, the capstan works with a power equal only to that exerted by the men at the capstan-bars, as an ordinary capstan; but on lowering the pinion into geer with the wheel-work, and withdrawing the bolts which locked the drum-head to the barrel, the power exerted by the men becomes increased in proportion to the diameter and numbers of teeth in the wheels and pinions.

Capstan

Fig.255.is the external appearance of this capstan.Fig.256.a horizontal view of the toothed geer at the top of the barrel. The barrel, with the whelpsa a, turns loosely upon a verticle spindle fixed into the deck of the vessel. The drum-headbalso turns loosely upon the same spindle. The circular framec c, infig.256., in which the axes of the toothed wheelsd d dare mounted, is fixed to the central spindle. The rime e e, with internal teeth, is made fast to the top of the barrel; and the pinionf, which slides upon the spindle, is connected to the drum-head.

When it is intended to work the capstan with ordinary power, the pinionfis raised up into the recess of the drum-head, by means of a screwg,fig.255., which throws it out of geer with the toothed wheels, and it is then locked up by a pinz: the boltsh hare now introduced, for the purpose of fastening the drum-head and barrel together, when it becomes an ordinary capstan.

But when it is required that the same number of men shall exert a greater power, the boltshare withdrawn, and the pinionflowered into geer, with the toothed wheels. The rotation of the drum-head, then carrying the pinion round, causes it to drive the toothed wheelsd d d; and these working into the toothed rime e, attached to the barrel, cause the barrel to revolve with an increased power.

Thus, under particular circumstances, a smaller number of men at the capstan orwindlass (which is to be constructed upon the same principle) will be enabled to haul in the cable and anchor, or warp off the vessel, which is an important object to be effected.

In 1819, Captain Phillips obtained a patent for certain improvements in capstans, a part of which invention is precisely the same as this in principle, though slightly varied in its adaptation.

James Brown, ship-rigger, in his capstan, patented in 1833, instead of applying the moving power by handspikes, having fixed two rims of teeth round the top of the capstan, acts upon them by a rotatory worm, or pinions turned by a winch.

Capstan

Fig.257.is an elevation of this capstan, andfig.258.is a horizontal top view. a is an upright shaft, fixed firmly to the deck, serving as an axle round which the body of the capstan revolves. A framec, fixed to the top of a stationary shafta, above the body of the capstan, carries the driving apparatus.

The upper part of the body of the capstan has a ring of oblique teethdformed round its edge; and above this, on the top of the capstan, is a ring of bevel teethe. A horizontal shaftf, mounted in the top framec, has a worm or endless screw, which takes into the teeth of the ringd; and a short axleg, having its bearings in the central shafta, and in the framec, carries a bevel pinion, which takes into the bevel teeth of the ringc.

The bearings of the shaftf, in the top frame, are in long slots, with angular returns, something like the fastening of a bayonet, which is for the purpose of enabling the shaft to be readily lifted in and out of geer with the teeth of the ringd: the outer bearing of the axlegof the bevel pinion is also supported in the framec, in a similar way, in order to put it in and out of geer with the teeth of the bevel ringe. A mode of shifting these is essential; because the two toothed rings, and their driving worm and pinion, give different speeds, and, of course, cannot be both in operation at the same time.

The worm of the shaftf, being placed in geer with the teeth of the ringd, on applying rotatory power thereto, by means of winches attached to the ends of the shaft, the barrel or body of the capstan will be made to revolve with a slow motion, but with great power; and thus two men at the winches will do the same work as many men with capstan bars in the ordinary way.

If a quicker movement than that of the endless screw is desired, then the driving power may be applied by a winch to the axlegof the bevel pinion, that pinion being put into geer with the bevel ringe, and the endless screw withdrawn. It should, however, be here remarked, that the patentee proposes to employ two short axlesg, placed opposite to each other, with bevel pinions acting in the bevel-toothed ring, though only one is shown in the figure to avoid confusion. He also contemplates a modification of the same contrivance, in which four short axlesg, placed at right angles, with pinions taking into a bevel ring, may be employed, and made effective in giving rotatory motion to the barrel of a capstan by means of winches applied to the outer ends of the axle, and turned by the labour of four men.

CARAT or CARACT is a weight used by goldsmiths and jewellers. SeeAssayandDiamond.

CARAT or CARACT is a weight used by goldsmiths and jewellers. SeeAssayandDiamond.

