Chapter 32

CARMINE, (Eng. and Fr.;Karminstoff, Ger.), is, according to Pelletier and Caventou, a triple compound of the colouring substance, and an animal matter contained in cochineal, combined with an acid added to effect the precipitation. The preparation of this article is still a mystery, because upon the one hand, its consumption being very limited, few persons are engaged in its manufacture, and upon the other, the raw material being costly, extensive experiments on it cannot be conveniently made. Success in this business is said to depend not a little upon dexterity of manipulation, and upon knowing the instant for arresting the further action of heat upon the materials.There is sold at the shops different kinds of carmine, distinguished by numbers, and possessed of a corresponding value. This difference depends upon two causes, either upon the proportion of alumina added in the precipitation, or of a certain quantity of vermillion put in to dilute the colour. In the first case the shade is paler, in the second, it has not the same lustre. It is always easy to discover the proportion of the adulteration. By availing ourselves of the property of pure carmine to dissolve in water of ammonia, the whole foreign matter remains untouched, and we may estimate its amount by drying the residuum.To make Ordinary Carmine.Take 1 pound of cochineal in powder;Take3 drachms and a half of carbonate of potash;Take8 drachms of alum in powder;Take3 drachms and a half of fish-glue.The cochineal must be boiled along with the potash in a copper containing five pailfuls of water (60 pints); the ebullition being allayed with cold water. After boiling afew minutes the copper must be taken from the fire, and placed on a table at such an angle as that the liquor may be conveniently transvased. The pounded alum is then thrown in, and the decoction is stirred; it changes colour immediately, and inclines to a more brilliant tint. At the end of fifteen minutes the cochineal is deposited at the bottom, and the bath becomes as clear as if it had been filtered. It contains the colouring matter, and probably a little alum in suspension. We decant it then into a copper of equal capacity, and place it over the fire, adding the fish-glue dissolved in a great deal of water, and passed through a searce. At the moment of ebullition, the carmine is perceived to rise up to the surface of the bath, and a coagulum is formed, like what takes place in clarifications with white of egg. The copper must be immediately taken from the fire, and its contents be stirred with a spatula. In the course of fifteen or twenty minutes the carmine is deposited. The supernatant liquor is decanted, and the deposit must be drained upon a filter of fine canvas or linen. If the operation has been well conducted, the carmine when dry crushes readily under the fingers. What remains after the precipitation of the carmine is still much loaded with colour, and may be employed very advantageously for carminated lakes. SeeLake.By theold German processcarmine is prepared by means of alum without any other addition. As soon as the water boils the powdered cochineal is thrown into it, stirred well, and then boiled for six minutes; a little ground alum is added, and the boiling is continued for three minutes more; the vessel is removed from the fire, the liquor is filtered and left for three days in porcelain vessels, in the course of which time a red matter falls down, which must be separated and dried in the shade. This is carmine, which is sometimes previously purified by washing. The liquor after three days more lets fall an inferior kind of carmine, but the residuary colouring matter may also be separated by the muriate of tin.The proportions for the above process are 580 parts of clear river water, 16 parts of cochineal, and 1 part of alum; there is obtained from 11⁄2to 2 parts of carmine.Anothercarmine with tartar.—To the boiling water the cochineal is added, and after some time a little cream of tartar; in eight minutes more we add a little alum, and continue the boiling for a minute or two longer. Then take it from the fire and pour it into glass or porcelain vessels, filter and let it repose quietly till the carmine falls down. We then decant and dry in the shade. The proportions are 8 pounds of water, 8 oz. of cochineal,1⁄2oz. of cream of tartar,3⁄4oz. of alum, and the product is an ounce of carmine.The process of Alxon or Langlois.—Boil two pails and a half of river water (30 pints), throw into it, a little afterwards, a pound of cochineal, add a filtered solution of six drachms of carbonate of soda and a pound of water, and let the mixture boil for half an hour; remove the copper from the fire, and let it cool, inclining it to one side. Add six drachms of pulverized alum, stir with a brush to quicken the solution of the salt, and let the whole rest 20 minutes. The liquor, which has a fine scarlet colour, is to be carefully decanted into another vessel, and there is to be put into it the whites of two eggs well beat up with half a pound of water. Stir again with a brush. The copper is replaced on the fire, the alumina becomes concrete, and carries down the colouring matter with it. The copper is to be taken from the fire, and left at rest for 25 or 30 minutes to allow the carmine to fall down. When the supernatant liquor is drawn off, the deposit is placed upon filter cloth stretched upon a frame to drain. When the carmine has the consistence of cream cheese, it is taken from the filter with a silver or ivory knife and set to dry upon plates covered with paper, to screen it from dust. A pound of cochineal gives in this way an ounce and a half of carmine.Process of Madame Cenette of Amsterdam, with salt of sorrel.—Into six pails of river water boiling hot throw two pounds of the finest cochineal in powder, continue the ebullition for two hours and then add 3 oz. of refined saltpetre, and after a few minutes 4 oz. of salt of sorrel. In ten minutes more take the copper from the fire and let it settle for four hours; then draw off the liquor with a syphon into flat plates and leave it there for three weeks. Afterwards there is formed upon the surface a pretty thick mouldiness, which is to be removed dexterously in one pellicle by a slip of whalebone. Should the film tear and fragments of it fall down, they must be removed with the utmost care. Decant the supernatant water with a syphon, the end of which may touch the bottom of the vessel, because the layer of carmine is very firm. Whatever water remains must be sucked away by a pipette. The carmine is dried in the shade, and has an extraordinary lustre.Carmine by the salt of tin, or the Carmine of China.—Boil the cochineal in river water, adding some Roman alum, then pass through a fine cloth to remove the cochineal, and set the liquor aside. It becomes brighter on keeping. After having heated this liquor, pour into it drop by drop solution of tin till the carmine be precipitated. The proportions are one pailful of water, 20 oz. of cochineal and 60 grains of alum, with a solution of tin containing 4 oz. of the metal.To revive or brighten carmine.—We may brighten ordinary carmine, and obtain a very fine and clear pigment, by dissolving it in water of ammonia. For this purpose we leave ammonia upon carmine in the heat of the sun, till all its colour be extracted, and the liquor has got a fine red tinge. It must be then drawn off and precipitated, by acetic acid and alcohol, next washed with alcohol, and dried. Carmine dissolved in ammonia has been long employed by painters, under the name of liquid carmine.Carmine is the finest red colour which the painter possesses. It is principally employed in miniature painting, water colours, and to tint artificial flowers, because it is more transparent than the other colours. ForCarminium, seeCochineal.

CARMINE, (Eng. and Fr.;Karminstoff, Ger.), is, according to Pelletier and Caventou, a triple compound of the colouring substance, and an animal matter contained in cochineal, combined with an acid added to effect the precipitation. The preparation of this article is still a mystery, because upon the one hand, its consumption being very limited, few persons are engaged in its manufacture, and upon the other, the raw material being costly, extensive experiments on it cannot be conveniently made. Success in this business is said to depend not a little upon dexterity of manipulation, and upon knowing the instant for arresting the further action of heat upon the materials.

There is sold at the shops different kinds of carmine, distinguished by numbers, and possessed of a corresponding value. This difference depends upon two causes, either upon the proportion of alumina added in the precipitation, or of a certain quantity of vermillion put in to dilute the colour. In the first case the shade is paler, in the second, it has not the same lustre. It is always easy to discover the proportion of the adulteration. By availing ourselves of the property of pure carmine to dissolve in water of ammonia, the whole foreign matter remains untouched, and we may estimate its amount by drying the residuum.

To make Ordinary Carmine.

Take 1 pound of cochineal in powder;Take3 drachms and a half of carbonate of potash;Take8 drachms of alum in powder;Take3 drachms and a half of fish-glue.

The cochineal must be boiled along with the potash in a copper containing five pailfuls of water (60 pints); the ebullition being allayed with cold water. After boiling afew minutes the copper must be taken from the fire, and placed on a table at such an angle as that the liquor may be conveniently transvased. The pounded alum is then thrown in, and the decoction is stirred; it changes colour immediately, and inclines to a more brilliant tint. At the end of fifteen minutes the cochineal is deposited at the bottom, and the bath becomes as clear as if it had been filtered. It contains the colouring matter, and probably a little alum in suspension. We decant it then into a copper of equal capacity, and place it over the fire, adding the fish-glue dissolved in a great deal of water, and passed through a searce. At the moment of ebullition, the carmine is perceived to rise up to the surface of the bath, and a coagulum is formed, like what takes place in clarifications with white of egg. The copper must be immediately taken from the fire, and its contents be stirred with a spatula. In the course of fifteen or twenty minutes the carmine is deposited. The supernatant liquor is decanted, and the deposit must be drained upon a filter of fine canvas or linen. If the operation has been well conducted, the carmine when dry crushes readily under the fingers. What remains after the precipitation of the carmine is still much loaded with colour, and may be employed very advantageously for carminated lakes. SeeLake.

By theold German processcarmine is prepared by means of alum without any other addition. As soon as the water boils the powdered cochineal is thrown into it, stirred well, and then boiled for six minutes; a little ground alum is added, and the boiling is continued for three minutes more; the vessel is removed from the fire, the liquor is filtered and left for three days in porcelain vessels, in the course of which time a red matter falls down, which must be separated and dried in the shade. This is carmine, which is sometimes previously purified by washing. The liquor after three days more lets fall an inferior kind of carmine, but the residuary colouring matter may also be separated by the muriate of tin.

