CASTOR. (Eng. and Fr.;Biber, Germ.) The castor is an amphibious quadruped, inhabiting North America; also found in small numbers in the islands of the Rhone. In the arts, the skin of this animal is employed either as a fur or as affording the silky hair called beaver, with which the best hats are covered. Beaver skins, which form a very considerable article of trade, are divided into 3 sorts: 1. The fresh beaver skins from castors, killed in winter before shedding their hair; these are most in request among the furriers, as being the most beautiful. 2. The dry or lean beavers are the skins of the animals killed during the moulting season; they are not much esteemed, as the skin is rather bare. 3. The fat castors: these are the skins of the first sort, which have been worn for some time upon the persons of the savages and have got imbued with their sweat. The last are principally used in the hat manufacture. In France, the marine otter has been for many years substituted in the place of the castor or beaver.
CASTOR. (Eng. and Fr.;Biber, Germ.) The castor is an amphibious quadruped, inhabiting North America; also found in small numbers in the islands of the Rhone. In the arts, the skin of this animal is employed either as a fur or as affording the silky hair called beaver, with which the best hats are covered. Beaver skins, which form a very considerable article of trade, are divided into 3 sorts: 1. The fresh beaver skins from castors, killed in winter before shedding their hair; these are most in request among the furriers, as being the most beautiful. 2. The dry or lean beavers are the skins of the animals killed during the moulting season; they are not much esteemed, as the skin is rather bare. 3. The fat castors: these are the skins of the first sort, which have been worn for some time upon the persons of the savages and have got imbued with their sweat. The last are principally used in the hat manufacture. In France, the marine otter has been for many years substituted in the place of the castor or beaver.
CASTOR or CASTOREUM. This name is given to a secretion of the castors,contained in pear-shaped cellular organic sacs, placed near the genital organs of both the male and female animals. It is a substance analogous to civet and musk, of a consistence similar to thick honey. It has a bitter acrid taste; a powerful, penetrating, fetid, and very volatile smell; but, when dried, it becomes inodorous. Several chemists, and in particular Bouillon Lagrange, Laugier, and Hildebrandt have examined castor; and found it to be composed of a resin, a fatty substance, a volatile oil, an extractive matter, benzoic acid, and some salts.The mode of preparing it is very simple. The sacs are cut off from the castors when they are killed, and are dried to prevent the skin being affected by the weather. In this state, the interior substance is solid, of a dark colour, and a faint smell; it softens with heat, and becomes brittle by cold. Its fracture betrays fragments of membranes, indicating its organic structure. When chewed, it adheres to the teeth somewhat like wax; it has a bitter, slightly acrid, and nauseous taste.The castor bags, as imported, are often joined in pairs by a kind of ligature. Sometimes the substance which constitutes their value is sophisticated; a portion of the castoreum being extracted, and replaced by lead, clay, gums, or some other foreign matters. This fraud may be easily detected, even when it exists in a small degree, by the absence of the membranous partitions in the interior of the bags, as well as by the altered smell and taste.The use of castoreum in medicine is considerable, especially in nervous and spasmodic diseases, and it is often advantageously combined with opium.
CASTOR or CASTOREUM. This name is given to a secretion of the castors,contained in pear-shaped cellular organic sacs, placed near the genital organs of both the male and female animals. It is a substance analogous to civet and musk, of a consistence similar to thick honey. It has a bitter acrid taste; a powerful, penetrating, fetid, and very volatile smell; but, when dried, it becomes inodorous. Several chemists, and in particular Bouillon Lagrange, Laugier, and Hildebrandt have examined castor; and found it to be composed of a resin, a fatty substance, a volatile oil, an extractive matter, benzoic acid, and some salts.
The mode of preparing it is very simple. The sacs are cut off from the castors when they are killed, and are dried to prevent the skin being affected by the weather. In this state, the interior substance is solid, of a dark colour, and a faint smell; it softens with heat, and becomes brittle by cold. Its fracture betrays fragments of membranes, indicating its organic structure. When chewed, it adheres to the teeth somewhat like wax; it has a bitter, slightly acrid, and nauseous taste.
The castor bags, as imported, are often joined in pairs by a kind of ligature. Sometimes the substance which constitutes their value is sophisticated; a portion of the castoreum being extracted, and replaced by lead, clay, gums, or some other foreign matters. This fraud may be easily detected, even when it exists in a small degree, by the absence of the membranous partitions in the interior of the bags, as well as by the altered smell and taste.
The use of castoreum in medicine is considerable, especially in nervous and spasmodic diseases, and it is often advantageously combined with opium.
CASTORINE. A chemical principle lately discovered to the amount of a few parts per cent. in Castoreum.
CASTORINE. A chemical principle lately discovered to the amount of a few parts per cent. in Castoreum.
CASTOR OIL. The expressed oil of the seeds of thePalma Christi, orRicinus communis, a native tree of the West Indies and South America; but which has been cultivated in France, Italy, and Spain. Bussy and Lecanu discovered in it 3 species of fatty matters, obtained partly by saponification, and partly by dry distillation—the margaritic, ricinic, and elaiodic acids. None of these has been separately applied to any use in the arts.The quantity of castor oil imported in 1835 into the United Kingdom, was 1,109,307 libs.; retained for home consumption, 670,205 libs. SeeOils.
CASTOR OIL. The expressed oil of the seeds of thePalma Christi, orRicinus communis, a native tree of the West Indies and South America; but which has been cultivated in France, Italy, and Spain. Bussy and Lecanu discovered in it 3 species of fatty matters, obtained partly by saponification, and partly by dry distillation—the margaritic, ricinic, and elaiodic acids. None of these has been separately applied to any use in the arts.
The quantity of castor oil imported in 1835 into the United Kingdom, was 1,109,307 libs.; retained for home consumption, 670,205 libs. SeeOils.