CARBON, (Carbone, Fr.;Kohlenstoff, Germ.) in a perfectly pure state, constitutes diamond. Carbonaceous substances are usually more or less compound, containing hydrogen, or sometimes oxygen, and azote, along with earthy and metallic matters. Carbon, tolerably pure, abounds in the mineral kingdom; and, in a combined state, it forms a main constituent of vegetable and animal bodies. Anthracite is a mineral charcoal, differing from common pit-coal in containing no bitumen, and, therefore, burning without flame or smoke.Cokeis the carbonaceous mass which remains after pit-coal has been exposed to ignition for some time out of contact of air; its volatile parts having been dissipated by the heat. It is a spongy substance, of an iron-black colour, a somewhat metallic lustre, and does not easily burn unless several pieces are kindled together. With a good draught, however, it produces a most intense heat.Wood charcoalis obtained by the calcination of wood in close vessels, as described under the articleAcetic Acid, or in piles of various shapes, covered with loam, to screen it from the free action of the atmosphere, which would otherwise consume it entirely. SeeCharcoal. Such carbon is a solid, without smell or taste, and bears the strongest heats of our furnaces without suffering any change, provided air be excluded: it is a bad conductor of heat, but conducts electricity very well. When burned, it unites with oxygen, and forms carbonic acid, the fixed air of Dr. Black, the choke-damp of the miner. When this carbonic acid is made to traverse red hot charcoal it dissolves a portion of it, and becomes carbonic oxide, which contains only one half of its volume of oxygen; whereas carbonic acid consists of one volume of oxygen combined with one volume of the vapour of carbon, the two being condensed into one volume. If the specific gravity of oxygen, = 1·1025, be deducted from that of carbonic acid, = 1·5245, the difference, = 0·422, will be the specific gravity of the vapour of carbon; as well as the proportion present in that weight of the acid.Charcoal ovenCharcoal obtained by the action of a rapid fire in close vessels is not so solid and so good a fuel as that which is made in the ancient way by the slow calcination of pyramidal piles covered with earth. One of the most economical ovens for making wood charcoal is that invented by M. Foucauld, which he calls ashroud, orabri. To construct one of these, 30 feet in diameter at the base, 10 feet at its summit, and from 8 to 9 feet high, he forms, with wood 2 inches square, a frame 12 feet long, 3 feet broad at one end, and one foot at the other. Thefigurewill explain the construction. The uprights, A B and C D, of this frame are furnished with three wooden handlesa a a, anda′a′a′, by means of which they can be joined together, by passing through two contiguous handles a wooden fork, the frame being previously provided with props, as shewn infig.259, and covered with loam mixed with grass. A flat cover of 10 feet diameter, made of planks well joined, and secured by four cross bars, is mounted with two trap doors, M N,fig.261., for giving egress to the smoke at the commencement of the operation; a triangular hole P, cut out in the cover, receives the end of a conduit Q R S, (figs.262.and261.) of wood formed of three deals, destined to convey the gases and condensed liquids into the casks F G H. Lastly, a door T, which may be opened and shut at pleasure, permits the operator to inspect the state of the fire. The charcoal calcined by thisabri, has been found to be of superior quality.When it is wished to change the place where theabriis erected, and to transport it to a store of new-felled timber, the frame is taken down, after beating off the clay which covers it, the joints are then cut by a saw, as well as the ends of the forks which fixed the frames to one another. This process is economical in use, simple and cheap in construction; since all the pieces of the apparatus are easily moved about, and may be readily mounted in the forests. For obtaining a compact charcoal, for the use of artisans, this mixed process of Foucauld is said to be preferable to either the close iron cylinder or the pile.For making gunpowder-charcoal the lighter woods, such as the willow, dogwood, and alder answer best; and in their carbonization care should be taken to let the vapours freely escape, especially towards the end of the operation, for when they are re-absorbed, they greatly impair the combustibility of the charcoal.By the common process of the forests, about 18 per cent. of the weight of the wood is obtained; by the process of Foucauld about 24 per cent. are obtained, with 20 of crude pyrolignous acid of 10 degrees Baumé. By the process described underAcetic Acid, 27 of charcoal, and 18 of acid at 6 degrees, are procured from 100 parts of wood, besides the tar. These quantities were the results of careful experimenting, and are greater than can be reckoned upon in ordinary hands.Charcoal for chemical purposes may be extemporaneously prepared by calcining pieces of wood covered with sand in a crucible, till no more volatile matter exhales.The charcoal of some woods contains silica, and is therefore useful for polishing metals. Being a bad conductor of heat, charcoal is employed sometimes in powder to encase small furnaces and steam-pipes. It is not affected by water; and hence, the extremities of stakes driven into moist ground are not liable to decomposition. In like manner casks when charred inside preserve water much better than common casks, because they furnish no soluble matter for fermentation or for food to animalcules.Lowitz discovered that wood charcoal removes offensive smells from animal and vegetable substances, and counteracts their putrefaction. He found the odour of succinicand benzoic acids, of bugs, of empyreumatic oils, of infusions of valerian, essence of wormwood, spirits distilled from bad grain, and sulphureous substances were all absorbable by freshly calcined charcoal properly applied. A very ingenious filter has been constructed for purifying water, by passing it through strata of charcoal of different fineness.When charcoal is burned, one third of the heat is discharged by radiation, and two thirds by conduction.The following table of the quantity of charcoal yielded by different woods was published by Mr. Mushet, as the result of experiments carefully made upon the small scale. He says, the woods before being charred were thoroughly dried, and pieces of each kind were selected as nearly alike in every respect as possible. One hundred parts of each sort were taken, and they produced as under:—Lignum Vitæafforded26·0 of charcoal of a greyish colour, resembling coke.Mahogany25·4 tinged with brown, spongy and porous.Laburnam24·5 velvet black, compact, very hard.Chesnut23·2 glossy black, compact, firm.Oak22·6 black, close, very firm.Walnut20·6 dull black, close, firm.Holly19·9 dull black, loose and bulky.Beech19·9 dull black, spongy, firm.Sycamore19·7 fine black, bulky, moderately firm.Elm19·5 fine black, moderately firm.Norway Pine19·2 shining black, bulky, very soft.Sallow18·4 velvet black, bulky, loose and soft.Ash17·9 shining black, spongy, firm.Birch17·4 velvet black, bulky, firm.Scottish Pine16·4 tinged with brown, moderately firm.Messrs. Allen and Pepys, from 100 parts of the following woods, obtained the quantities of charcoal as under:—Beech15·00Mahogany15·75Lignum Vitæ17·25Oak17·40Fir18·17Box20·25It is observable that the quantities obtained by Messrs. Allen and Pepys are in general less than those given by Mr. Mushet, which may be owing to Mr. Mushet not having applied sufficient heat, or operated long enough, to dissipate the aqueous matter of the gaseous products.To those persons who buy charcoal by weight, it is important to purchase it as soon after it is made as possible, as it quickly absorbs a considerable portion of water from the atmosphere. Different woods, however, differ in this respect. Messrs. Allen and Pepys found that by a week’s exposure to the air, the charcoal ofLignum Vitægained9·6per cent.Fir13·0ditto.Box14·0ditto.Beech16·3ditto.Oak16·5ditto.Mahogany18·0ditto.The following is a tabular view of the volumes of the different gases which were absorbed in the course of 24 hours, by one volume of charcoal, in the experiments of M. Theodore de Saussure, which were conducted in a way likely to produce correct results. Each portion of charcoal was heated afresh to a red heat, and allowed to cool under mercury. When taken from the mercury, it was instantly plunged into the vessel of gas.Ammoniacal gas90Muriatic acid gas85Sulphurous acid65Sulphuretted hydrogen55Nitrous oxide40Carbonic acid gas35Bicarburetted hydrogen35·00Carbonic oxide9·42Oxygen gas9·25Nitrogen7·50Carburetted hydrogen5·00Hydrogen gas1·75Neumann, who made many experiments on charcoal, informs us that for the reduction of the metallic oxides, the charcoal of the heavier woods, as that of the oak and the beech, is preferable, and that, for common fuel, such charcoal gives the greatest heat, and requires the most plentiful supply of air to keep it burning; while those of the lighter woods preserve a glowing heat with a much less draught of air; and that for purposes where it is desirable to have a steady and a still fire, charcoal should be employed whichhas been made from wood previously divested of its bark, since it is the cortical part which crackles and flies off in sparks during combustion, while the coal of the wood itself seldom does.For making crayons of charcoal, the willow is the best wood that can be employed, as the softness is uniform in all its parts. Its durability may be seen in several of our old churchyards, where the letters made with lamp-black are still perfect, though the white lead with which the body of the stones was painted is entirely destroyed.This property of carbon is shewn, however, in a more striking manner by the writings that were found in the ruins of Herculaneum, which have retained their original blackness for two thousand years. The ancients wrote with ink made from ground charcoal.If it be required to purify any carbonaceous matter, to render it fitter for delicate pigments, this may be done by first calcining it in a close vessel, and then lixiviating it in water slightly acidulated by nitric acid.The incorruptibility of charcoal was well known to the ancients, and they availed themselves of this property upon all important occasions.About sixty years ago a quantity of oak stakes were found in the bed of the Thames, in the very spot where Tacitus says that the Britons fixed a vast number of such stakes, to prevent the passage of Julius Cæsar and his army. These stakes were charred to a considerable depth, had retained their form completely, and were firm at the heart.Most of the houses in Venice stand upon piles of wood, which have all been previously charred for their preservation. In this country, estates were formerly marked out by charred stakes driven to a considerable depth into the ground. SeeBone-black,Charcoal, andGraphite.

CARBON, (Carbone, Fr.;Kohlenstoff, Germ.) in a perfectly pure state, constitutes diamond. Carbonaceous substances are usually more or less compound, containing hydrogen, or sometimes oxygen, and azote, along with earthy and metallic matters. Carbon, tolerably pure, abounds in the mineral kingdom; and, in a combined state, it forms a main constituent of vegetable and animal bodies. Anthracite is a mineral charcoal, differing from common pit-coal in containing no bitumen, and, therefore, burning without flame or smoke.Cokeis the carbonaceous mass which remains after pit-coal has been exposed to ignition for some time out of contact of air; its volatile parts having been dissipated by the heat. It is a spongy substance, of an iron-black colour, a somewhat metallic lustre, and does not easily burn unless several pieces are kindled together. With a good draught, however, it produces a most intense heat.Wood charcoalis obtained by the calcination of wood in close vessels, as described under the articleAcetic Acid, or in piles of various shapes, covered with loam, to screen it from the free action of the atmosphere, which would otherwise consume it entirely. SeeCharcoal. Such carbon is a solid, without smell or taste, and bears the strongest heats of our furnaces without suffering any change, provided air be excluded: it is a bad conductor of heat, but conducts electricity very well. When burned, it unites with oxygen, and forms carbonic acid, the fixed air of Dr. Black, the choke-damp of the miner. When this carbonic acid is made to traverse red hot charcoal it dissolves a portion of it, and becomes carbonic oxide, which contains only one half of its volume of oxygen; whereas carbonic acid consists of one volume of oxygen combined with one volume of the vapour of carbon, the two being condensed into one volume. If the specific gravity of oxygen, = 1·1025, be deducted from that of carbonic acid, = 1·5245, the difference, = 0·422, will be the specific gravity of the vapour of carbon; as well as the proportion present in that weight of the acid.