The proportions for the above process are 580 parts of clear river water, 16 parts of cochineal, and 1 part of alum; there is obtained from 11⁄2to 2 parts of carmine.

Anothercarmine with tartar.—To the boiling water the cochineal is added, and after some time a little cream of tartar; in eight minutes more we add a little alum, and continue the boiling for a minute or two longer. Then take it from the fire and pour it into glass or porcelain vessels, filter and let it repose quietly till the carmine falls down. We then decant and dry in the shade. The proportions are 8 pounds of water, 8 oz. of cochineal,1⁄2oz. of cream of tartar,3⁄4oz. of alum, and the product is an ounce of carmine.

The process of Alxon or Langlois.—Boil two pails and a half of river water (30 pints), throw into it, a little afterwards, a pound of cochineal, add a filtered solution of six drachms of carbonate of soda and a pound of water, and let the mixture boil for half an hour; remove the copper from the fire, and let it cool, inclining it to one side. Add six drachms of pulverized alum, stir with a brush to quicken the solution of the salt, and let the whole rest 20 minutes. The liquor, which has a fine scarlet colour, is to be carefully decanted into another vessel, and there is to be put into it the whites of two eggs well beat up with half a pound of water. Stir again with a brush. The copper is replaced on the fire, the alumina becomes concrete, and carries down the colouring matter with it. The copper is to be taken from the fire, and left at rest for 25 or 30 minutes to allow the carmine to fall down. When the supernatant liquor is drawn off, the deposit is placed upon filter cloth stretched upon a frame to drain. When the carmine has the consistence of cream cheese, it is taken from the filter with a silver or ivory knife and set to dry upon plates covered with paper, to screen it from dust. A pound of cochineal gives in this way an ounce and a half of carmine.

Process of Madame Cenette of Amsterdam, with salt of sorrel.—Into six pails of river water boiling hot throw two pounds of the finest cochineal in powder, continue the ebullition for two hours and then add 3 oz. of refined saltpetre, and after a few minutes 4 oz. of salt of sorrel. In ten minutes more take the copper from the fire and let it settle for four hours; then draw off the liquor with a syphon into flat plates and leave it there for three weeks. Afterwards there is formed upon the surface a pretty thick mouldiness, which is to be removed dexterously in one pellicle by a slip of whalebone. Should the film tear and fragments of it fall down, they must be removed with the utmost care. Decant the supernatant water with a syphon, the end of which may touch the bottom of the vessel, because the layer of carmine is very firm. Whatever water remains must be sucked away by a pipette. The carmine is dried in the shade, and has an extraordinary lustre.

Carmine by the salt of tin, or the Carmine of China.—Boil the cochineal in river water, adding some Roman alum, then pass through a fine cloth to remove the cochineal, and set the liquor aside. It becomes brighter on keeping. After having heated this liquor, pour into it drop by drop solution of tin till the carmine be precipitated. The proportions are one pailful of water, 20 oz. of cochineal and 60 grains of alum, with a solution of tin containing 4 oz. of the metal.

To revive or brighten carmine.—We may brighten ordinary carmine, and obtain a very fine and clear pigment, by dissolving it in water of ammonia. For this purpose we leave ammonia upon carmine in the heat of the sun, till all its colour be extracted, and the liquor has got a fine red tinge. It must be then drawn off and precipitated, by acetic acid and alcohol, next washed with alcohol, and dried. Carmine dissolved in ammonia has been long employed by painters, under the name of liquid carmine.

Carmine is the finest red colour which the painter possesses. It is principally employed in miniature painting, water colours, and to tint artificial flowers, because it is more transparent than the other colours. ForCarminium, seeCochineal.

CARPET. (Tapis, Fr.;Teppich, Germ.) A thick woollen fabric of variegated colours, for covering the floors of the better sort of apartments. This luxurious manufacture took its origin in Persia and Turkey, whence the most beautiful patterns were wont to come into Europe; but they have been for some time surpassed by the workmanship of France, Great Britain, and Belgium. To form a just conception of the elegant and ingenious processes by which carpets are made, we should visit the royal establishment of the Gobelins at Paris, where we would see the celebrated carpet manufactory of the Savonnerie, which has been transported thither. A detailed set of engravings of this art is given by Roland de la Platière in the first and second volumes of the Encyclopédie Méthodique, to which I must refer my readers, as a due exposition of its machines and operations would far exceed the scope of the present volume.The warp, says M. Roland, being the foundation of the fabric, ought to be of fine wool, equally but firmly spun, and consist of three yarns twisted into one thread. The yarns that are to form the velvety surface of the carpet, ought also to be of the best quality, but soft and downy in their texture, so that the dye may penetrate every filament. Hemp, or linen yarns, are likewise employed in this manufacture, as a woof, to bind the warp firmly together after each shoot of the velvety threads. Thus we see that good carpeting consists essentially of two distinct webs woven at the same time, and firmly decussated together by the woof threads. Hence the form of the pattern is the same upon the two sides of the cloth, only the colours are reversed, so that what was green upon one side becomes red or black upon the other, andvice versâ. The smaller the figures the more frequent the decussations of the two planes, and the firmer and more durable the fabric.The carpet manufacture, as now generally practised, may be distributed into two systems—that of double fabrics, and that cut in imitation of velvet. Of late years theJacquard loomhas been much used in weaving carpets, the nature of which will be found fully explained under that title.For the sake of illustration, if we suppose the double carpets to be composed of only two colours, the principle of weaving will be easily understood; for it is only necessary to raise the warp of each web alternately for the passage of the shuttle, the upper web being entirely above when the under web is being woven, or decussated, andvice versâ. In a Brussels carpet the worsted yarn raised to form the pile, and make the figure, is not cut; in the Wilton the pile is cut to give it a velvety aspect and softness. In the imperial Brussels carpet the figure is raised above the ground, and its pile is cut, but the ground is uncut; and in the royal Wilton, the pile is both raised higher than in the common Wilton, and it is cut, whereby it has a rich cushion-like appearance. The cloth of all these superior carpets consists of woollen and linen, or hemp; the latter being put upon a beam, and brought, of course, through heddles and a reed; but as its only purpose is to bind together the worsted fabric, it should not be visible upon the upper face of the carpet. The worsted yarn is wound upon small bobbins or pirns, with a weight affixed to each, for giving proper tension to the threads. Their number varies, for one web, from 1300 to 1800, according as the carpet is to be 27 or 36 inches wide; and, they are placed, in frames, behind the loom, filled with differently coloured yarn, to correspond with the figure. This worsted warp is then drawn through the harness, heddles, and reed, to be associated with the linen yarn in the compound fabric.In Kidderminster carpeting, both warp and weft appear upon the face of the cloth, whereas, in the Brussels style, only the warp is seen, its binding weft being fine hempen or linen threads. The three-ply imperial carpet, called the Scotch, is coming very much into vogue, and is reckoned by many to be little inferior in texture, look, and wear to the Brussels. Kilmarnock has acquired merited distinction by this ingenious industry. In this fabric, as well as in the two-ply Kidderminster, the weft predominates, and displays the design; but, in the French carpets, the worsted warp of the web shows the figure. Plain Venetian carpets, as used for stairs and passages, are woven in simple looms, provided merely with the common heddles and reed. The warp should be a substance of worsted yarn, so heavy as to cover in the weft completely from the view. Figured Venetian carpets are woven in the two-ply Kidderminster looms, and areprovided with a mechanism to raise the pattern upon the worsted warp. The weft is an alternate shoot of worsted and linen yarn, and must be concealed.Carpet loomThe following figure and description will explain the construction of the three-ply imperial Scotch and two-ply Kidderminster carpet loom, which is merely a modification of the Jacquardmétier. The Brussels carpet-loom, on the contrary, is a draw-boy loom on the damask plan, and requires the weaver to have an assistant.Fig.270.A A A, is the frame of the loom, consisting of four upright posts, with caps and cross rails to bind them together. The posts are about six feet high.C C, the cloth-beam, is a wooden cylinder, six inches or thereby in diameter, of sufficient length to traverse the loom, with iron gudgeons in the two ends, which work in bushes in the side frame. On one end of this beam is a ratchet wheel, with a tooth to keep it from turning round backwards by the tension of the web.D, the lay, with its reed, its under and upper shell, its two lateral rulers or swords, and rocking-tree above. There are grooves in the upper and under shell, into which the reed is fitted.E, the heddles, or harness, with a double neck attached to each of the tower or card mechanismsF F, of the Jacquard loom. The heddles are connected and work with the treddlesB B, by means of cords, as shown in the figure.G Gare wooden boxes for the cards.H, the yarn, or warp beam.Draw-loomIn draw-looms of every kind, there is no sinking of any portion of the warp, as in plain cloth-weaving; but the plane of the warp is placed low, and the threads under which the shuttle is to pass are raised, while all the rest remains stationary. The harness part of this carpet loom is moved by an assistant boy or girl, who thus allows the weft to be properly decussated, while the weaver attends to working the front mounting or heddles.Fig.271.,Arepresents the frame of a carpet draw-loom;Bis a box or frame of pulleys, over which the cords of the harness pass, and are then made fast to a piece of wood, seen atE, which the weavers call a table. From the tail of the harness the simples descend, and to the end of each is attached a small handleG, called a bob. These handles being disposed in pairs, and their regularity preserved by means of a perforated boardC, it is merely necessary to pull every handle in succession; the weaver, at the same time, working his treddles with his feet, as in any other loom. The treddles are four in number, the fabric being that of plain or alternate cloth, and two treddles allotted for each web. The harness part of the carpet draw-loom is furnished withmails, or metallic eyes, to save friction; two threads being drawn through each eye. The design or pattern of a carpet is drawn upon cross-rule paper, exactly in the same way as every other kind of fancy-loom work, and is transferred from the paper to the mounting by the rules for damask weaving. Suppose that a double web is so mounted that every alternate thread of the one may be raised, so as to form a sufficient shed-way for the shuttle, without depressing the other in the least. Then suppose another web placed above the former, at such a distance that it will exactly touch the convexity of those threads of the former, which are raised. Then, if the threads of the latter web are sunk while the others are raised, the two would be entirely incorporated. But if this be only partially done, that is, at particular places, only those parts immediately operated upon will be affected by the action of the apparatus. If the carpet is a two-coloured pattern, as black and red, and if upon the upper surface, as extended in the loom, red flowers are to be represented upon a black ground, then all those species of design paper which are coloured may be supposed to representthe red, and those which are vacant the black. Then counting the spaces upon the paper, omit those which are vacant, and cord those which are coloured, and the effect will be produced. But as the two webs are to be raised alternately, whatever is corded for the first handle must be passed by for the second, andvice versâ; so that the one will form the flower, and the other the ground.The board by which the simples are regulated appears atF.Dshows the weights.