CATECHU, absurdly called Terra Japonica, is an extract made from the wood of the treemimosa catechu, which grows in Bombay, Bengal, and other parts of India. It is prepared by boiling the chips of the interior of the trunk in water, evaporating the solution to the consistence of syrup over the fire, and then exposing it in the sun to harden. It occurs in flat rough cakes, and under two forms. The first, or the Bombay, is of uniform texture, of a dark red colour, and of specific gravity 1·39. The second is more friable and less solid. It has a chocolate colour, and is marked inside with red streaks. Its specific gravity is 1·28.According to Sir H. Davy, these two species are composed as follows:—Bombay.Bengal.Tannin54·548·5Extractive34·036·5Mucilage6·58Insoluble matters, sand and lime57100·0100·0Areka nuts are also found to yield catechu; for which purpose they are cut into pieces watered in an earthen pot with solution of nitre, and have a little of the bark of a species of mimosa added to them. The liquor is then boiled with the nuts, and affords an inspissated decoction.Good catechu is a brittle, compact solid, of a dull fracture. It has no smell, but a very astringent taste. Water dissolves the whole of it, except the earthy matter, which is probably added during its preparation. Alcohol dissolves its tannin and extractive. The latter may be oxidized, and thus rendered insoluble in alcohol, by dissolving the catechu in water, exposing it for some time to a boiling heat, and evaporating to dryness.The tannin of catechu differs from that of galls, in being soluble in alcohol, and more soluble in water. It precipitates iron of an olive colour, and gelatine in a mass which gradually becomes brown.It has been long employed in India for tanning skins, where it is said to effect this object in five days. I have seen a piece of sole leather completely tanned by it in this country in ten days, the ox-hide having been made into a bag, with the hair outside, and kept filled with the solution of catechu. In India it has also been used to give a brown dye tocotton goods, and of late years it has been extensively introduced into the calico print-works of Europe. The salts of copper with sal ammoniac cause it to give a bronze colour, which is very fast; the proto-muriate of tin, a brownish yellow; the per-chloride of tin, with the addition of nitrate of copper, a deep bronze hue; acetate of alumina alone, a reddish brown, and, with nitrate of copper, a reddish olive gray; nitrate of iron, a dark brown gray. For dyeing a golden coffee brown, it has entirely superseded madder; one pound of it being equivalent to six pounds of this root.A solution of one part of catechu in ten parts of water, which is reddish brown, exhibits the following results with—AcidsA brightened shade.AlkalisA darkened shade.Proto-sulphate of ironOlive brown precipitate.Per-sulphate of ironOlive green do.Sulphate of copperYellowish brown.AlumA brightening of the liquor.Per-nitrate of ironOlive green precipitate.Nitrate of copperYellowish brown do.Nitrate of leadSalmondo.Proto-nitrate of mercuryMilk-coffeedo.Muriate of aluminaBrown yellow.Muriate of tinDo.do.Per-chloride of tinDo.darker.Corrosive sublimateLight chocolate do.Acetate of aluminaBrightening of the liquor.Acetate of copperCopious brown precipitate.Acetate of leadSalmon coloureddo.Bichromate of potashCopious browndo.Pure tannin may be obtained from catechu, by treating it with sulphuric acid and carbonate of lead; but this process has no manufacturing application.
CATECHU, absurdly called Terra Japonica, is an extract made from the wood of the treemimosa catechu, which grows in Bombay, Bengal, and other parts of India. It is prepared by boiling the chips of the interior of the trunk in water, evaporating the solution to the consistence of syrup over the fire, and then exposing it in the sun to harden. It occurs in flat rough cakes, and under two forms. The first, or the Bombay, is of uniform texture, of a dark red colour, and of specific gravity 1·39. The second is more friable and less solid. It has a chocolate colour, and is marked inside with red streaks. Its specific gravity is 1·28.
According to Sir H. Davy, these two species are composed as follows:—
Areka nuts are also found to yield catechu; for which purpose they are cut into pieces watered in an earthen pot with solution of nitre, and have a little of the bark of a species of mimosa added to them. The liquor is then boiled with the nuts, and affords an inspissated decoction.
Good catechu is a brittle, compact solid, of a dull fracture. It has no smell, but a very astringent taste. Water dissolves the whole of it, except the earthy matter, which is probably added during its preparation. Alcohol dissolves its tannin and extractive. The latter may be oxidized, and thus rendered insoluble in alcohol, by dissolving the catechu in water, exposing it for some time to a boiling heat, and evaporating to dryness.
The tannin of catechu differs from that of galls, in being soluble in alcohol, and more soluble in water. It precipitates iron of an olive colour, and gelatine in a mass which gradually becomes brown.
It has been long employed in India for tanning skins, where it is said to effect this object in five days. I have seen a piece of sole leather completely tanned by it in this country in ten days, the ox-hide having been made into a bag, with the hair outside, and kept filled with the solution of catechu. In India it has also been used to give a brown dye tocotton goods, and of late years it has been extensively introduced into the calico print-works of Europe. The salts of copper with sal ammoniac cause it to give a bronze colour, which is very fast; the proto-muriate of tin, a brownish yellow; the per-chloride of tin, with the addition of nitrate of copper, a deep bronze hue; acetate of alumina alone, a reddish brown, and, with nitrate of copper, a reddish olive gray; nitrate of iron, a dark brown gray. For dyeing a golden coffee brown, it has entirely superseded madder; one pound of it being equivalent to six pounds of this root.
A solution of one part of catechu in ten parts of water, which is reddish brown, exhibits the following results with—
Pure tannin may be obtained from catechu, by treating it with sulphuric acid and carbonate of lead; but this process has no manufacturing application.
CATGUT, (Corde à boyau, Fr.;Darmsaite, Germ.) the name absurdly enough given to cords made of the twisted intestines of the sheep. The guts being taken while warm out of the body of the animal, are to be cleared of feculent matter, freed from any adhering fat, and washed in a tub of water. The small ends of all the intestines are next to be tied together, and laid on the edge of the tub, while the body of them is left to steep in some water, frequently changed, during two days, in order to loosen the peritoneal and mucous membranes. The bundle of intestines is then laid upon a sloping table which overhangs the tub, and their surface is scraped with the back of a knife, to try if the external membrane will come away freely in breadths of about half the circumference. This substance is called by the French manufacturersfilandre, and the processfiler. If we attempt to remove it by beginning at the large end of the intestine, we shall not succeed. Thisfilandreis employed as thread to sew intestines, and to make the cords of rackets and battledores. The flayed guts are put again into fresh water, and after steeping a night, are taken out and scraped clean next day, on the wooden bench with the rounded back of a knife. This is calledcuring the gut. The large ends are now cut off, and sold to the pork-butchers. The intestines are again steeped for a night in fresh water, and the following day in an alkaline lixivium made by adding 4 ounces of potash, and as much pearlash, to a pail of water containing about 3 or 4 imperial gallons. This lye is poured in successive quantities upon the intestines, and poured off again, after 2 or 3 hours, till they be purified. They are now drawn several times through an open brass thimble, and pressed against it with the nail, in order to smooth and equalize their surface. They are lastly sorted, according to their sizes, to suit different purposes.Whip-cordis made from the above intestines, which are sewed together endwise by thefilandre, each junction being cut aslant, so as to make it strong and smooth. The cord is put into the frame, and each end is twisted separately; for whip-cord is seldom made out of two guts twisted together. When twisted it is to be sulphured (seeSulphuring) once or twice. It may also be dyed black with common ink, pink with red ink, which the sulphurous acid changes to pink, and green with a green dye which the colour dealers sell for the purpose. The guts take the dyes readily. After being well smoothed, the cord is to be dried, and coiled up for sale.Hatter’s cords for bowstrings.—The longest and largest intestines of sheep, after being properly treated with the potash, are to be twisted 4, 6, 8, 10, or 12 together, according to the intended size of the cord, which is usually made from 15 to 25 feet long. This cord must be free from seams and knots. When half dry, it must be exposed twice to the fumes of burning sulphur; and, after each operation, it is to be well stretched and smoothed; it should be finally dried in a state of tension.Clockmaker’s cord.—This cord should be extremely thin, and be therefore made fromvery small intestines, or from intestines slit up in their length by a knife fitted for the purpose; being a kind of lancet surmounted with a ball of lead or wood. The wet gut is strained over the ball which guides the knife, and the two sections fall down into a vessel placed beneath. Each hand pulls a section. Clockmakers also make use of stronger cords made of 2 or more guts twisted together.Fiddle and harp strings.