Charcoal oven

Charcoal obtained by the action of a rapid fire in close vessels is not so solid and so good a fuel as that which is made in the ancient way by the slow calcination of pyramidal piles covered with earth. One of the most economical ovens for making wood charcoal is that invented by M. Foucauld, which he calls ashroud, orabri. To construct one of these, 30 feet in diameter at the base, 10 feet at its summit, and from 8 to 9 feet high, he forms, with wood 2 inches square, a frame 12 feet long, 3 feet broad at one end, and one foot at the other. Thefigurewill explain the construction. The uprights, A B and C D, of this frame are furnished with three wooden handlesa a a, anda′a′a′, by means of which they can be joined together, by passing through two contiguous handles a wooden fork, the frame being previously provided with props, as shewn infig.259, and covered with loam mixed with grass. A flat cover of 10 feet diameter, made of planks well joined, and secured by four cross bars, is mounted with two trap doors, M N,fig.261., for giving egress to the smoke at the commencement of the operation; a triangular hole P, cut out in the cover, receives the end of a conduit Q R S, (figs.262.and261.) of wood formed of three deals, destined to convey the gases and condensed liquids into the casks F G H. Lastly, a door T, which may be opened and shut at pleasure, permits the operator to inspect the state of the fire. The charcoal calcined by thisabri, has been found to be of superior quality.

When it is wished to change the place where theabriis erected, and to transport it to a store of new-felled timber, the frame is taken down, after beating off the clay which covers it, the joints are then cut by a saw, as well as the ends of the forks which fixed the frames to one another. This process is economical in use, simple and cheap in construction; since all the pieces of the apparatus are easily moved about, and may be readily mounted in the forests. For obtaining a compact charcoal, for the use of artisans, this mixed process of Foucauld is said to be preferable to either the close iron cylinder or the pile.

For making gunpowder-charcoal the lighter woods, such as the willow, dogwood, and alder answer best; and in their carbonization care should be taken to let the vapours freely escape, especially towards the end of the operation, for when they are re-absorbed, they greatly impair the combustibility of the charcoal.

By the common process of the forests, about 18 per cent. of the weight of the wood is obtained; by the process of Foucauld about 24 per cent. are obtained, with 20 of crude pyrolignous acid of 10 degrees Baumé. By the process described underAcetic Acid, 27 of charcoal, and 18 of acid at 6 degrees, are procured from 100 parts of wood, besides the tar. These quantities were the results of careful experimenting, and are greater than can be reckoned upon in ordinary hands.

Charcoal for chemical purposes may be extemporaneously prepared by calcining pieces of wood covered with sand in a crucible, till no more volatile matter exhales.

The charcoal of some woods contains silica, and is therefore useful for polishing metals. Being a bad conductor of heat, charcoal is employed sometimes in powder to encase small furnaces and steam-pipes. It is not affected by water; and hence, the extremities of stakes driven into moist ground are not liable to decomposition. In like manner casks when charred inside preserve water much better than common casks, because they furnish no soluble matter for fermentation or for food to animalcules.

Lowitz discovered that wood charcoal removes offensive smells from animal and vegetable substances, and counteracts their putrefaction. He found the odour of succinicand benzoic acids, of bugs, of empyreumatic oils, of infusions of valerian, essence of wormwood, spirits distilled from bad grain, and sulphureous substances were all absorbable by freshly calcined charcoal properly applied. A very ingenious filter has been constructed for purifying water, by passing it through strata of charcoal of different fineness.

When charcoal is burned, one third of the heat is discharged by radiation, and two thirds by conduction.

The following table of the quantity of charcoal yielded by different woods was published by Mr. Mushet, as the result of experiments carefully made upon the small scale. He says, the woods before being charred were thoroughly dried, and pieces of each kind were selected as nearly alike in every respect as possible. One hundred parts of each sort were taken, and they produced as under:—

Messrs. Allen and Pepys, from 100 parts of the following woods, obtained the quantities of charcoal as under:—

It is observable that the quantities obtained by Messrs. Allen and Pepys are in general less than those given by Mr. Mushet, which may be owing to Mr. Mushet not having applied sufficient heat, or operated long enough, to dissipate the aqueous matter of the gaseous products.

To those persons who buy charcoal by weight, it is important to purchase it as soon after it is made as possible, as it quickly absorbs a considerable portion of water from the atmosphere. Different woods, however, differ in this respect. Messrs. Allen and Pepys found that by a week’s exposure to the air, the charcoal of

The following is a tabular view of the volumes of the different gases which were absorbed in the course of 24 hours, by one volume of charcoal, in the experiments of M. Theodore de Saussure, which were conducted in a way likely to produce correct results. Each portion of charcoal was heated afresh to a red heat, and allowed to cool under mercury. When taken from the mercury, it was instantly plunged into the vessel of gas.

Neumann, who made many experiments on charcoal, informs us that for the reduction of the metallic oxides, the charcoal of the heavier woods, as that of the oak and the beech, is preferable, and that, for common fuel, such charcoal gives the greatest heat, and requires the most plentiful supply of air to keep it burning; while those of the lighter woods preserve a glowing heat with a much less draught of air; and that for purposes where it is desirable to have a steady and a still fire, charcoal should be employed whichhas been made from wood previously divested of its bark, since it is the cortical part which crackles and flies off in sparks during combustion, while the coal of the wood itself seldom does.

For making crayons of charcoal, the willow is the best wood that can be employed, as the softness is uniform in all its parts. Its durability may be seen in several of our old churchyards, where the letters made with lamp-black are still perfect, though the white lead with which the body of the stones was painted is entirely destroyed.

This property of carbon is shewn, however, in a more striking manner by the writings that were found in the ruins of Herculaneum, which have retained their original blackness for two thousand years. The ancients wrote with ink made from ground charcoal.

If it be required to purify any carbonaceous matter, to render it fitter for delicate pigments, this may be done by first calcining it in a close vessel, and then lixiviating it in water slightly acidulated by nitric acid.

The incorruptibility of charcoal was well known to the ancients, and they availed themselves of this property upon all important occasions.

About sixty years ago a quantity of oak stakes were found in the bed of the Thames, in the very spot where Tacitus says that the Britons fixed a vast number of such stakes, to prevent the passage of Julius Cæsar and his army. These stakes were charred to a considerable depth, had retained their form completely, and were firm at the heart.

Most of the houses in Venice stand upon piles of wood, which have all been previously charred for their preservation. In this country, estates were formerly marked out by charred stakes driven to a considerable depth into the ground. SeeBone-black,Charcoal, andGraphite.

CARBONATED WATER, is water either pure, or holding various saline matters in solution, impregnated with carbonic acid gas. For general sale in this country, the water usually contains a little soda, which being charged with the gas, is calledSoda water; see this article for a description of an excellent machine for the manufacture of this fashionable beverage.

CARBONATED WATER, is water either pure, or holding various saline matters in solution, impregnated with carbonic acid gas. For general sale in this country, the water usually contains a little soda, which being charged with the gas, is calledSoda water; see this article for a description of an excellent machine for the manufacture of this fashionable beverage.

CARBONATES. Saline compounds in definite proportions, of carbonic acid, with alkalis, earths, and the ordinary metallic oxides.The carbonates principally used in the arts and manufactures are those ofammonia,copper,iron,lead,lime,magnesia,potash,soda. Native carbonate of copper is the beautiful green mineral calledMalachite.Carbonates are easily analyzed by estimating either by weight or measure the quantity of carbonic acid which they evolve under the decomposing action of somewhat dilute sulphuric, nitric, or muriatic acid; for as they are all compounds of acid, and base in equivalent proportions, the quantity of acid will indicate the quantity of base. Thus, as pure limestone consists of 56 of lime and 44 of acid, in 100 parts, if upon examining a sample of limestone we find it to give out only 22 per cent. of carbonic acid gas, during its slow solution in muriatic acid, we are sure that there are only 28 parts of lime present. I have described, in the Annals of Philosophy, for October, 1817, a simple form of apparatus for analyzing the carbonates with equal readiness and precision. The simple rule bymeasureto which I was led, may be thus stated:From the bulk of evolved gas, expressed in cubic inches and tenths, deduct1⁄20, the remainder will express the proportion of real limestone present in the grains employed.Pure magnesian limestone yields very nearly a cubic inch of the gas for every grain in weight.

CARBONATES. Saline compounds in definite proportions, of carbonic acid, with alkalis, earths, and the ordinary metallic oxides.

The carbonates principally used in the arts and manufactures are those ofammonia,copper,iron,lead,lime,magnesia,potash,soda. Native carbonate of copper is the beautiful green mineral calledMalachite.