CARPET. (Tapis, Fr.;Teppich, Germ.) A thick woollen fabric of variegated colours, for covering the floors of the better sort of apartments. This luxurious manufacture took its origin in Persia and Turkey, whence the most beautiful patterns were wont to come into Europe; but they have been for some time surpassed by the workmanship of France, Great Britain, and Belgium. To form a just conception of the elegant and ingenious processes by which carpets are made, we should visit the royal establishment of the Gobelins at Paris, where we would see the celebrated carpet manufactory of the Savonnerie, which has been transported thither. A detailed set of engravings of this art is given by Roland de la Platière in the first and second volumes of the Encyclopédie Méthodique, to which I must refer my readers, as a due exposition of its machines and operations would far exceed the scope of the present volume.

The warp, says M. Roland, being the foundation of the fabric, ought to be of fine wool, equally but firmly spun, and consist of three yarns twisted into one thread. The yarns that are to form the velvety surface of the carpet, ought also to be of the best quality, but soft and downy in their texture, so that the dye may penetrate every filament. Hemp, or linen yarns, are likewise employed in this manufacture, as a woof, to bind the warp firmly together after each shoot of the velvety threads. Thus we see that good carpeting consists essentially of two distinct webs woven at the same time, and firmly decussated together by the woof threads. Hence the form of the pattern is the same upon the two sides of the cloth, only the colours are reversed, so that what was green upon one side becomes red or black upon the other, andvice versâ. The smaller the figures the more frequent the decussations of the two planes, and the firmer and more durable the fabric.

The carpet manufacture, as now generally practised, may be distributed into two systems—that of double fabrics, and that cut in imitation of velvet. Of late years theJacquard loomhas been much used in weaving carpets, the nature of which will be found fully explained under that title.

For the sake of illustration, if we suppose the double carpets to be composed of only two colours, the principle of weaving will be easily understood; for it is only necessary to raise the warp of each web alternately for the passage of the shuttle, the upper web being entirely above when the under web is being woven, or decussated, andvice versâ. In a Brussels carpet the worsted yarn raised to form the pile, and make the figure, is not cut; in the Wilton the pile is cut to give it a velvety aspect and softness. In the imperial Brussels carpet the figure is raised above the ground, and its pile is cut, but the ground is uncut; and in the royal Wilton, the pile is both raised higher than in the common Wilton, and it is cut, whereby it has a rich cushion-like appearance. The cloth of all these superior carpets consists of woollen and linen, or hemp; the latter being put upon a beam, and brought, of course, through heddles and a reed; but as its only purpose is to bind together the worsted fabric, it should not be visible upon the upper face of the carpet. The worsted yarn is wound upon small bobbins or pirns, with a weight affixed to each, for giving proper tension to the threads. Their number varies, for one web, from 1300 to 1800, according as the carpet is to be 27 or 36 inches wide; and, they are placed, in frames, behind the loom, filled with differently coloured yarn, to correspond with the figure. This worsted warp is then drawn through the harness, heddles, and reed, to be associated with the linen yarn in the compound fabric.

In Kidderminster carpeting, both warp and weft appear upon the face of the cloth, whereas, in the Brussels style, only the warp is seen, its binding weft being fine hempen or linen threads. The three-ply imperial carpet, called the Scotch, is coming very much into vogue, and is reckoned by many to be little inferior in texture, look, and wear to the Brussels. Kilmarnock has acquired merited distinction by this ingenious industry. In this fabric, as well as in the two-ply Kidderminster, the weft predominates, and displays the design; but, in the French carpets, the worsted warp of the web shows the figure. Plain Venetian carpets, as used for stairs and passages, are woven in simple looms, provided merely with the common heddles and reed. The warp should be a substance of worsted yarn, so heavy as to cover in the weft completely from the view. Figured Venetian carpets are woven in the two-ply Kidderminster looms, and areprovided with a mechanism to raise the pattern upon the worsted warp. The weft is an alternate shoot of worsted and linen yarn, and must be concealed.

Carpet loom

The following figure and description will explain the construction of the three-ply imperial Scotch and two-ply Kidderminster carpet loom, which is merely a modification of the Jacquardmétier. The Brussels carpet-loom, on the contrary, is a draw-boy loom on the damask plan, and requires the weaver to have an assistant.Fig.270.A A A, is the frame of the loom, consisting of four upright posts, with caps and cross rails to bind them together. The posts are about six feet high.C C, the cloth-beam, is a wooden cylinder, six inches or thereby in diameter, of sufficient length to traverse the loom, with iron gudgeons in the two ends, which work in bushes in the side frame. On one end of this beam is a ratchet wheel, with a tooth to keep it from turning round backwards by the tension of the web.D, the lay, with its reed, its under and upper shell, its two lateral rulers or swords, and rocking-tree above. There are grooves in the upper and under shell, into which the reed is fitted.E, the heddles, or harness, with a double neck attached to each of the tower or card mechanismsF F, of the Jacquard loom. The heddles are connected and work with the treddlesB B, by means of cords, as shown in the figure.G Gare wooden boxes for the cards.H, the yarn, or warp beam.

Draw-loom

In draw-looms of every kind, there is no sinking of any portion of the warp, as in plain cloth-weaving; but the plane of the warp is placed low, and the threads under which the shuttle is to pass are raised, while all the rest remains stationary. The harness part of this carpet loom is moved by an assistant boy or girl, who thus allows the weft to be properly decussated, while the weaver attends to working the front mounting or heddles.Fig.271.,Arepresents the frame of a carpet draw-loom;Bis a box or frame of pulleys, over which the cords of the harness pass, and are then made fast to a piece of wood, seen atE, which the weavers call a table. From the tail of the harness the simples descend, and to the end of each is attached a small handleG, called a bob. These handles being disposed in pairs, and their regularity preserved by means of a perforated boardC, it is merely necessary to pull every handle in succession; the weaver, at the same time, working his treddles with his feet, as in any other loom. The treddles are four in number, the fabric being that of plain or alternate cloth, and two treddles allotted for each web. The harness part of the carpet draw-loom is furnished withmails, or metallic eyes, to save friction; two threads being drawn through each eye. The design or pattern of a carpet is drawn upon cross-rule paper, exactly in the same way as every other kind of fancy-loom work, and is transferred from the paper to the mounting by the rules for damask weaving. Suppose that a double web is so mounted that every alternate thread of the one may be raised, so as to form a sufficient shed-way for the shuttle, without depressing the other in the least. Then suppose another web placed above the former, at such a distance that it will exactly touch the convexity of those threads of the former, which are raised. Then, if the threads of the latter web are sunk while the others are raised, the two would be entirely incorporated. But if this be only partially done, that is, at particular places, only those parts immediately operated upon will be affected by the action of the apparatus. If the carpet is a two-coloured pattern, as black and red, and if upon the upper surface, as extended in the loom, red flowers are to be represented upon a black ground, then all those species of design paper which are coloured may be supposed to representthe red, and those which are vacant the black. Then counting the spaces upon the paper, omit those which are vacant, and cord those which are coloured, and the effect will be produced. But as the two webs are to be raised alternately, whatever is corded for the first handle must be passed by for the second, andvice versâ; so that the one will form the flower, and the other the ground.

The board by which the simples are regulated appears atF.Dshows the weights.