—These require the greatest care and dexterity on the part of the workmen. The treble strings are peculiarly difficult to make, and are best made at Naples, probably because their sheep, from their small size and leanness, afford the best raw material.The first scraping of the guts intended for fiddle-strings must be very carefully performed; and the alkaline lyes being clarified with a little alum, are added, in a progressively stronger state from day to day, during 4 or 5 days, till the guts be well bleached and swollen. They must then be passed through the thimble, and again cleansed with the lixivium; after which they are washed, spun, or twisted and sulphured during two hours. They are finally polished by friction, and dried. Sometimes they are sulphured twice or thrice before being dried, and are polished between horse-hair cords.It has been long a subject of complaint, as well as a serious inconvenience to musicians, that catgut strings cannot be made in England of the same goodness and strength as those imported from Italy. These are made of the peritoneal covering of the intestines of the sheep; and, in this country, they are manufactured at Whitechapel, and probably elsewhere in considerable quantity; the consumption of them for harps, as well as for the instruments of the violin family, being very great. Their chief fault is weakness; whence it is difficult to bring the smaller ones, required for the higher notes, to concert pitch; maintaining at the same time, in their form and construction, that tenuity or smallness of diameter, which is required to produce a brilliant and clear tone.The inconvenience arising from their breaking when in use, and the expense in the case of harps, where so many are required, are such as to render it highly desirable to improve a manufacture which, to many individuals may, however, appear sufficiently contemptible.It is well known to physiologists, that the membranes of lean animals are far more tough than of those animals which are fat or in high condition; and there is no reason to doubt that the superiority of the Italian strings arises from the state of the sheep in that country. In London, where no lean animals are slaughtered, and where, indeed, an extravagant and useless degree of fattening, at least for the purpose of food, is given to sheep in particular, it is easy to comprehend why their membranes can never afford a material of the requisite tenacity. It is less easy to suggest an adequate remedy; but a knowledge of the general principle, should this notice meet the eyes of those interested in the subject, may at least serve the purpose of diminishing the evil and improving the manufacture, by inducing them to choose in the market the offal of such carcases as appear least overburthened with fat. It is probable that such a manufacture might be advantageously established in those parts of the country where the fashion has not, as in London, led to the use of meat so much overfed; and it is equally likely, that in the choice of sheep for this purpose, advantage would arise from using the Welch, the Highland, or the Southdown breeds, in preference to those which, like the Lincoln, are prone to excessive accumulations of fat. It is equally probable, that sheep dying of some of the diseases accompanied by emaciation, would be peculiarly adapted to this purpose.That these suggestions are not merely speculative is proved by comparing the strength of the membranes in question, or that of the other membranous parts, in the unfattened Highland sheep, with that of those found in the London markets.
CATGUT, (Corde à boyau, Fr.;Darmsaite, Germ.) the name absurdly enough given to cords made of the twisted intestines of the sheep. The guts being taken while warm out of the body of the animal, are to be cleared of feculent matter, freed from any adhering fat, and washed in a tub of water. The small ends of all the intestines are next to be tied together, and laid on the edge of the tub, while the body of them is left to steep in some water, frequently changed, during two days, in order to loosen the peritoneal and mucous membranes. The bundle of intestines is then laid upon a sloping table which overhangs the tub, and their surface is scraped with the back of a knife, to try if the external membrane will come away freely in breadths of about half the circumference. This substance is called by the French manufacturersfilandre, and the processfiler. If we attempt to remove it by beginning at the large end of the intestine, we shall not succeed. Thisfilandreis employed as thread to sew intestines, and to make the cords of rackets and battledores. The flayed guts are put again into fresh water, and after steeping a night, are taken out and scraped clean next day, on the wooden bench with the rounded back of a knife. This is calledcuring the gut. The large ends are now cut off, and sold to the pork-butchers. The intestines are again steeped for a night in fresh water, and the following day in an alkaline lixivium made by adding 4 ounces of potash, and as much pearlash, to a pail of water containing about 3 or 4 imperial gallons. This lye is poured in successive quantities upon the intestines, and poured off again, after 2 or 3 hours, till they be purified. They are now drawn several times through an open brass thimble, and pressed against it with the nail, in order to smooth and equalize their surface. They are lastly sorted, according to their sizes, to suit different purposes.
Whip-cordis made from the above intestines, which are sewed together endwise by thefilandre, each junction being cut aslant, so as to make it strong and smooth. The cord is put into the frame, and each end is twisted separately; for whip-cord is seldom made out of two guts twisted together. When twisted it is to be sulphured (seeSulphuring) once or twice. It may also be dyed black with common ink, pink with red ink, which the sulphurous acid changes to pink, and green with a green dye which the colour dealers sell for the purpose. The guts take the dyes readily. After being well smoothed, the cord is to be dried, and coiled up for sale.
Hatter’s cords for bowstrings.—The longest and largest intestines of sheep, after being properly treated with the potash, are to be twisted 4, 6, 8, 10, or 12 together, according to the intended size of the cord, which is usually made from 15 to 25 feet long. This cord must be free from seams and knots. When half dry, it must be exposed twice to the fumes of burning sulphur; and, after each operation, it is to be well stretched and smoothed; it should be finally dried in a state of tension.
Clockmaker’s cord.—This cord should be extremely thin, and be therefore made fromvery small intestines, or from intestines slit up in their length by a knife fitted for the purpose; being a kind of lancet surmounted with a ball of lead or wood. The wet gut is strained over the ball which guides the knife, and the two sections fall down into a vessel placed beneath. Each hand pulls a section. Clockmakers also make use of stronger cords made of 2 or more guts twisted together.
Fiddle and harp strings.—These require the greatest care and dexterity on the part of the workmen. The treble strings are peculiarly difficult to make, and are best made at Naples, probably because their sheep, from their small size and leanness, afford the best raw material.
The first scraping of the guts intended for fiddle-strings must be very carefully performed; and the alkaline lyes being clarified with a little alum, are added, in a progressively stronger state from day to day, during 4 or 5 days, till the guts be well bleached and swollen. They must then be passed through the thimble, and again cleansed with the lixivium; after which they are washed, spun, or twisted and sulphured during two hours. They are finally polished by friction, and dried. Sometimes they are sulphured twice or thrice before being dried, and are polished between horse-hair cords.
It has been long a subject of complaint, as well as a serious inconvenience to musicians, that catgut strings cannot be made in England of the same goodness and strength as those imported from Italy. These are made of the peritoneal covering of the intestines of the sheep; and, in this country, they are manufactured at Whitechapel, and probably elsewhere in considerable quantity; the consumption of them for harps, as well as for the instruments of the violin family, being very great. Their chief fault is weakness; whence it is difficult to bring the smaller ones, required for the higher notes, to concert pitch; maintaining at the same time, in their form and construction, that tenuity or smallness of diameter, which is required to produce a brilliant and clear tone.
The inconvenience arising from their breaking when in use, and the expense in the case of harps, where so many are required, are such as to render it highly desirable to improve a manufacture which, to many individuals may, however, appear sufficiently contemptible.
It is well known to physiologists, that the membranes of lean animals are far more tough than of those animals which are fat or in high condition; and there is no reason to doubt that the superiority of the Italian strings arises from the state of the sheep in that country. In London, where no lean animals are slaughtered, and where, indeed, an extravagant and useless degree of fattening, at least for the purpose of food, is given to sheep in particular, it is easy to comprehend why their membranes can never afford a material of the requisite tenacity. It is less easy to suggest an adequate remedy; but a knowledge of the general principle, should this notice meet the eyes of those interested in the subject, may at least serve the purpose of diminishing the evil and improving the manufacture, by inducing them to choose in the market the offal of such carcases as appear least overburthened with fat. It is probable that such a manufacture might be advantageously established in those parts of the country where the fashion has not, as in London, led to the use of meat so much overfed; and it is equally likely, that in the choice of sheep for this purpose, advantage would arise from using the Welch, the Highland, or the Southdown breeds, in preference to those which, like the Lincoln, are prone to excessive accumulations of fat. It is equally probable, that sheep dying of some of the diseases accompanied by emaciation, would be peculiarly adapted to this purpose.