Carbonates are easily analyzed by estimating either by weight or measure the quantity of carbonic acid which they evolve under the decomposing action of somewhat dilute sulphuric, nitric, or muriatic acid; for as they are all compounds of acid, and base in equivalent proportions, the quantity of acid will indicate the quantity of base. Thus, as pure limestone consists of 56 of lime and 44 of acid, in 100 parts, if upon examining a sample of limestone we find it to give out only 22 per cent. of carbonic acid gas, during its slow solution in muriatic acid, we are sure that there are only 28 parts of lime present. I have described, in the Annals of Philosophy, for October, 1817, a simple form of apparatus for analyzing the carbonates with equal readiness and precision. The simple rule bymeasureto which I was led, may be thus stated:From the bulk of evolved gas, expressed in cubic inches and tenths, deduct1⁄20, the remainder will express the proportion of real limestone present in the grains employed.Pure magnesian limestone yields very nearly a cubic inch of the gas for every grain in weight.

CARBONATE OF AMMONIA. A salt called in modern chemistrysesquicarbonate, to denote its being composed of one and a half equivalent primes of carbonic acid, and one of ammonia. It consists by my analysis of 55·89 carbonic acid, 28·86 ammonia, and 15·25 water, in 100 parts. It is generally prepared by mixing from 11⁄4to 11⁄2parts of well-washed dry chalk, with 1 of sal-ammoniac, introducing the mixture into an earthen or cast-iron retort, or subliming pot, and exposing it to a heat gradually raised to redness. By double decomposition, the ammonia is volatilized in combination with the carbonic acid of the chalk, and the vapours are received in a condensing receiver made either of glass, stone ware, or lead. The chlorine of the sal-ammoniac remains in the retort, associated with the basis of the chalk in the state of chloride of calcium. Some ammonia gas escapes during the process.The saline mass thus sublimed is purified by a second sublimation in glass, or salt-glazed earthen vessels. The salt may be obtained, by the above method carefully conducted, in rhomboidal octahedrons, but it is generally made for the market in a compact semi-crystalline white cake. It has a pungent ammoniacal smell, a hot, pungent, alkaline taste, a strong alkaline reaction, and dissolves in two parts of cold water. It must be kept in well-closed vessels, as by exposure to the air a portion of its ammonia exhales, and it passes into the state of the scentless bi-carbonate. It is employed much in medicine, chemical analysis, and by the pastry-cooks to give sponginess to their cakes in consequence of its volatilization from their dough in the oven. SeeSal-Ammoniac.For the other carbonates used in the arts, see their respective bases; copper, lead, lime, &c.

CARBONATE OF AMMONIA. A salt called in modern chemistrysesquicarbonate, to denote its being composed of one and a half equivalent primes of carbonic acid, and one of ammonia. It consists by my analysis of 55·89 carbonic acid, 28·86 ammonia, and 15·25 water, in 100 parts. It is generally prepared by mixing from 11⁄4to 11⁄2parts of well-washed dry chalk, with 1 of sal-ammoniac, introducing the mixture into an earthen or cast-iron retort, or subliming pot, and exposing it to a heat gradually raised to redness. By double decomposition, the ammonia is volatilized in combination with the carbonic acid of the chalk, and the vapours are received in a condensing receiver made either of glass, stone ware, or lead. The chlorine of the sal-ammoniac remains in the retort, associated with the basis of the chalk in the state of chloride of calcium. Some ammonia gas escapes during the process.

The saline mass thus sublimed is purified by a second sublimation in glass, or salt-glazed earthen vessels. The salt may be obtained, by the above method carefully conducted, in rhomboidal octahedrons, but it is generally made for the market in a compact semi-crystalline white cake. It has a pungent ammoniacal smell, a hot, pungent, alkaline taste, a strong alkaline reaction, and dissolves in two parts of cold water. It must be kept in well-closed vessels, as by exposure to the air a portion of its ammonia exhales, and it passes into the state of the scentless bi-carbonate. It is employed much in medicine, chemical analysis, and by the pastry-cooks to give sponginess to their cakes in consequence of its volatilization from their dough in the oven. SeeSal-Ammoniac.

For the other carbonates used in the arts, see their respective bases; copper, lead, lime, &c.

CARBONIC ACID (Acide carbonique, Fr.;Kohlensäure, Germ.), consists of 1 prime equivalent of carbon = 6·125 + 2 of oxygen = 16·026, whose joint sum = 22·151, represents the atomic weight or combining ratio of this acid, in the neutral or protocarbonate salts. Its composition by volume is stated underCarbon. Its natural form is a gas, whose specific gravity is 1·5245, compared to atmospheric air 1·000; and being so dense, it may be poured out of one vessel into another. Hence it was called at firstaërial acid. From its existing copiously, in a solid state, in limestones and the mild alkalies, it was styledfixed airby its proper discoverer, Dr. Black. About one volume of it exists in 1000 volumes of common atmospheric air, which may be made manifest by the crust of carbonate it occasions upon the surface of lime water. Carbonic acid gas is found accumulated in many caverns of volcanic districts, and particularly in thegrotto dei caniat Pausilippo, near Puzzuoli; being disengaged in such circumstances by the action of subterranean fire, and, possibly, of certain acids, upon the limestone strata. It often issues from fountains in copious currents, as at Franzensbrunn, near Eger, in Polterbrunnen; near Trier; and Byrreshorn. This acid gas occurs also frequently in mines and wells, being calledchoke damp, from its suffocating quality. Its presence may, at all times, be detected, by letting down a lighted candle, suspended from a string, into the places suspected of containing this mephitic air. It exists, in considerable quantities, in the water of every pump well, and gives it a fresh and pleasant taste. Water, exposed some time to the air, loses these aerial particles, and becomes vapid. Many springs are highly impregnated with carbonic acid gas, and form a sparkling beverage; such as theSelterswasser, from Selters upon the Lahn, in the grand duchy of Nassau; of which no less than two millions and a half of bottles are sold every year. A prodigious quantity of a similar water is also artificially prepared in Great Britain, and many other countries, under the name of aërated or soda water.Carbonic acid occurs in nature, combined with many salifiable bases; as in the carbonates of soda, baryta, strontia, magnesia; the oxides of iron, manganese, zinc, copper, lead, &c. From these substances it may be separated, generally speaking, by strong ignition, or, more readily, by the superior affinity of muriatic, sulphuric, or nitric acid, for the earth or metallic oxide. It is formed whenever vegetable or animal substances are burned with free access of air, from the union of their carbonaceous principle with atmospheric oxygen. It is also formed in all cases of the spontaneous decomposition of organic substances, particularly in the process of fermentation; and constitutes the pungent, noxious, heavy gas thrown off, in vast volumes, from beer vats. SeeDistillationandFermentation. Carbonic acid is also generated in the breathing of animals; from 4 to 5 per cent., in volume, of the inhaled oxygen being converted, at each expiration, into this gas, which contaminates the air of crowded apartments, and renders ventilation essential to health, and even to life: witness the horrible catastrophe of the Black-hole at Calcutta.Carbonic acid gas is destitute of colour, has a sourish, suffocating smell, an acidulous pungent taste, imparts to moist, but not dry, litmus paper, a transient reddish tint, and weighs per 100 cubic inches, 461⁄2grains; and per cubic foot, 8031⁄2grains; a little more than 33⁄4oz. avoirdupoid. A cubic foot of air weighs about two thirds of that quantity, or 527 grains. It may be condensed into the liquid state by a pressure of 40 atmospheres, and this liquid may be then solidified by its own sudden spontaneous evaporation. If air contain more than 15 per cent. in bulk of this gas, it becomes unfit for respiration and combustion, animal life and candles being speedily extinguished by it.Before a person ventures into a deep well, or vault containing fermenting materials, he should introduce a lighted candle into the space, and observe how it burns. Carbonic acid, being so much denser than common air, may be drawn out of cellars or fermenting tubs, by a pump furnished with a leather hose, which reaches to the bottom. Quicklime, mixed with water, may be used also to purify the air of a sunk apartment by its affinity for, or power of, absorbing this aërial acid. SeeMineral WatersandSoda Water.