CARTHAMUS, or safflower (carthamus tinctorius), (Carthame, Fr.;Färber distel, Germ.), the flower of which alone is used in dyeing, is an annual plant cultivated in Spain, Egypt, and the Levant. There are two varieties of it—one which has large leaves, and the other smaller ones. It is the last which is cultivated in Egypt, where it forms a considerable article of commerce.Carthamus contains two colouring matters, one yellow and the other red. The first alone is soluble in water; its solution is always turbid: with re-agents it exhibits the characters usually remarked in yellow colouring matters. The acids render it lighter, the alkalies deepen it, giving it more of an orange hue: both produce a small dun precipitate, in consequence of which it becomes clearer. Alum forms a precipitate of a deep yellow, in small quantity. The solution of tin and the other metallic solutions cause precipitates which have nothing remarkable in them.The yellow matter of carthamus is not employed; but in order to extract this portion, the carthamus is put into a bag, which is trodden under water, till no more colour can be pressed out. The flowers, which were yellow, become reddish, and lose in this operation nearly one half of their weight. In this state they are used.For extracting the red part of carthamus, and thereafter applying it to stuff, the property which alkalies possess of dissolving it is had recourse to, and it is afterwards precipitated by an acid.The process of dyeing consists, therefore, in extracting the colouring matter by means of an alkali, and precipitating it on the stuff by means of an acid. It is this fecula which serves for making the rouge employed by ladies.As to this rouge, the solution of carthamus is prepared with crystallised carbonate of soda, and it is precipitated by lemon juice. It has been remarked that lemons, beginning to spoil, were fitter for this operation than those which were less ripe, whose juice retained much mucilage. After squeezing out the lemon juice, it is left to settle for some days. The precipitate of carthamus is dried at a gentle heat upon plates of stone-ware; from which it is detached and very carefully ground with talc, which has been reduced to a very subtile powder, by means of the leaves of shave-grass (presle), and successively passed through sieves of increasing fineness. It is the fineness of the talc, and the greater or less proportion which it bears to the carthamus precipitate, which constitute the difference between the high and low priced rouges.Carthamus is used for dyeing silk, poppy,nacarat(a bright orange-red), cherry, rose colour, and flesh colour. The process differs according to the intensity of the colour, and the greater or less tendency to flame colour that is wanted. But the carthamus bath, whose application may be varied, is prepared as follows:The carthamus, from which the yellow matter has been extracted, and whose lumps have been broken down, is put into a trough. It is repeatedly sprinkled with cendres gravelées (crude pearl ashes), or soda (barilla) well powdered and sifted at the rate of 6 pounds for 120 lbs. of carthamus; but soda is preferred, mixing carefully as the alkali is introduced. This operation is calledamestrer. Theamestredcarthamus is put into a small trough with a grated bottom, first lining this trough with a closely woven cloth. When it is about half filled, it is placed over the large trough, and cold water is poured into the upper one, till the lower becomes full. The carthamus is then set over another trough, till the water comes from it almost colourless. A little more alkali is now mixed with it, and fresh water is passed through it. These operations are repeated till the carthamus be exhausted, when it turns yellow.After distributing the silk in hanks upon the rods, lemon juice, brought in casks from Provence, is poured into the bath till it becomes of a fine cherry colour; this is called turning the bath (virer le bain). It is well stirred, and the silk is immersed and turned round the skein-sticks in the bath, as long as it is perceived to take up the colour. Forponceau(poppy colour), it is withdrawn, the liquor is run out of it upon the peg, and it is turned through a new bath, where it is treated as in the first. After this it is dried and passed through fresh baths, continuing to wash and dry it between each operation, till it has acquired the depth of colour that is desired. When it has reached the proper point, a brightening is given it by turning it round the sticks seven or eight times in a bath of hot water, to which about half a pint of lemon juice for each pailful of water has been added.When silk is to be dyedponceauor flame colour, it must be previously boiled as for white; it must then receive a slight foundation of annotto, as explained in treating of this substance. The silk should not be alumed.Thenacarats, and the deep cherry colours, are given precisely like theponceaux, only they receive no annotto ground; and baths may be employed which have served for theponceau, so as to complete their exhaustion. Fresh baths are not made for the latter colours, unless there be no occasion for the poppy.With regard to the lighter cherry-reds, rose colour of all shades and flesh colours, they are made with the second and last runnings of the carthamus, which are weaker. The deepest shades are passed through first.The lightest of all these shades, which is an extremely delicate flesh colour, requires a little soap to be put into the bath. This soap lightens the colour, and prevents it from taking too speedily, and becoming unevenly. The silk is then washed, and a little brightening is given it, in a bath which has served for the deeper colours.All these baths are employed the moment they are made, or as speedily as possible, because they lose much of their colour upon keeping, by which they are even entirely destroyed at the end of a certain time. They are, moreover, used cold, to prevent the colour from being injured. It must have been remarked in the experiments just described, that the caustic alkalies attack the extremely delicate colour of carthamus, making it pass to yellow. This is the reason why crystals of soda are preferred to the other alkaline matters.In order to diminish the expense of the carthamus, it is the practice in preparing the deeper shades to mingle with the first and the second bath about one fifth of the bath of archil.Dobereiner regards the red colouring matter of carthamus as an acid, and the yellow as a base. His carthamic acid forms, with the alkalies, colourless salts, decomposed by the tartaric and acetic acids, which precipitate the acid of a bright rose-red. Heat has a remarkable influence upon carthamus, rendering its red colour yellow and dull. Hence, the colder the water is by which it is extracted, the finer is the colour. Light destroys the colour very rapidly, and hitherto no means have been found of counteracting this effect. For this reason this brilliant colour must be dried in the shade, its dye must be given in a shady place, and the silk stuffs dyed with it must be preserved as much as possible from the light. Age is nearly as injurious as light, especially upon the dye in a damp state. The colour is very dear, because a thousand parts of carthamus contain only five of it.In preparing the finest rouge, the yellow colouring matter being separated by washing with water, the red is then dissolved by the aid of alkali, and is thrown down on linen or cotton rags by saturating the solution with vegetable acid. The colour is rinsed out of these rags, dissolved anew in alkalis, and once more precipitated by lemon juice. The best and freshest carthamus must be selected. It is put into linen bags, which are placed in a stream of water, and kneaded till the water runs off colourless. The bags are then put into water soured with a little vinegar, kneaded till the colour is all expelled, and finally rinsed in running water. By this treatment the carthamus loses nearly half its weight. 6633 cwts. of safflower were imported into the United Kingdom in 1835, of which 2930 cwts. were retained for internal consumption.

CARTHAMUS, or safflower (carthamus tinctorius), (Carthame, Fr.;Färber distel, Germ.), the flower of which alone is used in dyeing, is an annual plant cultivated in Spain, Egypt, and the Levant. There are two varieties of it—one which has large leaves, and the other smaller ones. It is the last which is cultivated in Egypt, where it forms a considerable article of commerce.

Carthamus contains two colouring matters, one yellow and the other red. The first alone is soluble in water; its solution is always turbid: with re-agents it exhibits the characters usually remarked in yellow colouring matters. The acids render it lighter, the alkalies deepen it, giving it more of an orange hue: both produce a small dun precipitate, in consequence of which it becomes clearer. Alum forms a precipitate of a deep yellow, in small quantity. The solution of tin and the other metallic solutions cause precipitates which have nothing remarkable in them.

The yellow matter of carthamus is not employed; but in order to extract this portion, the carthamus is put into a bag, which is trodden under water, till no more colour can be pressed out. The flowers, which were yellow, become reddish, and lose in this operation nearly one half of their weight. In this state they are used.

For extracting the red part of carthamus, and thereafter applying it to stuff, the property which alkalies possess of dissolving it is had recourse to, and it is afterwards precipitated by an acid.

The process of dyeing consists, therefore, in extracting the colouring matter by means of an alkali, and precipitating it on the stuff by means of an acid. It is this fecula which serves for making the rouge employed by ladies.

As to this rouge, the solution of carthamus is prepared with crystallised carbonate of soda, and it is precipitated by lemon juice. It has been remarked that lemons, beginning to spoil, were fitter for this operation than those which were less ripe, whose juice retained much mucilage. After squeezing out the lemon juice, it is left to settle for some days. The precipitate of carthamus is dried at a gentle heat upon plates of stone-ware; from which it is detached and very carefully ground with talc, which has been reduced to a very subtile powder, by means of the leaves of shave-grass (presle), and successively passed through sieves of increasing fineness. It is the fineness of the talc, and the greater or less proportion which it bears to the carthamus precipitate, which constitute the difference between the high and low priced rouges.

Carthamus is used for dyeing silk, poppy,nacarat(a bright orange-red), cherry, rose colour, and flesh colour. The process differs according to the intensity of the colour, and the greater or less tendency to flame colour that is wanted. But the carthamus bath, whose application may be varied, is prepared as follows:

The carthamus, from which the yellow matter has been extracted, and whose lumps have been broken down, is put into a trough. It is repeatedly sprinkled with cendres gravelées (crude pearl ashes), or soda (barilla) well powdered and sifted at the rate of 6 pounds for 120 lbs. of carthamus; but soda is preferred, mixing carefully as the alkali is introduced. This operation is calledamestrer. Theamestredcarthamus is put into a small trough with a grated bottom, first lining this trough with a closely woven cloth. When it is about half filled, it is placed over the large trough, and cold water is poured into the upper one, till the lower becomes full. The carthamus is then set over another trough, till the water comes from it almost colourless. A little more alkali is now mixed with it, and fresh water is passed through it. These operations are repeated till the carthamus be exhausted, when it turns yellow.

After distributing the silk in hanks upon the rods, lemon juice, brought in casks from Provence, is poured into the bath till it becomes of a fine cherry colour; this is called turning the bath (virer le bain). It is well stirred, and the silk is immersed and turned round the skein-sticks in the bath, as long as it is perceived to take up the colour. Forponceau(poppy colour), it is withdrawn, the liquor is run out of it upon the peg, and it is turned through a new bath, where it is treated as in the first. After this it is dried and passed through fresh baths, continuing to wash and dry it between each operation, till it has acquired the depth of colour that is desired. When it has reached the proper point, a brightening is given it by turning it round the sticks seven or eight times in a bath of hot water, to which about half a pint of lemon juice for each pailful of water has been added.