That these suggestions are not merely speculative is proved by comparing the strength of the membranes in question, or that of the other membranous parts, in the unfattened Highland sheep, with that of those found in the London markets.
CATHARTINE. The name proposed by MM. Feneulle and Lassaigne for a chemical principle, which they suppose to be the active constituent of senna.
CATHARTINE. The name proposed by MM. Feneulle and Lassaigne for a chemical principle, which they suppose to be the active constituent of senna.
CAUSTIC. Any chemical substance corrosive of the skin and flesh; as potash, called common caustic, and nitrate of silver, called lunar caustic, by surgeons.
CAUSTIC. Any chemical substance corrosive of the skin and flesh; as potash, called common caustic, and nitrate of silver, called lunar caustic, by surgeons.
CAVIAR. The salted roe of certain species of fish, especially the sturgeon. This product forms a considerable article of trade, being exported annually from the town of Astrachan alone, upon the shores of the Caspian sea, to the amount of several hundred tons. The Italians first introduced it into Eastern Europe from Constantinople, under the name ofcaviale. Russia has now monopolized this branch of commerce. It is prepared in the following manner:—The female sturgeon is gutted; the roe is separated from the other parts, and cleaned by passing it through a very fine searce, by rubbing it into a pulp between the hands: this is afterwards thrown into tubs, with the addition of a considerable quantity of salt; the whole is then well stirred, and set aside in a warm apartment. There is another sort of caviar, the compressed, in which the roe, after having been cured in strong brine, is dried in the sun, then put into a cask, and subjected to strong pressure.
CAVIAR. The salted roe of certain species of fish, especially the sturgeon. This product forms a considerable article of trade, being exported annually from the town of Astrachan alone, upon the shores of the Caspian sea, to the amount of several hundred tons. The Italians first introduced it into Eastern Europe from Constantinople, under the name ofcaviale. Russia has now monopolized this branch of commerce. It is prepared in the following manner:—
The female sturgeon is gutted; the roe is separated from the other parts, and cleaned by passing it through a very fine searce, by rubbing it into a pulp between the hands: this is afterwards thrown into tubs, with the addition of a considerable quantity of salt; the whole is then well stirred, and set aside in a warm apartment. There is another sort of caviar, the compressed, in which the roe, after having been cured in strong brine, is dried in the sun, then put into a cask, and subjected to strong pressure.
CAWK. The English miner’s name for sulphate of baryta, or heavy spar.
CAWK. The English miner’s name for sulphate of baryta, or heavy spar.
CEDRA, (Cedrat, Fr.) is the fruit of a species of orange, citron, or lemon, a tree which bears the same name. Its peel is very thick, and covered with an epidermis which encloses a very fragrant and highly prized essential oil. The preserves flavoured with it are very agreeable. The citrons are cut into quarters for the dry comfits, but are put whole into the liquid ones. The liquorist-perfumer makes with the peel of thecedraan excellentliqueur; for which purpose, he plucks them before they are quite ripe; grates down the peel into a little brandy, or cuts them into slices, and infuses these in the spirits. This infusion is distilled for making perfume; but the flavour is better when the infusion itself is used. SeeEssences,Liquorist,Perfumery.
CEDRA, (Cedrat, Fr.) is the fruit of a species of orange, citron, or lemon, a tree which bears the same name. Its peel is very thick, and covered with an epidermis which encloses a very fragrant and highly prized essential oil. The preserves flavoured with it are very agreeable. The citrons are cut into quarters for the dry comfits, but are put whole into the liquid ones. The liquorist-perfumer makes with the peel of thecedraan excellentliqueur; for which purpose, he plucks them before they are quite ripe; grates down the peel into a little brandy, or cuts them into slices, and infuses these in the spirits. This infusion is distilled for making perfume; but the flavour is better when the infusion itself is used. SeeEssences,Liquorist,Perfumery.
CELESTINE. Native sulphate of strontia, found abundantly near Bristol, in the red marl formation. It is decomposed, by ignition with charcoal, into sulphuret of strontia, which is converted into nitrate by saturation with nitric acid, evaporation, and crystallization. This nitrate is employed for the production of the red light in theatrical fire-works.
CELESTINE. Native sulphate of strontia, found abundantly near Bristol, in the red marl formation. It is decomposed, by ignition with charcoal, into sulphuret of strontia, which is converted into nitrate by saturation with nitric acid, evaporation, and crystallization. This nitrate is employed for the production of the red light in theatrical fire-works.
CEMENTATION. A chemical process, which consists in imbedding a solid body, in a pulverulent matter, and exposing both to ignition in an earthen or metallic case. In this way, iron is cemented with charcoal to form steel, and bottle glass with gypsum powder, or sand, to form Reaumur’s porcelain.
CEMENTATION. A chemical process, which consists in imbedding a solid body, in a pulverulent matter, and exposing both to ignition in an earthen or metallic case. In this way, iron is cemented with charcoal to form steel, and bottle glass with gypsum powder, or sand, to form Reaumur’s porcelain.