CARBONIC ACID (Acide carbonique, Fr.;Kohlensäure, Germ.), consists of 1 prime equivalent of carbon = 6·125 + 2 of oxygen = 16·026, whose joint sum = 22·151, represents the atomic weight or combining ratio of this acid, in the neutral or protocarbonate salts. Its composition by volume is stated underCarbon. Its natural form is a gas, whose specific gravity is 1·5245, compared to atmospheric air 1·000; and being so dense, it may be poured out of one vessel into another. Hence it was called at firstaërial acid. From its existing copiously, in a solid state, in limestones and the mild alkalies, it was styledfixed airby its proper discoverer, Dr. Black. About one volume of it exists in 1000 volumes of common atmospheric air, which may be made manifest by the crust of carbonate it occasions upon the surface of lime water. Carbonic acid gas is found accumulated in many caverns of volcanic districts, and particularly in thegrotto dei caniat Pausilippo, near Puzzuoli; being disengaged in such circumstances by the action of subterranean fire, and, possibly, of certain acids, upon the limestone strata. It often issues from fountains in copious currents, as at Franzensbrunn, near Eger, in Polterbrunnen; near Trier; and Byrreshorn. This acid gas occurs also frequently in mines and wells, being calledchoke damp, from its suffocating quality. Its presence may, at all times, be detected, by letting down a lighted candle, suspended from a string, into the places suspected of containing this mephitic air. It exists, in considerable quantities, in the water of every pump well, and gives it a fresh and pleasant taste. Water, exposed some time to the air, loses these aerial particles, and becomes vapid. Many springs are highly impregnated with carbonic acid gas, and form a sparkling beverage; such as theSelterswasser, from Selters upon the Lahn, in the grand duchy of Nassau; of which no less than two millions and a half of bottles are sold every year. A prodigious quantity of a similar water is also artificially prepared in Great Britain, and many other countries, under the name of aërated or soda water.

Carbonic acid occurs in nature, combined with many salifiable bases; as in the carbonates of soda, baryta, strontia, magnesia; the oxides of iron, manganese, zinc, copper, lead, &c. From these substances it may be separated, generally speaking, by strong ignition, or, more readily, by the superior affinity of muriatic, sulphuric, or nitric acid, for the earth or metallic oxide. It is formed whenever vegetable or animal substances are burned with free access of air, from the union of their carbonaceous principle with atmospheric oxygen. It is also formed in all cases of the spontaneous decomposition of organic substances, particularly in the process of fermentation; and constitutes the pungent, noxious, heavy gas thrown off, in vast volumes, from beer vats. SeeDistillationandFermentation. Carbonic acid is also generated in the breathing of animals; from 4 to 5 per cent., in volume, of the inhaled oxygen being converted, at each expiration, into this gas, which contaminates the air of crowded apartments, and renders ventilation essential to health, and even to life: witness the horrible catastrophe of the Black-hole at Calcutta.

Carbonic acid gas is destitute of colour, has a sourish, suffocating smell, an acidulous pungent taste, imparts to moist, but not dry, litmus paper, a transient reddish tint, and weighs per 100 cubic inches, 461⁄2grains; and per cubic foot, 8031⁄2grains; a little more than 33⁄4oz. avoirdupoid. A cubic foot of air weighs about two thirds of that quantity, or 527 grains. It may be condensed into the liquid state by a pressure of 40 atmospheres, and this liquid may be then solidified by its own sudden spontaneous evaporation. If air contain more than 15 per cent. in bulk of this gas, it becomes unfit for respiration and combustion, animal life and candles being speedily extinguished by it.

Before a person ventures into a deep well, or vault containing fermenting materials, he should introduce a lighted candle into the space, and observe how it burns. Carbonic acid, being so much denser than common air, may be drawn out of cellars or fermenting tubs, by a pump furnished with a leather hose, which reaches to the bottom. Quicklime, mixed with water, may be used also to purify the air of a sunk apartment by its affinity for, or power of, absorbing this aërial acid. SeeMineral WatersandSoda Water.

CARBONIC OXIDE. See the articleCarbon.

CARBONIC OXIDE. See the articleCarbon.

CARBUNCLE. A gem highly prized by the ancients; most probably a variety of the noble garnet of modern mineralogists.

CARBUNCLE. A gem highly prized by the ancients; most probably a variety of the noble garnet of modern mineralogists.

CARBURET OF SULPHUR, called also sulphuret of carbon, and alcohol of sulphur, is a limpid volatile liquid, possessing a penetrating fetid smell, and an acrid burning taste. Its specific gravity is 1·265; and its boiling point is about 112° Fahr. It evaporates so readily, and absorbs so much heat in the vaporous state, that if a tube containing quicksilver, surrounded with lint dipped in this liquid, be suspended in the receiver of an air-pump, on making the vacuum, the quicksilver will be congealed. It consists of 15·8 carbon and 84·2 sulphur, in 100 parts; being two equivalent primes of the latter to one of the former.

CARBURET OF SULPHUR, called also sulphuret of carbon, and alcohol of sulphur, is a limpid volatile liquid, possessing a penetrating fetid smell, and an acrid burning taste. Its specific gravity is 1·265; and its boiling point is about 112° Fahr. It evaporates so readily, and absorbs so much heat in the vaporous state, that if a tube containing quicksilver, surrounded with lint dipped in this liquid, be suspended in the receiver of an air-pump, on making the vacuum, the quicksilver will be congealed. It consists of 15·8 carbon and 84·2 sulphur, in 100 parts; being two equivalent primes of the latter to one of the former.

CARBURETTED HYDROGEN. A compound of carbon and hydrogen, of which there are several species—such as oil-gas, coal-gas, olefiant gas, oil of lemons, otto of roses, oil of turpentine, petroleum, naphta, naphthaline, oil of wine, caoutchoucine and caoutchouc.

CARBURETTED HYDROGEN. A compound of carbon and hydrogen, of which there are several species—such as oil-gas, coal-gas, olefiant gas, oil of lemons, otto of roses, oil of turpentine, petroleum, naphta, naphthaline, oil of wine, caoutchoucine and caoutchouc.

CARDS, PLAYING. (Cartes à jouer, Fr.;Karten, Germ.) Mr. de la Rue obtained, in February, 1832, a patent for certain improvements in the manufacture of playing cards, which he distributed under three heads: first, printing the pips, and also the picture or court-cards, in oil colours by means of types or blocks; secondly, effecting the same in oil colours by means of lithography; and thirdly, gilding or silvering borders, and other parts of the characters, by the printing process, either by types, blocks, or lithography.In the ordinary mode of manufacturing playing cards, their devices are partly produced by copperplate printing, and they are filled up with water colours by the means called stencilling.The patentee does not propose any material alteration in the devices or forms upon the cards, but only to produce them with oil colours; and, to effect this, he follows precisely the same mode as that practised by calico printers.A set of blocks or types properly devised, are produced for printing the different pips of hearts, diamonds, spades, and clubs, or they are drawn, as other subjects, in the usual way upon stone. The ink or colour, whether black or red, is to be prepared from the best French lamp-black, or the best Chinese vermillion ground in oil, and laid on the types and blocks, or on the stone, in the same way as printers’ ink, and the impressions taken-on to thick drawing paper by means of a suitable press in the ordinary manner of printing.The picture or court-cards are to be produced by a series of impressions in different colours, fitting into each other exactly in the same way as in printing paper hangings, or silks and calicoes, observing that all the colours are to be prepared with oil.For this purpose a series of blocks or types are to be provided for each subject, and which, when put together, will form the whole device. These blocks are to be used separately, that is, all the yellow parts of the picture, for instance, are to be printed at one impression, then all the red parts, next all the flesh colour, then the blue portions, and so on, finishing with the black outlines, which complete the picture.If the same is to be done by lithography, there must be as many stones as there are to be colours, each to print its portion only; and the impression, or part of the picture given by one stone, must be exactly fitted into by the impression given from the next stone, and so on until the whole subject is complete.A superior kind of card is proposed to be made, with gold or silver devices in parts of the pictures, or gold or silver borders round the pips. This is to be effected by printing the lines which are to appear as gold or silver, with gilders’ size, in place of ink or colour; and immediately after the impression has been given, the face of the card is to be powdered over with gold dust, silver, or bronze, by means of a soft cotton or wool dabber, by which the gold, silver, or bronze will be made to adhere to the picture, and the superfluous portions of the metal will wipe off by a very slight rubbing. When the prints are perfectly dry, the face of the card may be polished by means of a soft brush.If it should be desirable to make these improved cards to resemble ivory, that may be done by preparing the face of the paper in the first instance with a composition of size and fine French white, and a drying oil, mixed together to about the consistence of cream; this is to be washed over the paper, and dried before printing, and when the cards are finished, they will exactly resemble ivory.The only thing remaining to be described, is the means by which the successive impressions of the types, blocks, or stones forming the parts of the pictures, are to be brought exactly to join each other, so as to form a perfect whole design when complete; this is by printers called registering, and is to be effected much in the usual way, by points in the tympan of the press, or by marks upon the stones.The parts of the subject having been all accurately cut or drawn to fit, small holes are to be made with a fine awl through a quire or more of the paper at once, by placing upon the paper a gauge-plate, having marks or guide-holes, and by observing these, the same sheet laid on several times, and always made to correspond with the points or marks, the several parts of the picture must inevitably register, and produce a perfect subject.