When silk is to be dyedponceauor flame colour, it must be previously boiled as for white; it must then receive a slight foundation of annotto, as explained in treating of this substance. The silk should not be alumed.

Thenacarats, and the deep cherry colours, are given precisely like theponceaux, only they receive no annotto ground; and baths may be employed which have served for theponceau, so as to complete their exhaustion. Fresh baths are not made for the latter colours, unless there be no occasion for the poppy.

With regard to the lighter cherry-reds, rose colour of all shades and flesh colours, they are made with the second and last runnings of the carthamus, which are weaker. The deepest shades are passed through first.

The lightest of all these shades, which is an extremely delicate flesh colour, requires a little soap to be put into the bath. This soap lightens the colour, and prevents it from taking too speedily, and becoming unevenly. The silk is then washed, and a little brightening is given it, in a bath which has served for the deeper colours.

All these baths are employed the moment they are made, or as speedily as possible, because they lose much of their colour upon keeping, by which they are even entirely destroyed at the end of a certain time. They are, moreover, used cold, to prevent the colour from being injured. It must have been remarked in the experiments just described, that the caustic alkalies attack the extremely delicate colour of carthamus, making it pass to yellow. This is the reason why crystals of soda are preferred to the other alkaline matters.

In order to diminish the expense of the carthamus, it is the practice in preparing the deeper shades to mingle with the first and the second bath about one fifth of the bath of archil.

Dobereiner regards the red colouring matter of carthamus as an acid, and the yellow as a base. His carthamic acid forms, with the alkalies, colourless salts, decomposed by the tartaric and acetic acids, which precipitate the acid of a bright rose-red. Heat has a remarkable influence upon carthamus, rendering its red colour yellow and dull. Hence, the colder the water is by which it is extracted, the finer is the colour. Light destroys the colour very rapidly, and hitherto no means have been found of counteracting this effect. For this reason this brilliant colour must be dried in the shade, its dye must be given in a shady place, and the silk stuffs dyed with it must be preserved as much as possible from the light. Age is nearly as injurious as light, especially upon the dye in a damp state. The colour is very dear, because a thousand parts of carthamus contain only five of it.

In preparing the finest rouge, the yellow colouring matter being separated by washing with water, the red is then dissolved by the aid of alkali, and is thrown down on linen or cotton rags by saturating the solution with vegetable acid. The colour is rinsed out of these rags, dissolved anew in alkalis, and once more precipitated by lemon juice. The best and freshest carthamus must be selected. It is put into linen bags, which are placed in a stream of water, and kneaded till the water runs off colourless. The bags are then put into water soured with a little vinegar, kneaded till the colour is all expelled, and finally rinsed in running water. By this treatment the carthamus loses nearly half its weight. 6633 cwts. of safflower were imported into the United Kingdom in 1835, of which 2930 cwts. were retained for internal consumption.

CASE-HARDENING, is the name of the process by which iron tools, keys, &c., have their surfaces converted into steel.Steel when very hard is brittle, and iron alone is for many purposes, as for fine keys, far too soft. It is therefore an important desideratum to combine the hardness of a steely surface with the toughness of an iron body. These requisites are united by the process of case-hardening, which does not differ from the making of steel, except in the shorter duration of the process. Tools, utensils, or ornaments, intended to be polished, are first manufactured in iron and nearly finished, after which they are put into an iron box, together with vegetable or animal charcoal in powder, and cemented for a certain time. This treatment converts the external part into a coating of steel, which is usually very thin, because the time allowed for the cementation is much shorter than when the whole substance is intended to be converted. Immersion of the heated pieces into water hardens the surface, which is afterwards polished by the usual methods. Moxon in hisMechanic Exercises, p. 56., gives the following receipt for case-hardening:—“Cow’s horn or hoof is to be baked or thoroughly dried and pulverised. To this add an equal quantity of bay salt; mix them with stale chamber-lye or white wine vinegar: cover the iron with this mixture, and bed it with the same in loam, or enclose it in an iron box: lay it on the hearth of the forge to dry and harden: then put it into the fire, and blow till the lump have a blood-red heat, and no higher, lest the mixture be burnt too much. Take the iron out, and immerse it in water to harden.” I consider the vinegar to be quite superfluous.I shall now describe the recent application of prussiate (ferrocyanate) of potash to this purpose. The piece of iron, after being polished, is to be made brightly red-hot, and then rubbed or sprinkled over with the above salt in fine powder, upon the part intended to be hardened. The prussiate being decomposed, and apparently dissipated, the iron isto be quenched in cold water. If the process has been well managed, the surface of the metal will have become so hard as to resist the file. Others propose to smear over the surface of the iron with loam made into a thin paste with a strong solution of the prussiate, to dry it slowly, then expose the whole to a nearly white heat, and finally plunge the iron into cold water, when the heat has fallen to dull redness. SeeSteel.

CASE-HARDENING, is the name of the process by which iron tools, keys, &c., have their surfaces converted into steel.

Steel when very hard is brittle, and iron alone is for many purposes, as for fine keys, far too soft. It is therefore an important desideratum to combine the hardness of a steely surface with the toughness of an iron body. These requisites are united by the process of case-hardening, which does not differ from the making of steel, except in the shorter duration of the process. Tools, utensils, or ornaments, intended to be polished, are first manufactured in iron and nearly finished, after which they are put into an iron box, together with vegetable or animal charcoal in powder, and cemented for a certain time. This treatment converts the external part into a coating of steel, which is usually very thin, because the time allowed for the cementation is much shorter than when the whole substance is intended to be converted. Immersion of the heated pieces into water hardens the surface, which is afterwards polished by the usual methods. Moxon in hisMechanic Exercises, p. 56., gives the following receipt for case-hardening:—“Cow’s horn or hoof is to be baked or thoroughly dried and pulverised. To this add an equal quantity of bay salt; mix them with stale chamber-lye or white wine vinegar: cover the iron with this mixture, and bed it with the same in loam, or enclose it in an iron box: lay it on the hearth of the forge to dry and harden: then put it into the fire, and blow till the lump have a blood-red heat, and no higher, lest the mixture be burnt too much. Take the iron out, and immerse it in water to harden.” I consider the vinegar to be quite superfluous.

I shall now describe the recent application of prussiate (ferrocyanate) of potash to this purpose. The piece of iron, after being polished, is to be made brightly red-hot, and then rubbed or sprinkled over with the above salt in fine powder, upon the part intended to be hardened. The prussiate being decomposed, and apparently dissipated, the iron isto be quenched in cold water. If the process has been well managed, the surface of the metal will have become so hard as to resist the file. Others propose to smear over the surface of the iron with loam made into a thin paste with a strong solution of the prussiate, to dry it slowly, then expose the whole to a nearly white heat, and finally plunge the iron into cold water, when the heat has fallen to dull redness. SeeSteel.