CEMENTS. (Ciments, Fr.;Cämente,Kitte, Germ.) Substances capable of taking the liquid form, and of being in that state applied between the surfaces of two bodies, so as to unite them by solidifying. They may be divided into two classes, those which are applied through the agency of a liquid menstruum, such as water, alcohol, or oil, and those which are applied by fusion with heat.Thediamondcement for uniting broken pieces of china, glass, &c. which is sold as a secret at an absurdly dear price, is composed of isinglass soaked in water till it becomes soft, and then dissolved in proof spirit, to which a little gum resin, ammoniac, or galbanum, and resin mastic are added, each previously dissolved in a minimum of alcohol. When to be applied, it must be gently heated to liquefy it; and it should be kept for use in a well-corked phial. A glass stopper would be apt to fix so as not to be removable. This is the cement employed by the Armenian jewellers in Turkey for glueing the ornamental stones to trinkets of various kinds. When well made it resists moisture.Shell-lac dissolved in alcohol, or in a solution of borax, forms a pretty good cement. White of egg alone, or mixed with finely sifted quick lime, will answer for uniting objects which are not exposed to moisture. The latter combination is very strong, and is much employed for joining pieces of spar and marble ornaments. A similar composition is used by copper-smiths to secure the edges and rivets of boilers; only bullock’s blood is the albuminous matter used instead of white of egg. Another cement in which an analogous substance, the curd or caseum of milk is employed, is made by boiling slices of skim-milk cheeses into a gluey consistence in a great quantity of water, and then incorporating it with quicklime on a slab with a muller, or in a marble mortar. When this compound is applied warm to broken edges of stoneware, it unites them very firmly after it is cold.A cement which gradually indurates to a stony consistence may be made by mixing 20 parts of clean river sand, two of litharge, and one of quicklime, into a thin putty with linseed oil. The quicklime may be replaced with litharge. When this cement is applied to mend broken pieces of stone, as steps of stairs, it acquires after some time a stony hardness. A similar composition has been applied to coat over brick walls, under the name of mastic.The iron-rust cement is made of from 50 to 100 parts of iron borings, pounded and sifted, mixed with one part of sal-ammoniac, and when it is to be applied moistened with as much water as will give it a pasty consistency. Formerly flowers of sulphur were used, and much more sal-ammoniac in making this cement, but with decided disadvantage, as the union is effected by the oxidizement, consequent expansion and solidification of the iron powder, and any heterogeneous matter obstructs the effect. The best proportion of sal-ammoniac is, I believe, one per cent. of the iron borings. Another composition of the same kind is made by mixing 4 parts of fine borings or filings of iron, 2 parts of potter’s clay, and 1 part of pounded potsherds, and making them into a paste with salt and water. When this cement is allowed to concrete slowly on iron joints, it becomes very hard.For making architectural ornaments in relief, a moulding composition is formed of chalk, glue, and paper paste. Even statues have been made with it, the paper aiding the cohesion of the mass.Mastics of a resinous or bituminous nature which must be softened or fused by heat are the following:—Mr. S. Varley’s consists of sixteen parts of whiting sifted and thoroughly dried by a red heat, adding when cold a melted mixture of 16 parts of black rosin and 1 of bees’-wax, and stirring well during the cooling.Mr. Singer’s electrical and chemical apparatus cement consists of 5 lbs. of rosin, 1 of bees’-wax, 1 of red ochre, and two table-spoonsful of Paris-plaster, all melted together. A cheaper one for cementing voltaic plates into wooden troughs is made with 6 pounds of rosin, 1 pound of red ochre,1⁄2of a pound of plaster of Paris, and1⁄4of a pound of linseed oil. The ochre and the plaster of Paris should be calcined beforehand, and added to the other ingredients in their melted state. The thinner the stratum of cement that is interposed, the stronger generally speaking is the junction.Boiled linseed oil and red lead mixed together into a putty are often used by coppersmiths and engineers, to secure joints. The washers of leather or cloth are smeared with this mixture in a pasty state.The resin mastic alone is sometimes used by jewellers to cement by heat cameos of white enamel or coloured glass to a real stone, as a ground to produce the appearance of an onyx. Mastic is likewise used to cement false backs or doublets to stones to alter their hue.Melted brimstone either alone, or mixed with rosin and brick dust, forms a tolerably good and very cheap cement.Plumber’s cement consists of black rosin one part, brick dust two parts, well incorporated by a melting heat.The cement of dihl for coating the fronts of buildings consists of linseed oil, rendered dry by boiling with litharge, and mixed with porcelain clay in fine powder, to give it the consistence of stiff mortar. Pipe-clay would answer equally well if well dried, and any colour might be given with ground bricks, or pottery. A little oil of turpentine to thin this cement aids its cohesion upon stone, brick, or wood. It has been applied to sheets of wire cloth, and in this state laid upon terraces, in order to make them water tight; but it is little less expensive than lead.The bituminous or black cement for bottle corks consists of pitch hardened by the addition of rosin and brick-dust.In certain localities where a limestone impregnated with bitumen occurs, it is dried, ground, sifted, and then mixed with about its own weight of melted pitch, either mineral, vegetable, or that of coal tar. When this mixture is getting semifluid, it may be moulded into large slabs or tiles in wooden frames lined with sheet iron, previously smeared over with common lime mortar, in order to prevent adhesion to the moulds, which, being in movable pieces, are easily dismounted so as to turn out the cake of artificial bituminous stone. This cement is manufactured upon a great scale in many places, and used for making Italian terraces, covering the floors of balconies, flat roofs, water reservoirs, water conduits, &c. When laid down, the joints must be well run together with hot irons. The floor of the terrace should be previously covered with a layer of Paris plaster or common mortar, nearly an inch thick, with a regular slope of one inch to the yard. Such bituminous cement weighs 144 pounds the cubic foot; or a foot of square surface, one inch thick, weighs 12 pounds. Sometimes a second layer of these slabs or tiles is applied over the first, with the precaution of making the seams or joints of the upper correspond with the middle of the under ones. Occasionally a bottom bed, of coarse cloth or gray paper, is applied. The larger the slabs are made, as far as they can be conveniently transported and laid down, so much the better. Forhydrauliccements, seeMortar.
CEMENTS. (Ciments, Fr.;Cämente,Kitte, Germ.) Substances capable of taking the liquid form, and of being in that state applied between the surfaces of two bodies, so as to unite them by solidifying. They may be divided into two classes, those which are applied through the agency of a liquid menstruum, such as water, alcohol, or oil, and those which are applied by fusion with heat.
Thediamondcement for uniting broken pieces of china, glass, &c. which is sold as a secret at an absurdly dear price, is composed of isinglass soaked in water till it becomes soft, and then dissolved in proof spirit, to which a little gum resin, ammoniac, or galbanum, and resin mastic are added, each previously dissolved in a minimum of alcohol. When to be applied, it must be gently heated to liquefy it; and it should be kept for use in a well-corked phial. A glass stopper would be apt to fix so as not to be removable. This is the cement employed by the Armenian jewellers in Turkey for glueing the ornamental stones to trinkets of various kinds. When well made it resists moisture.
Shell-lac dissolved in alcohol, or in a solution of borax, forms a pretty good cement. White of egg alone, or mixed with finely sifted quick lime, will answer for uniting objects which are not exposed to moisture. The latter combination is very strong, and is much employed for joining pieces of spar and marble ornaments. A similar composition is used by copper-smiths to secure the edges and rivets of boilers; only bullock’s blood is the albuminous matter used instead of white of egg. Another cement in which an analogous substance, the curd or caseum of milk is employed, is made by boiling slices of skim-milk cheeses into a gluey consistence in a great quantity of water, and then incorporating it with quicklime on a slab with a muller, or in a marble mortar. When this compound is applied warm to broken edges of stoneware, it unites them very firmly after it is cold.
A cement which gradually indurates to a stony consistence may be made by mixing 20 parts of clean river sand, two of litharge, and one of quicklime, into a thin putty with linseed oil. The quicklime may be replaced with litharge. When this cement is applied to mend broken pieces of stone, as steps of stairs, it acquires after some time a stony hardness. A similar composition has been applied to coat over brick walls, under the name of mastic.
The iron-rust cement is made of from 50 to 100 parts of iron borings, pounded and sifted, mixed with one part of sal-ammoniac, and when it is to be applied moistened with as much water as will give it a pasty consistency. Formerly flowers of sulphur were used, and much more sal-ammoniac in making this cement, but with decided disadvantage, as the union is effected by the oxidizement, consequent expansion and solidification of the iron powder, and any heterogeneous matter obstructs the effect. The best proportion of sal-ammoniac is, I believe, one per cent. of the iron borings. Another composition of the same kind is made by mixing 4 parts of fine borings or filings of iron, 2 parts of potter’s clay, and 1 part of pounded potsherds, and making them into a paste with salt and water. When this cement is allowed to concrete slowly on iron joints, it becomes very hard.
For making architectural ornaments in relief, a moulding composition is formed of chalk, glue, and paper paste. Even statues have been made with it, the paper aiding the cohesion of the mass.