CARDS, PLAYING. (Cartes à jouer, Fr.;Karten, Germ.) Mr. de la Rue obtained, in February, 1832, a patent for certain improvements in the manufacture of playing cards, which he distributed under three heads: first, printing the pips, and also the picture or court-cards, in oil colours by means of types or blocks; secondly, effecting the same in oil colours by means of lithography; and thirdly, gilding or silvering borders, and other parts of the characters, by the printing process, either by types, blocks, or lithography.

In the ordinary mode of manufacturing playing cards, their devices are partly produced by copperplate printing, and they are filled up with water colours by the means called stencilling.

The patentee does not propose any material alteration in the devices or forms upon the cards, but only to produce them with oil colours; and, to effect this, he follows precisely the same mode as that practised by calico printers.

A set of blocks or types properly devised, are produced for printing the different pips of hearts, diamonds, spades, and clubs, or they are drawn, as other subjects, in the usual way upon stone. The ink or colour, whether black or red, is to be prepared from the best French lamp-black, or the best Chinese vermillion ground in oil, and laid on the types and blocks, or on the stone, in the same way as printers’ ink, and the impressions taken-on to thick drawing paper by means of a suitable press in the ordinary manner of printing.

The picture or court-cards are to be produced by a series of impressions in different colours, fitting into each other exactly in the same way as in printing paper hangings, or silks and calicoes, observing that all the colours are to be prepared with oil.

For this purpose a series of blocks or types are to be provided for each subject, and which, when put together, will form the whole device. These blocks are to be used separately, that is, all the yellow parts of the picture, for instance, are to be printed at one impression, then all the red parts, next all the flesh colour, then the blue portions, and so on, finishing with the black outlines, which complete the picture.

If the same is to be done by lithography, there must be as many stones as there are to be colours, each to print its portion only; and the impression, or part of the picture given by one stone, must be exactly fitted into by the impression given from the next stone, and so on until the whole subject is complete.

A superior kind of card is proposed to be made, with gold or silver devices in parts of the pictures, or gold or silver borders round the pips. This is to be effected by printing the lines which are to appear as gold or silver, with gilders’ size, in place of ink or colour; and immediately after the impression has been given, the face of the card is to be powdered over with gold dust, silver, or bronze, by means of a soft cotton or wool dabber, by which the gold, silver, or bronze will be made to adhere to the picture, and the superfluous portions of the metal will wipe off by a very slight rubbing. When the prints are perfectly dry, the face of the card may be polished by means of a soft brush.

If it should be desirable to make these improved cards to resemble ivory, that may be done by preparing the face of the paper in the first instance with a composition of size and fine French white, and a drying oil, mixed together to about the consistence of cream; this is to be washed over the paper, and dried before printing, and when the cards are finished, they will exactly resemble ivory.

The only thing remaining to be described, is the means by which the successive impressions of the types, blocks, or stones forming the parts of the pictures, are to be brought exactly to join each other, so as to form a perfect whole design when complete; this is by printers called registering, and is to be effected much in the usual way, by points in the tympan of the press, or by marks upon the stones.

The parts of the subject having been all accurately cut or drawn to fit, small holes are to be made with a fine awl through a quire or more of the paper at once, by placing upon the paper a gauge-plate, having marks or guide-holes, and by observing these, the same sheet laid on several times, and always made to correspond with the points or marks, the several parts of the picture must inevitably register, and produce a perfect subject.

CARD CUTTING. Mr. Dickinson’s patent machine for cutting cards, consists of a pair of rollers with circular revolving cutters, the edges of which are intended to act against each other as circular shears, and the pasteboards in passing between these rollers are cut by the circular shears into cards of the desired dimensions. These rollers are mounted in suitable standards, with proper adjustments, and are made to revolve bya band and pulley connected to the axle of a crank, or by any other convenient means.Card cutterFig.263.is a front view of this machine;a aandb bare the two rollers, the upper one turning upon an extended axle, bearing in the standards, the lower one upon pivots. These rollers are formed by a series of circular blocks, between a series of circular steel cutters, which are slidden on to iron shafts, and held together upon their axle by nuts screwed up at their ends. The accurate adjustment of the cutters is of the first importance to their correct performance; it is therefore found necessary to introduce spiral springs within the blocks, in order to press the cutters up to their proper bearings. A section of one of the blocks is shewn atfig.265, and an end view of the same atfig.266, with the spiral springs inserted.At the outer extremity of the axle of the rollera, a riggerc, is attached, whence a band passes to a pulleyd, on the crank shafte, to which a flywheelf, is affixed, for the purpose of rendering the action uniform. Rotatory motion being given to the crank shaft, the upper roller is turned, the lower roller moving at the same time by the friction against the edges of the cutters.Fig.264is an end view of the rollers, showing the manner in which the pasteboards are guided and conducted between the cutters. In the front of the machine a movable frameg, is to be placed, for the purpose of receiving the pasteboards, preparatory to cutting them into cards, and a stop is screwed to this frame for the edge of the pasteboard to bear against, which stop is adjustable to suit different sizes. From the back part of this frame an armh, extends, the extremity of which acts against the periphery of a ratchet wheeli, fixed at the end of the rollerb, and hence, as the roller goes round, the frame is made to rise and fall upon its pivots, for the purpose of guiding the pasteboard up to the cutters; at the same time a rodk, hanging in arms from the sides of the standards (shewn by dots infig.263), falling upon the pasteboard, confines it, while the cutters take hold, and racks, corresponding with the indentations of the rollers, are placed as atl l, by means of which the cards, when cut, are pushed out of the grooves.As various widths of cards will require to be cut by this machine, the patentee proposes to have several pairs of rollers ready adjusted to act together, when mounted in the standards, in preference to shifting the circular cutters, and introducing blocks of greater or less width.The second part of the invention is a machine for pasting the papers, and pressing the sheets together to make pasteboard. This machine consists of several reels (we suppose rollers are intended) on which the paper is to be wound, along with a paste trough, and rotatory brushes. The several parts of this machine, and their operations in making pasteboard, are described in the specification, but the patentee having omitted the letters of reference in the drawing which he has enrolled, it becomes difficult to explain it.As far as we are enabled to understand the machine, it appears, that damped paper is to be wound upon two rollers, and conducted from thence over two other rollers; that two fluted rollers revolving in the paste trough are to supply paste to two circular brushes, and that by those brushes the papers are to be pasted upon one side, and then pressed together, to make the pasteboard; after this, the pasteboard is to be drawn on to a table, and to remain there until sufficiently dry to be wound upon other rollers. By comparing this description with thefigure, perhaps the intended operations of the machine may be discovered, it is the best explanation we are enabled to give.

CARD CUTTING. Mr. Dickinson’s patent machine for cutting cards, consists of a pair of rollers with circular revolving cutters, the edges of which are intended to act against each other as circular shears, and the pasteboards in passing between these rollers are cut by the circular shears into cards of the desired dimensions. These rollers are mounted in suitable standards, with proper adjustments, and are made to revolve bya band and pulley connected to the axle of a crank, or by any other convenient means.

Card cutter

Fig.263.is a front view of this machine;a aandb bare the two rollers, the upper one turning upon an extended axle, bearing in the standards, the lower one upon pivots. These rollers are formed by a series of circular blocks, between a series of circular steel cutters, which are slidden on to iron shafts, and held together upon their axle by nuts screwed up at their ends. The accurate adjustment of the cutters is of the first importance to their correct performance; it is therefore found necessary to introduce spiral springs within the blocks, in order to press the cutters up to their proper bearings. A section of one of the blocks is shewn atfig.265, and an end view of the same atfig.266, with the spiral springs inserted.