CASHMERE or CACHEMERE, a peculiar textile fabric first imported from the kingdom of Cashmere, and now well imitated in France and Great Britain. The material of the Cashmere shawls is the downy wool found about the roots of the hair of the Thibet goat. The year 1819 is remarkable in the history of French husbandry for the acquisition of this breed of goats, imported from the East under the auspices of their government, by the indefatigable courage and zeal of M. Jaubert, who encountered every fatigue and danger to enrich his country with these valuable animals, aided by the patriotism of M. Ternaux, who first planned this importation, and furnished funds for executing it at his own expence and responsibility. He placed a portion of the flock brought by M. Jaubert, at his villa of Saint Ouen, near Paris, where the climate seemed to be very favourable to them, since for several successive years after their introduction M. Ternaux was enabled to sell a great number of both male and female goats. The quantity of fine fleece or down afforded by each animal annually, is from a pound and a half to two pounds.The wool imported into Europe comes by the way of Casan, the capital of a government of the Russian empire upon the eastern bank of the Wolga; it has naturally a grayish colour, but is easily bleached. Its price a few years back at Paris was 17 francs per kilogramme; that is, about 6 shillings the pound avoirdupois. The waste in picking, carding, and spinning, amounts to about one third of its weight.The mills for spinning Cachemere wool have multiplied very much of late years in France, as appears from the premiums distributed at the exposition of 1834, and the prices of the yarn have fallen from 25 to 30 per cent. notwithstanding their improved fineness and quality. There is a fabric made with a mixture of Cachemere down and spun silk, which is becoming very general. One of the manufacturers, M. Hindenlang, exhibited samples of Cachemere cloth woven with yarn so fine as No. 130 for warp, and No. 228 for weft.Messrs. Pollino, brothers, of Paris, produced an assortment of Cachemere pieces from 22 to 100 francs the yard, dyed of every fancy shade. Their establishment at Ferté-Bernard occupies 700 operatives, with an hydraulic wheel of 60 horse power.The oriental Cashmere shawls are woven by processes extremely slow and consequently costly; whence their prices are very high. They are still sold in Paris at from 4,000 to 10,000 francs a piece; and from 100 to 400 pounds sterling in London. It became necessary therefore either to rest satisfied with work which should have merely a surface appearance, or contrive economical methods of weaving, to produce the real Cachemere style with much less labour. By the aid of the draw-loom and still better of the Jacquard loom, M. Ternaux first succeeded in weaving Cachemere shawls perfectly similar to the oriental in external aspect, which became fashionable under the name of French Cachemere. But to construct shawls altogether identical on both sides with the eastern, was a more difficult task, which was accomplished only at a later period by M. Bauson of Paris.In both modes of manufacture, the piece is mounted by reading-in the warp for the different leaves of the heddles, as is commonly practised for warps in the Jacquard looms. The weaving of imitation shawls is executed, as usual, by as many shuttles as there are colours in the design, and which are thrown across the warp in the order established by thereader. The greater number of these weft yarns being introduced only at intervals into the web, when the composition of the pattern requires it, they remain floating loose at the back of the piece, and are cut afterwards, without affecting in the least the quality of the texture; but there is a considerable waste of stuff in the weaving, which is worked up into carpets.The weaving of the imitation of real Cachemere shawls is different from the above. The yarns intended to form the weft are not only equal in number to that of the colours of the pattern to be imitated, but besides this, as many little shuttles or pirns (like those used by embroiderers) are filled with these yarns, as there are to be colours repeated in the breadth of the piece; which renders their number considerable when the pattern is somewhat complicated and loaded with colours. Each of these small bobbins or shuttles passes through only that portion of the flower in which the colour of its yarn is to appear, and stops at the one side and the other of the cloth exactly at its limit; it then returns upon itself after having crossed the thread of the adjoining shuttle. From this reciprocal intertexture of all the yarns of the shuttles, it results, that although the weft is composed of a great many different threads, they no less constitute a continuous line in the whole breadth of the web, upon which the lay or batten acts in the ordinary wayWe see therefore that the whole art of manufacturing this Cachemere cloth consists in avoiding the confusion of the shuttles, and in not striking up the lay till all have fulfilled their function. The labour does not exceed the strength of a woman, even though she has to direct the loom and work the treddles. Seated on her bench at the end opposite to the middle of the beam, she has for aids in weaving shawls from 45 to 52 inches wide, two girl apprentices, whom she directs and instructs in their tasks. About four hundred days of work are required for a Cachemere shawl of that breadth. For the construction of the loom, seeJacquard.In the oriental process all the figures in relief are made simply with a slender pirn without the shuttle used in European weaving. By the Indians the flower and its ground are made with the pirn, by means of an intertwisting, which renders them in some measure independent of the warp. In the Lyons imitation of this style, the leaves of the heddles lift the yarns of the warp, the needles embroider as in lappett weaving, and the flower is united to the warp by the weft thrown across the piece. Thus a great deal of labour is saved, the eye is pleased with an illusion of the loom, and the shawls cost little more than those made by the common fly shuttle.Considered in reference to their materials, the French shawls present three distinct classes, which characterise the three fabrics of Paris, Lyons, and Nimes.Paris manufactures the French Cachemere, properly so called, of which both the warp and the weft are the yarn of pure Cachemere down. This web represents with fidelity the figures and the shades of colour of the Indian shawl, which it copies; the deception would be complete if the reverse of the piece did not show the cut ends. The Hindoo shawl, also woven at Paris, has its warp in spun silk, which reduces its price without impairing its beauty much.Lyons however has made the greatest progress in the manufacture of shawls. It excels particularly in the texture of its Thibet shawls, the weft of which is yarn spun with a mixture of wool and spun silk.Nimes is remarkable for the low price of its shawls, in which spun silk, Thibet down, and cotton, are all worked up together.The value of shawls exported from France in the following years was:—1831.1832.1833.Francs.Francs.Francs.Woollen1,863,1472,070,9264,319,601Cachemere down433,410655,200609,900Spun silk401,856351,152408,824It appears that M. J. Girard at Sèvres, near Paris, has succeeded best in producing Cachemere shawls equal in stuff and style of work to the oriental, and at a lower price. They have this advantage over the Indian shawls, that they are woven without seams, in a single piece, and exhibit all the variety and the raised effect of the eastern colours. Women and children alone are employed in his factory.

CASHMERE or CACHEMERE, a peculiar textile fabric first imported from the kingdom of Cashmere, and now well imitated in France and Great Britain. The material of the Cashmere shawls is the downy wool found about the roots of the hair of the Thibet goat. The year 1819 is remarkable in the history of French husbandry for the acquisition of this breed of goats, imported from the East under the auspices of their government, by the indefatigable courage and zeal of M. Jaubert, who encountered every fatigue and danger to enrich his country with these valuable animals, aided by the patriotism of M. Ternaux, who first planned this importation, and furnished funds for executing it at his own expence and responsibility. He placed a portion of the flock brought by M. Jaubert, at his villa of Saint Ouen, near Paris, where the climate seemed to be very favourable to them, since for several successive years after their introduction M. Ternaux was enabled to sell a great number of both male and female goats. The quantity of fine fleece or down afforded by each animal annually, is from a pound and a half to two pounds.

The wool imported into Europe comes by the way of Casan, the capital of a government of the Russian empire upon the eastern bank of the Wolga; it has naturally a grayish colour, but is easily bleached. Its price a few years back at Paris was 17 francs per kilogramme; that is, about 6 shillings the pound avoirdupois. The waste in picking, carding, and spinning, amounts to about one third of its weight.

The mills for spinning Cachemere wool have multiplied very much of late years in France, as appears from the premiums distributed at the exposition of 1834, and the prices of the yarn have fallen from 25 to 30 per cent. notwithstanding their improved fineness and quality. There is a fabric made with a mixture of Cachemere down and spun silk, which is becoming very general. One of the manufacturers, M. Hindenlang, exhibited samples of Cachemere cloth woven with yarn so fine as No. 130 for warp, and No. 228 for weft.

Messrs. Pollino, brothers, of Paris, produced an assortment of Cachemere pieces from 22 to 100 francs the yard, dyed of every fancy shade. Their establishment at Ferté-Bernard occupies 700 operatives, with an hydraulic wheel of 60 horse power.

The oriental Cashmere shawls are woven by processes extremely slow and consequently costly; whence their prices are very high. They are still sold in Paris at from 4,000 to 10,000 francs a piece; and from 100 to 400 pounds sterling in London. It became necessary therefore either to rest satisfied with work which should have merely a surface appearance, or contrive economical methods of weaving, to produce the real Cachemere style with much less labour. By the aid of the draw-loom and still better of the Jacquard loom, M. Ternaux first succeeded in weaving Cachemere shawls perfectly similar to the oriental in external aspect, which became fashionable under the name of French Cachemere. But to construct shawls altogether identical on both sides with the eastern, was a more difficult task, which was accomplished only at a later period by M. Bauson of Paris.

In both modes of manufacture, the piece is mounted by reading-in the warp for the different leaves of the heddles, as is commonly practised for warps in the Jacquard looms. The weaving of imitation shawls is executed, as usual, by as many shuttles as there are colours in the design, and which are thrown across the warp in the order established by thereader. The greater number of these weft yarns being introduced only at intervals into the web, when the composition of the pattern requires it, they remain floating loose at the back of the piece, and are cut afterwards, without affecting in the least the quality of the texture; but there is a considerable waste of stuff in the weaving, which is worked up into carpets.

The weaving of the imitation of real Cachemere shawls is different from the above. The yarns intended to form the weft are not only equal in number to that of the colours of the pattern to be imitated, but besides this, as many little shuttles or pirns (like those used by embroiderers) are filled with these yarns, as there are to be colours repeated in the breadth of the piece; which renders their number considerable when the pattern is somewhat complicated and loaded with colours. Each of these small bobbins or shuttles passes through only that portion of the flower in which the colour of its yarn is to appear, and stops at the one side and the other of the cloth exactly at its limit; it then returns upon itself after having crossed the thread of the adjoining shuttle. From this reciprocal intertexture of all the yarns of the shuttles, it results, that although the weft is composed of a great many different threads, they no less constitute a continuous line in the whole breadth of the web, upon which the lay or batten acts in the ordinary wayWe see therefore that the whole art of manufacturing this Cachemere cloth consists in avoiding the confusion of the shuttles, and in not striking up the lay till all have fulfilled their function. The labour does not exceed the strength of a woman, even though she has to direct the loom and work the treddles. Seated on her bench at the end opposite to the middle of the beam, she has for aids in weaving shawls from 45 to 52 inches wide, two girl apprentices, whom she directs and instructs in their tasks. About four hundred days of work are required for a Cachemere shawl of that breadth. For the construction of the loom, seeJacquard.

In the oriental process all the figures in relief are made simply with a slender pirn without the shuttle used in European weaving. By the Indians the flower and its ground are made with the pirn, by means of an intertwisting, which renders them in some measure independent of the warp. In the Lyons imitation of this style, the leaves of the heddles lift the yarns of the warp, the needles embroider as in lappett weaving, and the flower is united to the warp by the weft thrown across the piece. Thus a great deal of labour is saved, the eye is pleased with an illusion of the loom, and the shawls cost little more than those made by the common fly shuttle.

Considered in reference to their materials, the French shawls present three distinct classes, which characterise the three fabrics of Paris, Lyons, and Nimes.

Paris manufactures the French Cachemere, properly so called, of which both the warp and the weft are the yarn of pure Cachemere down. This web represents with fidelity the figures and the shades of colour of the Indian shawl, which it copies; the deception would be complete if the reverse of the piece did not show the cut ends. The Hindoo shawl, also woven at Paris, has its warp in spun silk, which reduces its price without impairing its beauty much.