Mastics of a resinous or bituminous nature which must be softened or fused by heat are the following:—
Mr. S. Varley’s consists of sixteen parts of whiting sifted and thoroughly dried by a red heat, adding when cold a melted mixture of 16 parts of black rosin and 1 of bees’-wax, and stirring well during the cooling.
Mr. Singer’s electrical and chemical apparatus cement consists of 5 lbs. of rosin, 1 of bees’-wax, 1 of red ochre, and two table-spoonsful of Paris-plaster, all melted together. A cheaper one for cementing voltaic plates into wooden troughs is made with 6 pounds of rosin, 1 pound of red ochre,1⁄2of a pound of plaster of Paris, and1⁄4of a pound of linseed oil. The ochre and the plaster of Paris should be calcined beforehand, and added to the other ingredients in their melted state. The thinner the stratum of cement that is interposed, the stronger generally speaking is the junction.
Boiled linseed oil and red lead mixed together into a putty are often used by coppersmiths and engineers, to secure joints. The washers of leather or cloth are smeared with this mixture in a pasty state.
The resin mastic alone is sometimes used by jewellers to cement by heat cameos of white enamel or coloured glass to a real stone, as a ground to produce the appearance of an onyx. Mastic is likewise used to cement false backs or doublets to stones to alter their hue.
Melted brimstone either alone, or mixed with rosin and brick dust, forms a tolerably good and very cheap cement.
Plumber’s cement consists of black rosin one part, brick dust two parts, well incorporated by a melting heat.
The cement of dihl for coating the fronts of buildings consists of linseed oil, rendered dry by boiling with litharge, and mixed with porcelain clay in fine powder, to give it the consistence of stiff mortar. Pipe-clay would answer equally well if well dried, and any colour might be given with ground bricks, or pottery. A little oil of turpentine to thin this cement aids its cohesion upon stone, brick, or wood. It has been applied to sheets of wire cloth, and in this state laid upon terraces, in order to make them water tight; but it is little less expensive than lead.
The bituminous or black cement for bottle corks consists of pitch hardened by the addition of rosin and brick-dust.
In certain localities where a limestone impregnated with bitumen occurs, it is dried, ground, sifted, and then mixed with about its own weight of melted pitch, either mineral, vegetable, or that of coal tar. When this mixture is getting semifluid, it may be moulded into large slabs or tiles in wooden frames lined with sheet iron, previously smeared over with common lime mortar, in order to prevent adhesion to the moulds, which, being in movable pieces, are easily dismounted so as to turn out the cake of artificial bituminous stone. This cement is manufactured upon a great scale in many places, and used for making Italian terraces, covering the floors of balconies, flat roofs, water reservoirs, water conduits, &c. When laid down, the joints must be well run together with hot irons. The floor of the terrace should be previously covered with a layer of Paris plaster or common mortar, nearly an inch thick, with a regular slope of one inch to the yard. Such bituminous cement weighs 144 pounds the cubic foot; or a foot of square surface, one inch thick, weighs 12 pounds. Sometimes a second layer of these slabs or tiles is applied over the first, with the precaution of making the seams or joints of the upper correspond with the middle of the under ones. Occasionally a bottom bed, of coarse cloth or gray paper, is applied. The larger the slabs are made, as far as they can be conveniently transported and laid down, so much the better. Forhydrauliccements, seeMortar.
CERASIN. The name given by Dr. John to those gums which swell, but do not dissolve in water; such as gum tragacanth. It is synonymous withBassorine, which see.
CERASIN. The name given by Dr. John to those gums which swell, but do not dissolve in water; such as gum tragacanth. It is synonymous withBassorine, which see.
CERATE fromcera,wax. An unguent, of rather a stiff consistence, made of oil, or lard and wax, thickened occasionally with pulverulent matters.
CERATE fromcera,wax. An unguent, of rather a stiff consistence, made of oil, or lard and wax, thickened occasionally with pulverulent matters.
CERINE. A substance which forms from 70 to 80 per cent. of bees’-wax. It may be obtained by digesting wax, for some time, in spirit of wine, at a boiling temperature. Themyricineseparates, while thecerineremains dissolved, and may be obtained from the decanted liquor by evaporation. Cerine is white, analogous to wax, fusible at 134° F., hardly acted upon by hot nitric acid, but is readily carbonized by hot sulphuric acid. When treated with caustic alkaline lye, it is converted into margaric acid andceraïne.
CERINE. A substance which forms from 70 to 80 per cent. of bees’-wax. It may be obtained by digesting wax, for some time, in spirit of wine, at a boiling temperature. Themyricineseparates, while thecerineremains dissolved, and may be obtained from the decanted liquor by evaporation. Cerine is white, analogous to wax, fusible at 134° F., hardly acted upon by hot nitric acid, but is readily carbonized by hot sulphuric acid. When treated with caustic alkaline lye, it is converted into margaric acid andceraïne.
CERIUM. A peculiar metal discovered in the rare mineral, calledcerite, found only in the copper mine of Bastnaes, near Riddarhytta, in Sweden. Cerium, extracted from its chloride by potassium, appears as a dark red or chocolate powder, which assumes a metallic lustre by friction. It does not conduct electricity well, like other metals; it is infusible; its specific gravity is unknown. It has been applied to no use in the arts.
CERIUM. A peculiar metal discovered in the rare mineral, calledcerite, found only in the copper mine of Bastnaes, near Riddarhytta, in Sweden. Cerium, extracted from its chloride by potassium, appears as a dark red or chocolate powder, which assumes a metallic lustre by friction. It does not conduct electricity well, like other metals; it is infusible; its specific gravity is unknown. It has been applied to no use in the arts.
CERUSE. A name of white lead. SeeLead.
CERUSE. A name of white lead. SeeLead.
CETINE. The name given by Chevreul tospermaceti.
CETINE. The name given by Chevreul tospermaceti.
CHAINWORK is a peculiar style of textile fabric, to which hosiery and tambouring belong. SeeHosiery.
CHAINWORK is a peculiar style of textile fabric, to which hosiery and tambouring belong. SeeHosiery.
CHALK. (Craie, Fr.;Kreide, Germ.) A friable carbonate of lime, white, opaque,soft, dull, or without any appearance of polish in its fracture. Its specific gravity varies from 2·4 to 2·6. It usually contains a little silica, alumina, and oxide of iron. It may be purified by trituration, and elutriation. The siliceous and ferruginous matters subside first, and the finer chalky particles floating in the supernatant liquid, may be decanted with it, and obtained by subsidence. When thus purified, it is calledwhiteningand Spanish white, in England;schlemmkreide, in Germany;blanc de Troyes, andblanc de Meudon, in France. Pure chalk should dissolve readily in dilute muriatic acid, and the solution should afford no precipitate with water of ammonia.
CHALK. (Craie, Fr.;Kreide, Germ.) A friable carbonate of lime, white, opaque,soft, dull, or without any appearance of polish in its fracture. Its specific gravity varies from 2·4 to 2·6. It usually contains a little silica, alumina, and oxide of iron. It may be purified by trituration, and elutriation. The siliceous and ferruginous matters subside first, and the finer chalky particles floating in the supernatant liquid, may be decanted with it, and obtained by subsidence. When thus purified, it is calledwhiteningand Spanish white, in England;schlemmkreide, in Germany;blanc de Troyes, andblanc de Meudon, in France. Pure chalk should dissolve readily in dilute muriatic acid, and the solution should afford no precipitate with water of ammonia.