At the outer extremity of the axle of the rollera, a riggerc, is attached, whence a band passes to a pulleyd, on the crank shafte, to which a flywheelf, is affixed, for the purpose of rendering the action uniform. Rotatory motion being given to the crank shaft, the upper roller is turned, the lower roller moving at the same time by the friction against the edges of the cutters.

Fig.264is an end view of the rollers, showing the manner in which the pasteboards are guided and conducted between the cutters. In the front of the machine a movable frameg, is to be placed, for the purpose of receiving the pasteboards, preparatory to cutting them into cards, and a stop is screwed to this frame for the edge of the pasteboard to bear against, which stop is adjustable to suit different sizes. From the back part of this frame an armh, extends, the extremity of which acts against the periphery of a ratchet wheeli, fixed at the end of the rollerb, and hence, as the roller goes round, the frame is made to rise and fall upon its pivots, for the purpose of guiding the pasteboard up to the cutters; at the same time a rodk, hanging in arms from the sides of the standards (shewn by dots infig.263), falling upon the pasteboard, confines it, while the cutters take hold, and racks, corresponding with the indentations of the rollers, are placed as atl l, by means of which the cards, when cut, are pushed out of the grooves.

As various widths of cards will require to be cut by this machine, the patentee proposes to have several pairs of rollers ready adjusted to act together, when mounted in the standards, in preference to shifting the circular cutters, and introducing blocks of greater or less width.

The second part of the invention is a machine for pasting the papers, and pressing the sheets together to make pasteboard. This machine consists of several reels (we suppose rollers are intended) on which the paper is to be wound, along with a paste trough, and rotatory brushes. The several parts of this machine, and their operations in making pasteboard, are described in the specification, but the patentee having omitted the letters of reference in the drawing which he has enrolled, it becomes difficult to explain it.

As far as we are enabled to understand the machine, it appears, that damped paper is to be wound upon two rollers, and conducted from thence over two other rollers; that two fluted rollers revolving in the paste trough are to supply paste to two circular brushes, and that by those brushes the papers are to be pasted upon one side, and then pressed together, to make the pasteboard; after this, the pasteboard is to be drawn on to a table, and to remain there until sufficiently dry to be wound upon other rollers. By comparing this description with thefigure, perhaps the intended operations of the machine may be discovered, it is the best explanation we are enabled to give.

CARDS, (Cardes, Fr.;Karden, Ger.) are instruments which serve to disentangle the fibres of wool, cotton, or other analogous bodies, to arrange them in an orderly lap or fleece, and thereby prepare them for being spun into uniform threads. The fineness and the levelness of the yarn, as well as the beauty of the cloth into which it enters,depend as much upon the regularity and perfection of the carding, as upon any subsequent operations of the factory. The quality of the carding depends more upon that of the cards than upon any attention or skill in the operative; since it is now nearly an automatic process, conducted by young women called card-tenters.Cards are formed of a sheet or fillet of leather pierced with a multitude of small holes, in which are implanted small staples of wire with bent projecting ends calledteeth. Thus every piece of wire is double toothed. The leather is afterwards applied to a flat or cylindrical surface of wood or metal, and the co-operation of two or more such surfaces constitutes a card. The teeth of cards are made thicker or slenderer, according as the filaments to be carded are coarser or finer, stiffer or more pliant, more valuable or cheaper. It is obviously of great importance that the teeth should be all alike, equably distributed, and equally inclined over the surface of the leather, a degree of precision which is scarcely possible with handwork. To judge of the difficulty of this manipulation we need only inspect the annexedfigures. The wire must first be bent at right angles incandd,fig.268, then each branch must receive a second bend inaandbat a determinate obtuse angle, invariable for each system of cards. It is indispensable that the two anglesc a eandd b fbe mathematically equal, not only as to the twin teeth of one staple, but through the whole series; for it is easy to see that if one of the teeth be more or less sloped than its fellow, it will lay hold of more or less wool than it, and render the carding irregular. But though the perfect regularity of the teeth be important, it is not the sole condition towards making a good card. It must be always kept in view that these teeth are to be implanted by pairs in a piece of leather, and kept in it by the cross partc d. The leather must therefore be pierced with twin holes at the distancec d; and pierced in such a manner, that the slope of the holes, in reference to the plane of the leather, be invariably the same; for otherwise the length of the teeth would vary with this angle of inclination, and the card would be irregular.CardsA third condition essential towards producing perfect regularity, is that the leather ought to be of the same thickness throughout its whole surface, otherwise the teeth, though of the same length and fixed at the same angle, would be rendered unequal by the different thicknesses of the leather, and the operation of carding would be in consequence extremely defective.Fig.267.shows the card-teeth acting against each other, as indicated by the arrows in two opposite directions; infig.269.they work one way.Of late years very complex but complete and well-acting machines have been constructed for splitting the leather or equalizing it by shaving, for bending and cutting the wires, and implanting them in the leather, into holes pierced with perfect regularity. Card machines which fashion the teeth with great precision and rapidity, and pierce the leather, have been for a considerable time in use at Halifax, in Yorkshire, a town famous for the excellence of its card-cloth, as also at Leeds, Glasgow, and several other places. The wires and the leather thus prepared are given out by the manufacturer to women and children, who put them together.1. The simplest machine for equalizing the leather which can be employed, is that which I saw operating in MM. Scrive’s automatic card factory at Lille, the most magnificent I believe in the world, where the leather was drawn forwards by a roller over a solid horizontal table, or bed, and passed under a nicely adjusted vertical blade, which shaved it by a scraping motion to a perfectly uniform thickness. About one half the weight of the leather is lost in this process, and in the subsequent squaring and trimming.The machine for making cards, invented I believe by a Mr. Ellis of the United States, for which a first patent was obtained in this country by Joseph Cheeseborough Dyer, Esq. of Manchester, in 1811, and a second and third with further improvements in 1814, and 1824, is one of the most elegant automatons ever applied to productive industry. It is however necessarily so complicated with different mechanisms as to render its representation impracticable in such engravings as are compatible with the scope of this dictionary. I must therefore content myself with the following general description of its constituent parts.The first thing to be done after having, as above, prepared the long sheets or fillets of leather, of suitable length, breadth, and thickness, for making the cards, is to stretch the leather, and hold it firmly; which is accomplished by winding the fillet of leather upon the roller or drum, like the warp roller of a loom, and then conducting it upwards between guide rollers, to a receiving or work roller at top of the machine, where the fillet is held fast by a cramp, by which means the leather is kept stretched.Secondly, the holes are pierced in the leather to receive the wire staples or teeth of thecard, by means of a sliding fork, the points of which are presented to the face of the leather; while the fork is made to advance and recede continually, by the agency of levers worked by rotatory cams upon a revolving main shaft.The points of the fork being thus made to penetrate into the leather, the holes for receiving the staples are pierced, at regular distances, and in correct order, by shifting the leather fillet so as to bring different parts of its surface opposite to the points of the sliding fork. This is done by cams, or indented wheels and gear, which shift the guide rollers and confining drums laterally, as they revolve, and consequently move the fillet of leather at intervals a short distance, so as to present to the points of the fork or piercer at every movement, a different part of the surface of the leather.Thirdly, the wire of which the teeth or points of the card are to be made, is supplied from a coil on the side of the machine, and is brought forward at intervals, by a pair of sliding pincers, which are slidden to and fro through the agency of levers actuated by rotatory cams upon the main shaft. The pincers having advanced a distance equal to the length of wire intended to form one staple, or two points, this length of wire is pressed upon exactly in the middle by a square piece of steel, and being there confined, a cutter is brought forward, which cuts it off from that part of the wire held in the pincers.The length of wire thus separated and confined, is now, by a movement of the machine, bent up along the sides of the square steel holder, and shaped to three edges of the square, that is, formed as a staple; and in the same way, by the continued movements of the machine, a succession of pieces of wire are cut off, and bent into staples for making the teeth of the card as long as the mechanism is kept in action.Fourthly, the wire staple thus formed is held with its points or ends outwards, closely contiguous to the forked piercer described above, and by another movement of the mechanism, the staple is protruded forward, its end entering into the two holes made previously in the leather by the sliding of the fork.While the wire staple is being thus introduced into the leather, its legs or points are to be bent, that is, formed with a knee or angle, which is the fifth object to be effected. This is done by means of a small apparatus consisting of a bar or bed, which bears up against the under side of the wire staple when it has been passed half-way into the holes in the leather, and another bar above it, which being brought down behind the staple, bends it over the resisting bar to the angle required; that is, forms the knee in each leg. A pusher now acts behind the staple, and drives it home into the leather, which completes the operation.The leather being thus conducted, and its position shifted before the piercer progressively, a succession of the above described operations of cutting the wire, forming the staple, passing it into the leather, and bending its legs to the angular form, produces a sheet of card of the kind usually employed for carding or combing wool, cotton, and other fibrous materials. It may be necessary to add, that as these wire staples are required to be set in the leathers sometimes in lines crossing the sheet, which is called ribbed, and at other times in oblique lines, called twilled, these variations are produced by the positions of the notches or steps upon the edge or periphery of the cam or indented wheel, which shifts the guide rollers that hold the fillet or sheet of leather as already described.