Lyons however has made the greatest progress in the manufacture of shawls. It excels particularly in the texture of its Thibet shawls, the weft of which is yarn spun with a mixture of wool and spun silk.

Nimes is remarkable for the low price of its shawls, in which spun silk, Thibet down, and cotton, are all worked up together.

The value of shawls exported from France in the following years was:—

It appears that M. J. Girard at Sèvres, near Paris, has succeeded best in producing Cachemere shawls equal in stuff and style of work to the oriental, and at a lower price. They have this advantage over the Indian shawls, that they are woven without seams, in a single piece, and exhibit all the variety and the raised effect of the eastern colours. Women and children alone are employed in his factory.

CASK, (Tonneau, Fr.;Fass, Germ.) manufacture of by mechanical power. Mr. Samuel Brown obtained a patent in Nov., 1825, for certain improvements in machinery for making casks, which seems to be ingenious and worthy of record. His mechanism consists in the first place of a circular saw attached to a bench, with a sliding rest, upon which rest each piece of wood intended to form a stave of a cask is fixed; and the rest being then slidden forward in a curved direction, by the assistance of an adjustable guide, brings the piece of wood against the edge of the rotatory saw, and causes it to be cut into the curved shape required for the edge of the stave. The second feature is an apparatus with cutters attached to a standard, and traversing round with their carrier upon a centre, by means of which the upper and lower edges of the cask are cut round and grooved, called chining, for the purpose of receiving the heads. Thirdly, an apparatus not very dissimilar to the last, by which the straight pieces of wood designed for the heads of the cask are held together, and cut to the circular figure required, and also the bevelled edges produced. And fourthly, a machine in which the cask is made to revolve upon an axis, and a cutting tool to traverse for the purpose of shaving the external part of the cask, and bringing it to a smooth surface.The pieces of wood intended to form the staves of the cask, having been cut to their required length and breadth, are placed upon the slide-rest of the first mentioned machine, and confined by cramps; and the guide, which is a flexible bar, having been previously bent to the intended curve of the stave and fixed in that form, the rest is then slidden forward upon the bench by the hand of the workman, which as it advances (moving in a curved direction) brings the piece of wood against the edge of the revolving circular saw, by which it is cut to the curved shape desired.The guide is a long bar held by a series of movable blocks fitted to the bench byscrews, and is bent to any desired curve by shifting the screws: the edge of the slide-rests which holds the piece of wood about to be cut, runs against the long guide bar, and of consequence is conducted in a corresponding curved course. The circular saw receives a rapid rotatory motion by means of a band or rigger from any first mover; and the piece of wood may be shifted laterally by means of racks and pinions on the side-rest, by the workman turning a handle, which is occasionally necessary in order to bring the piece of wood up to, or away from, the saw.The necessary number of staves being provided, they are then set round within a confining hoop at bottom, and brought into the form of a cask in the usual way, and braced by temporary hoops. The barrel part of the cask being thus prepared, in order to effect the chining, it is placed in a frame upon a platform, which is raised up by a treddle lever, that the end of the barrel may meet the cutters in a sort of lathe above: the cutters are then made to traverse round within the head of the barrel, and, as they proceed, occasionally to expand, by which means the bevels and grooves are cut on the upper edge of the barrel, which is called chining. The barrel being now reversed, the same apparatus is brought to act against the other end, which becomes chined in like manner.The pieces of wood intended to form the heads of the cask are now to be cut straight by a circular saw in a machine, similar to the first described; but in the present instance the slide-rest is to move forward in a straight course. After their straight edges are thus produced, they are to be placed side by side, and confined, when a scribing cutter is made to traverse round, and cut the pieces collectively into the circular form desired for heading the cask.The cask having now been made up, and headed by hand as usual, it is placed between centres, or upon an axle in a machine, and turned round by a rigger or band with a shaving cutter, sliding along a bar above it, which cutter being made to advance, and recede as it slides along, shaves the outer part of the cask to a smooth surface.

CASK, (Tonneau, Fr.;Fass, Germ.) manufacture of by mechanical power. Mr. Samuel Brown obtained a patent in Nov., 1825, for certain improvements in machinery for making casks, which seems to be ingenious and worthy of record. His mechanism consists in the first place of a circular saw attached to a bench, with a sliding rest, upon which rest each piece of wood intended to form a stave of a cask is fixed; and the rest being then slidden forward in a curved direction, by the assistance of an adjustable guide, brings the piece of wood against the edge of the rotatory saw, and causes it to be cut into the curved shape required for the edge of the stave. The second feature is an apparatus with cutters attached to a standard, and traversing round with their carrier upon a centre, by means of which the upper and lower edges of the cask are cut round and grooved, called chining, for the purpose of receiving the heads. Thirdly, an apparatus not very dissimilar to the last, by which the straight pieces of wood designed for the heads of the cask are held together, and cut to the circular figure required, and also the bevelled edges produced. And fourthly, a machine in which the cask is made to revolve upon an axis, and a cutting tool to traverse for the purpose of shaving the external part of the cask, and bringing it to a smooth surface.

The pieces of wood intended to form the staves of the cask, having been cut to their required length and breadth, are placed upon the slide-rest of the first mentioned machine, and confined by cramps; and the guide, which is a flexible bar, having been previously bent to the intended curve of the stave and fixed in that form, the rest is then slidden forward upon the bench by the hand of the workman, which as it advances (moving in a curved direction) brings the piece of wood against the edge of the revolving circular saw, by which it is cut to the curved shape desired.

The guide is a long bar held by a series of movable blocks fitted to the bench byscrews, and is bent to any desired curve by shifting the screws: the edge of the slide-rests which holds the piece of wood about to be cut, runs against the long guide bar, and of consequence is conducted in a corresponding curved course. The circular saw receives a rapid rotatory motion by means of a band or rigger from any first mover; and the piece of wood may be shifted laterally by means of racks and pinions on the side-rest, by the workman turning a handle, which is occasionally necessary in order to bring the piece of wood up to, or away from, the saw.

The necessary number of staves being provided, they are then set round within a confining hoop at bottom, and brought into the form of a cask in the usual way, and braced by temporary hoops. The barrel part of the cask being thus prepared, in order to effect the chining, it is placed in a frame upon a platform, which is raised up by a treddle lever, that the end of the barrel may meet the cutters in a sort of lathe above: the cutters are then made to traverse round within the head of the barrel, and, as they proceed, occasionally to expand, by which means the bevels and grooves are cut on the upper edge of the barrel, which is called chining. The barrel being now reversed, the same apparatus is brought to act against the other end, which becomes chined in like manner.

The pieces of wood intended to form the heads of the cask are now to be cut straight by a circular saw in a machine, similar to the first described; but in the present instance the slide-rest is to move forward in a straight course. After their straight edges are thus produced, they are to be placed side by side, and confined, when a scribing cutter is made to traverse round, and cut the pieces collectively into the circular form desired for heading the cask.

The cask having now been made up, and headed by hand as usual, it is placed between centres, or upon an axle in a machine, and turned round by a rigger or band with a shaving cutter, sliding along a bar above it, which cutter being made to advance, and recede as it slides along, shaves the outer part of the cask to a smooth surface.

CASSAVA.Cassava bread,conaque,&c., are different names given to the starch of the root of the Manioc (Jatropha Manihot, Linn.), prepared in the following manner in the West Indies, the tropical regions of America, and upon the African coast. The tree belongs to the natural family of theeuphorbiaceæ.The roots are washed, and reduced to a pulp by means of a rasp or grater. The pulp is put into coarse strong canvas bags, and thus submitted to the action of a powerful press, by which it parts with most of its noxious juice (used by the Indians for poisoning the barbs of their arrows). As the active principle of this juice is volatile, it is easily dissipated by baking the squeezed cakes of pulp upon a plate of hot iron. Fifty pounds of the fresh juice, when distilled, afford, at first, three ounces of a poisonous water, possessing an intolerably offensive smell; of which, 35 drops being administered to a slave convicted of the crime of poisoning, caused his death in the course of six minutes, amid horrible convulsions.[16][16]Memoir of Dr. Fermin, communicated to the Academy of Berlin, concerning experiments made at Cayenne, upon the juice of the Manioc.The pulp dried in the manner above described concretes into lumps, which become hard and friable as they cool. They are then broken into pieces, and laid out in the sun to dry. In this state they afford a wholesome nutriment, and are habitually used as such by the negroes, as also by many white people. These cakes constitute the only provisions laid in by the natives, in their voyages upon the Amazons. Boiled in water with a little beef or mutton they form a kind of soup similar to that of rice.The Cassava cakes sent to Europe (which I have eaten with pleasure) are composed almost entirely of starch, along with a few fibres of the ligneous matter. It may be purified by diffusion through warm water, passing the milky mixture through a linen cloth, evaporating the strained liquid over the fire, with constant agitation. The starch dissolved by the heat, thickens as the water evaporates, but on being stirred, it becomes granulated, and must be finally dried in a proper stove. Its specific gravity is 1·530—that of the other species of starch.The product obtained by this treatment is known in commerce under the name oftapioca; and being starch very nearly pure, is often prescribed by physicians as an aliment of easy digestion. A tolerably good imitation of it is made by heating, stirring, and drying potato starch in a similar way.The expressed juice of the root of manioc contains in suspension a very fine fecula, which it deposits slowly upon the bottom of the vessels. When freed by decantation from the supernatant liquor, washed several times and dried, it forms a beautiful starch, which creaks on pressure with the fingers. It is calledcipipa, in French Guyana; it is employed for many delicate articles of cookery, especially pastry, as also for hair powder, starching linen, &c.Cassava flour, as imported, may be distinguished from arrow-root and other kindsof starch, by the appearance of its particles viewed in a microscope. They are spherical, all about 1-1000th of an inch in diameter, and associated in groups; those of potato starch are irregular ellipsoids, varying in size from 1-300th to 1-3000th of an inch; those of arrow-root have the same shape nearly, but vary in size from 1-500th to 1-800th of an inch; those of wheat are separate spheres 1-1000th of an inch.