CHALK—Black. A mineral, called alsodrawing-slate.
CHALK—Black. A mineral, called alsodrawing-slate.
CHALK—French.Steatite, orsoap stone; a soft magnesian mineral.
CHALK—French.Steatite, orsoap stone; a soft magnesian mineral.
CHALK—Red. A clay coloured with the peroxide of iron, of which it contains about 17 per cent.
CHALK—Red. A clay coloured with the peroxide of iron, of which it contains about 17 per cent.
CHARCOAL. The fixed residuum of vegetables exposed to ignition out of contact of air. In the articleCarbon, I have described the general properties of charcoal and the simplest mode of making it. I shall here detail the best systems of manufacturing this product upon the continent of Europe.Charcoal MeilerTo carbonize wood under a movable covering, the plan ofmeiler, or heaps, is employed very much in Germany. The wood is arranged either in horizontal layers, or in nearly vertical ones, with a slight slope, so as to form conical rounded heaps of different sizes. The former are called lyingmeiler,fig.272.; the latter standingmeiler,figs.273.and274.Both are distributed in much the same way.Tar catcherIn districts where the wood can be transported into one place by means of rivers, or mountain slides, a dry flat space must be pitched upon, screened from storms and floods, which may be walled round, having a slight declivity made in the ground, towards the centre. Seefig.275.Into this space the tarry acid will partially fall, and may be conducted outwards, through a covered gutter beneath, into a covered tank. The mouth of the tank must be shut, during the coaking, with an iron or stone slab, luted with clay. A square iron plate is placed over the inner orifice of the gutter, to prevent it being choked with coal ashes.Fig.275.represents a walledmeilerstation;a, the station;b, the gutter;c, the tank, which is covered with the slabd;e, a slab which serves to keep the gutter clear of coals. The cover of the heaps is formed of earth, sand, ashes, or such other matter as may be most readily found in the woods. They should be kindled in the centre. From 6 days to 4 weeks may be required for charring a heap, according to its size; hard wood requiring most time; and the slower the process, the better and greater is the product, generally speaking.Charcoal moundCharring of wood in mounds (Haufeorliegende werke)figs.276.and277.differs from that in themeiler, because the wood in thehaufeis successively charred, and the charcoal is raked out by little and little. The product is said to be greater in this way, and also better. Uncleft billets, 6 or 8 feet long, being laid over each other, are covered with ashes, and then carbonized. The station is sometimes horizontal, and sometimes made to slope. The length may be 24 feet, the breadth 8 feet; and the wood is laid crosswise.Piles are set perpendicularly to support the roof, made of boughs and leaves, covered with ashes. Pipes are occasionally laid within the upper part of the mounds, which serve to catch and carry off some of the liquid products into proper tanks.Chabaussiere's kilnFig.278.is a vertical section, andfig.279.a half bird’s-eye view, and half cross section, at the height of the pit-bottom, of Chabeaussière’s kiln for making wood charcoal.ais the oven;b, vertical air-pipes;c c, horizontal flues for admitting air to the kiln;d d, small pits which communicate by short horizontal pipese e, with the vertical ones;f, the sole of the kiln, a circle of brickwork, upon which the cover or hoodhreposes;i, a pipe which leads to the cisternk;l, the pipe destined for carrying off the gaseous matter;m m, holes in the iron cover or lid.The distribution of the wood is like that in the horizontalmeilers, or heaps; it is kindled in the central vertical canal with burning fuel, and the lid is covered with a few inches of earth. At the beginning of the operation all the draught flues are left open, but they are progressively closed, as occasion requires. In eight kilns of this kind, 500decastersof oak wood are carbonized, from which 16,000 hectolitres of charcoal are obtained, equal to 64,000 pounds French, being about 25 per cent.; besides tar and 3000 velts of wood vinegar, of from 2° to 3°.Baumé.Turf-charcoal kilnAt Crouy upon the Ourcq, near Meaux, there is a well constructed kiln for making turf-charcoal. It resembles most nearly a tar-kiln. Infig.280.ais the cylindrical coaking place, whose surrounding walls are heated by the flame which passes through the intermediate spaceb. The place itself is divided by partitions of fire tiles into three stages, through the apertures in which the flames of the firec c, rise, and heat the exterior of the coaking apartment. In order to confine the heat, there is in the enclosing walls of the outer kiln a cylindrical hollow spaced, where the air is kept stagnant. Through the apertures left in the upper end ate, the turf is introduced; they are then shut with an iron platef, which is covered with ashes or sand. The fire-place opens above this aperture, and its outlet is provided with a moveable iron coverg, in which there is a small hole for the issue of the gases. The sole of the kiln consists of a cast iron slabh, which may be raised by means of a hookiupon it. This is drawn back after the carbonization is completed, whereby the charcoal falls from the coaking space into a subjacent vault. The volatile products are carried off by the pipek, and led into the condensing cistern; the gases escaping to the fire-place where they are burned. The iron slab is protected from the corrosion of the acid vapours by a layer of coal ashes.
CHARCOAL. The fixed residuum of vegetables exposed to ignition out of contact of air. In the articleCarbon, I have described the general properties of charcoal and the simplest mode of making it. I shall here detail the best systems of manufacturing this product upon the continent of Europe.
Charcoal Meiler
To carbonize wood under a movable covering, the plan ofmeiler, or heaps, is employed very much in Germany. The wood is arranged either in horizontal layers, or in nearly vertical ones, with a slight slope, so as to form conical rounded heaps of different sizes. The former are called lyingmeiler,fig.272.; the latter standingmeiler,figs.273.and274.Both are distributed in much the same way.
Tar catcher
In districts where the wood can be transported into one place by means of rivers, or mountain slides, a dry flat space must be pitched upon, screened from storms and floods, which may be walled round, having a slight declivity made in the ground, towards the centre. Seefig.275.Into this space the tarry acid will partially fall, and may be conducted outwards, through a covered gutter beneath, into a covered tank. The mouth of the tank must be shut, during the coaking, with an iron or stone slab, luted with clay. A square iron plate is placed over the inner orifice of the gutter, to prevent it being choked with coal ashes.Fig.275.represents a walledmeilerstation;a, the station;b, the gutter;c, the tank, which is covered with the slabd;e, a slab which serves to keep the gutter clear of coals. The cover of the heaps is formed of earth, sand, ashes, or such other matter as may be most readily found in the woods. They should be kindled in the centre. From 6 days to 4 weeks may be required for charring a heap, according to its size; hard wood requiring most time; and the slower the process, the better and greater is the product, generally speaking.
Charcoal mound
Charring of wood in mounds (Haufeorliegende werke)figs.276.and277.differs from that in themeiler, because the wood in thehaufeis successively charred, and the charcoal is raked out by little and little. The product is said to be greater in this way, and also better. Uncleft billets, 6 or 8 feet long, being laid over each other, are covered with ashes, and then carbonized. The station is sometimes horizontal, and sometimes made to slope. The length may be 24 feet, the breadth 8 feet; and the wood is laid crosswise.Piles are set perpendicularly to support the roof, made of boughs and leaves, covered with ashes. Pipes are occasionally laid within the upper part of the mounds, which serve to catch and carry off some of the liquid products into proper tanks.