CARDS, (Cardes, Fr.;Karden, Ger.) are instruments which serve to disentangle the fibres of wool, cotton, or other analogous bodies, to arrange them in an orderly lap or fleece, and thereby prepare them for being spun into uniform threads. The fineness and the levelness of the yarn, as well as the beauty of the cloth into which it enters,depend as much upon the regularity and perfection of the carding, as upon any subsequent operations of the factory. The quality of the carding depends more upon that of the cards than upon any attention or skill in the operative; since it is now nearly an automatic process, conducted by young women called card-tenters.

Cards are formed of a sheet or fillet of leather pierced with a multitude of small holes, in which are implanted small staples of wire with bent projecting ends calledteeth. Thus every piece of wire is double toothed. The leather is afterwards applied to a flat or cylindrical surface of wood or metal, and the co-operation of two or more such surfaces constitutes a card. The teeth of cards are made thicker or slenderer, according as the filaments to be carded are coarser or finer, stiffer or more pliant, more valuable or cheaper. It is obviously of great importance that the teeth should be all alike, equably distributed, and equally inclined over the surface of the leather, a degree of precision which is scarcely possible with handwork. To judge of the difficulty of this manipulation we need only inspect the annexedfigures. The wire must first be bent at right angles incandd,fig.268, then each branch must receive a second bend inaandbat a determinate obtuse angle, invariable for each system of cards. It is indispensable that the two anglesc a eandd b fbe mathematically equal, not only as to the twin teeth of one staple, but through the whole series; for it is easy to see that if one of the teeth be more or less sloped than its fellow, it will lay hold of more or less wool than it, and render the carding irregular. But though the perfect regularity of the teeth be important, it is not the sole condition towards making a good card. It must be always kept in view that these teeth are to be implanted by pairs in a piece of leather, and kept in it by the cross partc d. The leather must therefore be pierced with twin holes at the distancec d; and pierced in such a manner, that the slope of the holes, in reference to the plane of the leather, be invariably the same; for otherwise the length of the teeth would vary with this angle of inclination, and the card would be irregular.

Cards

A third condition essential towards producing perfect regularity, is that the leather ought to be of the same thickness throughout its whole surface, otherwise the teeth, though of the same length and fixed at the same angle, would be rendered unequal by the different thicknesses of the leather, and the operation of carding would be in consequence extremely defective.Fig.267.shows the card-teeth acting against each other, as indicated by the arrows in two opposite directions; infig.269.they work one way.

Of late years very complex but complete and well-acting machines have been constructed for splitting the leather or equalizing it by shaving, for bending and cutting the wires, and implanting them in the leather, into holes pierced with perfect regularity. Card machines which fashion the teeth with great precision and rapidity, and pierce the leather, have been for a considerable time in use at Halifax, in Yorkshire, a town famous for the excellence of its card-cloth, as also at Leeds, Glasgow, and several other places. The wires and the leather thus prepared are given out by the manufacturer to women and children, who put them together.

1. The simplest machine for equalizing the leather which can be employed, is that which I saw operating in MM. Scrive’s automatic card factory at Lille, the most magnificent I believe in the world, where the leather was drawn forwards by a roller over a solid horizontal table, or bed, and passed under a nicely adjusted vertical blade, which shaved it by a scraping motion to a perfectly uniform thickness. About one half the weight of the leather is lost in this process, and in the subsequent squaring and trimming.

The machine for making cards, invented I believe by a Mr. Ellis of the United States, for which a first patent was obtained in this country by Joseph Cheeseborough Dyer, Esq. of Manchester, in 1811, and a second and third with further improvements in 1814, and 1824, is one of the most elegant automatons ever applied to productive industry. It is however necessarily so complicated with different mechanisms as to render its representation impracticable in such engravings as are compatible with the scope of this dictionary. I must therefore content myself with the following general description of its constituent parts.

The first thing to be done after having, as above, prepared the long sheets or fillets of leather, of suitable length, breadth, and thickness, for making the cards, is to stretch the leather, and hold it firmly; which is accomplished by winding the fillet of leather upon the roller or drum, like the warp roller of a loom, and then conducting it upwards between guide rollers, to a receiving or work roller at top of the machine, where the fillet is held fast by a cramp, by which means the leather is kept stretched.

Secondly, the holes are pierced in the leather to receive the wire staples or teeth of thecard, by means of a sliding fork, the points of which are presented to the face of the leather; while the fork is made to advance and recede continually, by the agency of levers worked by rotatory cams upon a revolving main shaft.

The points of the fork being thus made to penetrate into the leather, the holes for receiving the staples are pierced, at regular distances, and in correct order, by shifting the leather fillet so as to bring different parts of its surface opposite to the points of the sliding fork. This is done by cams, or indented wheels and gear, which shift the guide rollers and confining drums laterally, as they revolve, and consequently move the fillet of leather at intervals a short distance, so as to present to the points of the fork or piercer at every movement, a different part of the surface of the leather.

Thirdly, the wire of which the teeth or points of the card are to be made, is supplied from a coil on the side of the machine, and is brought forward at intervals, by a pair of sliding pincers, which are slidden to and fro through the agency of levers actuated by rotatory cams upon the main shaft. The pincers having advanced a distance equal to the length of wire intended to form one staple, or two points, this length of wire is pressed upon exactly in the middle by a square piece of steel, and being there confined, a cutter is brought forward, which cuts it off from that part of the wire held in the pincers.

The length of wire thus separated and confined, is now, by a movement of the machine, bent up along the sides of the square steel holder, and shaped to three edges of the square, that is, formed as a staple; and in the same way, by the continued movements of the machine, a succession of pieces of wire are cut off, and bent into staples for making the teeth of the card as long as the mechanism is kept in action.

Fourthly, the wire staple thus formed is held with its points or ends outwards, closely contiguous to the forked piercer described above, and by another movement of the mechanism, the staple is protruded forward, its end entering into the two holes made previously in the leather by the sliding of the fork.

While the wire staple is being thus introduced into the leather, its legs or points are to be bent, that is, formed with a knee or angle, which is the fifth object to be effected. This is done by means of a small apparatus consisting of a bar or bed, which bears up against the under side of the wire staple when it has been passed half-way into the holes in the leather, and another bar above it, which being brought down behind the staple, bends it over the resisting bar to the angle required; that is, forms the knee in each leg. A pusher now acts behind the staple, and drives it home into the leather, which completes the operation.

The leather being thus conducted, and its position shifted before the piercer progressively, a succession of the above described operations of cutting the wire, forming the staple, passing it into the leather, and bending its legs to the angular form, produces a sheet of card of the kind usually employed for carding or combing wool, cotton, and other fibrous materials. It may be necessary to add, that as these wire staples are required to be set in the leathers sometimes in lines crossing the sheet, which is called ribbed, and at other times in oblique lines, called twilled, these variations are produced by the positions of the notches or steps upon the edge or periphery of the cam or indented wheel, which shifts the guide rollers that hold the fillet or sheet of leather as already described.


Back to IndexNext