CASSAVA.Cassava bread,conaque,&c., are different names given to the starch of the root of the Manioc (Jatropha Manihot, Linn.), prepared in the following manner in the West Indies, the tropical regions of America, and upon the African coast. The tree belongs to the natural family of theeuphorbiaceæ.

The roots are washed, and reduced to a pulp by means of a rasp or grater. The pulp is put into coarse strong canvas bags, and thus submitted to the action of a powerful press, by which it parts with most of its noxious juice (used by the Indians for poisoning the barbs of their arrows). As the active principle of this juice is volatile, it is easily dissipated by baking the squeezed cakes of pulp upon a plate of hot iron. Fifty pounds of the fresh juice, when distilled, afford, at first, three ounces of a poisonous water, possessing an intolerably offensive smell; of which, 35 drops being administered to a slave convicted of the crime of poisoning, caused his death in the course of six minutes, amid horrible convulsions.[16]

[16]Memoir of Dr. Fermin, communicated to the Academy of Berlin, concerning experiments made at Cayenne, upon the juice of the Manioc.

[16]Memoir of Dr. Fermin, communicated to the Academy of Berlin, concerning experiments made at Cayenne, upon the juice of the Manioc.

The pulp dried in the manner above described concretes into lumps, which become hard and friable as they cool. They are then broken into pieces, and laid out in the sun to dry. In this state they afford a wholesome nutriment, and are habitually used as such by the negroes, as also by many white people. These cakes constitute the only provisions laid in by the natives, in their voyages upon the Amazons. Boiled in water with a little beef or mutton they form a kind of soup similar to that of rice.

The Cassava cakes sent to Europe (which I have eaten with pleasure) are composed almost entirely of starch, along with a few fibres of the ligneous matter. It may be purified by diffusion through warm water, passing the milky mixture through a linen cloth, evaporating the strained liquid over the fire, with constant agitation. The starch dissolved by the heat, thickens as the water evaporates, but on being stirred, it becomes granulated, and must be finally dried in a proper stove. Its specific gravity is 1·530—that of the other species of starch.

The product obtained by this treatment is known in commerce under the name oftapioca; and being starch very nearly pure, is often prescribed by physicians as an aliment of easy digestion. A tolerably good imitation of it is made by heating, stirring, and drying potato starch in a similar way.

The expressed juice of the root of manioc contains in suspension a very fine fecula, which it deposits slowly upon the bottom of the vessels. When freed by decantation from the supernatant liquor, washed several times and dried, it forms a beautiful starch, which creaks on pressure with the fingers. It is calledcipipa, in French Guyana; it is employed for many delicate articles of cookery, especially pastry, as also for hair powder, starching linen, &c.

Cassava flour, as imported, may be distinguished from arrow-root and other kindsof starch, by the appearance of its particles viewed in a microscope. They are spherical, all about 1-1000th of an inch in diameter, and associated in groups; those of potato starch are irregular ellipsoids, varying in size from 1-300th to 1-3000th of an inch; those of arrow-root have the same shape nearly, but vary in size from 1-500th to 1-800th of an inch; those of wheat are separate spheres 1-1000th of an inch.

CASSIS, the black currant (ribes nigra, Linn.), which was formerly celebrated for its medicinal properties with very little reason.The only technical use to which it is now applied is in preparing the agreeableliqueurcalledratafia, by the following French recipe:—Stone, and crush three pounds of black currants, adding to the magma one drachm of cloves, two of cinnamon, four quarts of spirit of wine, at 18° Baumé (seeAréomètre of Baumé), and 21⁄2pounds of sugar. Put the mixture into a bottle which is to be well corked; let it digest for a fortnight, shaking the bottle once daily during the first eight days; then strain through a linen cloth, and finally pass through filtering paper.

CASSIS, the black currant (ribes nigra, Linn.), which was formerly celebrated for its medicinal properties with very little reason.

The only technical use to which it is now applied is in preparing the agreeableliqueurcalledratafia, by the following French recipe:—Stone, and crush three pounds of black currants, adding to the magma one drachm of cloves, two of cinnamon, four quarts of spirit of wine, at 18° Baumé (seeAréomètre of Baumé), and 21⁄2pounds of sugar. Put the mixture into a bottle which is to be well corked; let it digest for a fortnight, shaking the bottle once daily during the first eight days; then strain through a linen cloth, and finally pass through filtering paper.

CASTING OF METALS. (SeeFounding.)Casts from elastic moulds.—Being much engaged in taking casts from anatomical preparations, Mr. Douglas Fox, Surgeon, Derby, found great difficulty, principally with hard bodies, which, when undercut, or having considerable overlaps, did not admit of the removal of moulds of the ordinary kind, except with injury. These difficulties suggested to him the use of elastic moulds, which, giving way as they were withdrawn from complicated parts, would return to their proper shape; and he ultimately succeeded in making such moulds of glue, which not only relieved him from all his difficulties, but were attended with great advantages, in consequence of the small number of pieces into which it was necessary to divide the mould.The body to be moulded, previously oiled, must be secured one inch above the surface of a board, and then surrounded by a wall of clay, about an inch distant from its sides. The clay must also extend rather higher than the contained body: into this, warm melted glue, as thick as possible so that it will run, is to be poured, so as to completely cover the body to be moulded; the glue is to remain till cold, when it will have set into an elastic mass, just such as is required.Having removed the clay, the glue is to be cut into as many pieces as may be necessary for its removal, either by a sharp-pointed knife, or by having placed threads in the requisite situations of the body to be moulded, which may be drawn away when the glue is set, so as to cut it out in any direction.The portions of the glue mould having been removed from the original, are to be placed together and bound round by tape.In some instances it is well to run small wooden pegs through the portions of glue, so as to keep them exactly in their proper positions. If the mould be of considerable size, it is better to let it be bound with moderate tightness upon a board to prevent it bending whilst in use; having done as above described, the plaster of Paris, as in common casting, is to be poured into the mould, and left to set.In many instances wax may also be cast in glue, if it is not poured in whilst too hot; as the wax cools so rapidly when applied to the cold glue, that the sharpness of the impression is not injured.Glue has been described as succeeding well where an elastic mould is alone applicable; but many modifications are admissible. When the moulds are not used soon after being made, treacle should be previously mixed with the glue (as employed by printers) to prevent it becoming hard.The description thus given is with reference to moulding those bodies which cannot be so done by any other than an elastic mould; but glue moulds will be found greatly to facilitate casting in many departments, as a mould may be frequently taken by this method in two or three pieces, which would, on any other principle, require many.

CASTING OF METALS. (SeeFounding.)Casts from elastic moulds.—Being much engaged in taking casts from anatomical preparations, Mr. Douglas Fox, Surgeon, Derby, found great difficulty, principally with hard bodies, which, when undercut, or having considerable overlaps, did not admit of the removal of moulds of the ordinary kind, except with injury. These difficulties suggested to him the use of elastic moulds, which, giving way as they were withdrawn from complicated parts, would return to their proper shape; and he ultimately succeeded in making such moulds of glue, which not only relieved him from all his difficulties, but were attended with great advantages, in consequence of the small number of pieces into which it was necessary to divide the mould.

The body to be moulded, previously oiled, must be secured one inch above the surface of a board, and then surrounded by a wall of clay, about an inch distant from its sides. The clay must also extend rather higher than the contained body: into this, warm melted glue, as thick as possible so that it will run, is to be poured, so as to completely cover the body to be moulded; the glue is to remain till cold, when it will have set into an elastic mass, just such as is required.

Having removed the clay, the glue is to be cut into as many pieces as may be necessary for its removal, either by a sharp-pointed knife, or by having placed threads in the requisite situations of the body to be moulded, which may be drawn away when the glue is set, so as to cut it out in any direction.

The portions of the glue mould having been removed from the original, are to be placed together and bound round by tape.

In some instances it is well to run small wooden pegs through the portions of glue, so as to keep them exactly in their proper positions. If the mould be of considerable size, it is better to let it be bound with moderate tightness upon a board to prevent it bending whilst in use; having done as above described, the plaster of Paris, as in common casting, is to be poured into the mould, and left to set.

In many instances wax may also be cast in glue, if it is not poured in whilst too hot; as the wax cools so rapidly when applied to the cold glue, that the sharpness of the impression is not injured.

Glue has been described as succeeding well where an elastic mould is alone applicable; but many modifications are admissible. When the moulds are not used soon after being made, treacle should be previously mixed with the glue (as employed by printers) to prevent it becoming hard.

The description thus given is with reference to moulding those bodies which cannot be so done by any other than an elastic mould; but glue moulds will be found greatly to facilitate casting in many departments, as a mould may be frequently taken by this method in two or three pieces, which would, on any other principle, require many.


Back to IndexNext