Chabaussiere's kiln
Fig.278.is a vertical section, andfig.279.a half bird’s-eye view, and half cross section, at the height of the pit-bottom, of Chabeaussière’s kiln for making wood charcoal.ais the oven;b, vertical air-pipes;c c, horizontal flues for admitting air to the kiln;d d, small pits which communicate by short horizontal pipese e, with the vertical ones;f, the sole of the kiln, a circle of brickwork, upon which the cover or hoodhreposes;i, a pipe which leads to the cisternk;l, the pipe destined for carrying off the gaseous matter;m m, holes in the iron cover or lid.
The distribution of the wood is like that in the horizontalmeilers, or heaps; it is kindled in the central vertical canal with burning fuel, and the lid is covered with a few inches of earth. At the beginning of the operation all the draught flues are left open, but they are progressively closed, as occasion requires. In eight kilns of this kind, 500decastersof oak wood are carbonized, from which 16,000 hectolitres of charcoal are obtained, equal to 64,000 pounds French, being about 25 per cent.; besides tar and 3000 velts of wood vinegar, of from 2° to 3°.Baumé.
Turf-charcoal kiln
At Crouy upon the Ourcq, near Meaux, there is a well constructed kiln for making turf-charcoal. It resembles most nearly a tar-kiln. Infig.280.ais the cylindrical coaking place, whose surrounding walls are heated by the flame which passes through the intermediate spaceb. The place itself is divided by partitions of fire tiles into three stages, through the apertures in which the flames of the firec c, rise, and heat the exterior of the coaking apartment. In order to confine the heat, there is in the enclosing walls of the outer kiln a cylindrical hollow spaced, where the air is kept stagnant. Through the apertures left in the upper end ate, the turf is introduced; they are then shut with an iron platef, which is covered with ashes or sand. The fire-place opens above this aperture, and its outlet is provided with a moveable iron coverg, in which there is a small hole for the issue of the gases. The sole of the kiln consists of a cast iron slabh, which may be raised by means of a hookiupon it. This is drawn back after the carbonization is completed, whereby the charcoal falls from the coaking space into a subjacent vault. The volatile products are carried off by the pipek, and led into the condensing cistern; the gases escaping to the fire-place where they are burned. The iron slab is protected from the corrosion of the acid vapours by a layer of coal ashes.
CHICA is a red colouring principle made use of in America by some Indian tribes to stain their skins. It is extracted from thebignonia chicaby boiling its leaves in water, decanting the decoction, and allowing it to settle and cool, when a red matter falls down, which is formed into cakes and dried. This substance is not fusible, and,when burned, diffuses the same odour as animal bodies do. It is insoluble in cold water, very soluble in alcohol and ether, but, after the evaporation of these liquids, it is recovered unchanged. Fats and unctuous oils both dissolve it. It is soluble in carbonated and caustic alkaline lyes, from which it is precipitated by the acids without alteration. An excess of alkali, however, speedily decomposes it. Nitric acid transforms it into oxalic acid, and a bitter matter. Chlorine makes it white.The savages mix this pigment with the fat of the cayman or alligator, and rub their skins with the mixture. It may probably be turned to account in the arts of civilized nations.
CHICA is a red colouring principle made use of in America by some Indian tribes to stain their skins. It is extracted from thebignonia chicaby boiling its leaves in water, decanting the decoction, and allowing it to settle and cool, when a red matter falls down, which is formed into cakes and dried. This substance is not fusible, and,when burned, diffuses the same odour as animal bodies do. It is insoluble in cold water, very soluble in alcohol and ether, but, after the evaporation of these liquids, it is recovered unchanged. Fats and unctuous oils both dissolve it. It is soluble in carbonated and caustic alkaline lyes, from which it is precipitated by the acids without alteration. An excess of alkali, however, speedily decomposes it. Nitric acid transforms it into oxalic acid, and a bitter matter. Chlorine makes it white.
The savages mix this pigment with the fat of the cayman or alligator, and rub their skins with the mixture. It may probably be turned to account in the arts of civilized nations.
CHIMNEY. (Cheminée, Fr.;Schornstein, Germ.) Chimney is a modern invention for promoting the draught of fires and carrying off the smoke, introduced into England so late as the age of Elizabeth, though it seems to have been employed in Italy 100 years before. The Romans, with all their luxurious refinements, must have had their epicurean cookery placed in perpetual jeopardy from their kitchen fires, which, having no vent by a vertical tunnel in the walls, discharged their smoke and frequently their flames at the windows, to the no small alarm of their neighbours, and annoyance of even the street passengers.Chimneys in dwelling houses serve also the valuable purpose of promoting salubrious circulation of air in the apartments, when not foolishly sealed with anti-ventilating stove-chests.The first person who sought to investigate the general principles of chimney draughts, in subserviency to manufacturing establishments, was the celebrated Montgolfier. As the ascent of heated air in a conduit depends upon the diminution of its specific gravity, or, in other words, upon the increase of its volume by the heat, the ascensional force may be deduced from the difference between the density of the elastic fluid in the interior of the chimney, and of the external air; that is, between the different heights of the internal and external columns of elastic fluid supposed to be reduced to the same density. In the latter case, the velocity of the gaseous products of combustion in the interior of the chimney is equal to that of a heavy body let fall from a height equal to the difference in height of the two aerial columns.To illustrate this position by an example, let us consider the simple case of a chimney of ventilation for carrying off foul air from a factory of any kind; and suppose that the tunnel of iron be incased throughout with steam at 212 degrees Fahr. Suppose this tunnel to be 100 yards high, then the weight of the column of air in it will be to that of a column of external air 100 yards high, assumed at 32° F. inversely as its expansion by 180°; that is, as 1000 is to 1·375; or as 72·727 is to 100. The column of external air at 32° being 100 yards, the internal column will be represented by 72·727; and the difference = 27·27, will be the amount of unbalanced weight or pressure, which is the effective cause of the ventilation. Calculating the velocity of current due to this difference of weight by the well-known formula for the fall of heavy bodies, that is to say, multiplying the above difference, which is 27·27, by the constant factor 19·62, and extracting the square root of the product; thus, √19·62 × 27·27= 23·13 will be the velocity in yards per second, which, multiplied by 3, gives 69·39 feet. The quantity of air which passes in a second is obtained of course by multiplying the area or cross section of the tunnel by this velocity. If that section is half a yard, that is = a quadrangle 21⁄4feet by 2, we shall have 23·13 × 0·5 = 11·565 cubic yards, = 3121⁄4cubic feet.The problem becomes a little more complicated in calculating the velocity of air which has served for combustion, because it has changed its nature, a variable proportion of its oxygen gas of specific gravity 1·111, being converted into carbonic acid gas of specific gravity 1·524. The quantity of air passed through well-constructed furnaces may, in general, be regarded as double of what is rigorously necessary for combustion, and the proportion of carbonic acid generated, therefore, not one half of what it would be were all the oxygen so combined. The increase of weight in such burned air of the temperature of 212°, over that of pure air equally heated, being taken into account in the preceding calculation, will give us about 19 yards or 57 feet per second for the velocity in a chimney 100 yards high incased in steam.Such are the deductions of theory; but they differ considerably from practical results, in consequence of the friction of the air upon the sides of the chimneys, which varies likewise with its form, length, and quality. The direction and force of the winds also exercise a variable influence upon chimney furnaces differently situated. In chimnies made of wrought iron, like those of steam boats, the refrigeration is considerable, and causes a diminution of velocity far greater than what occurs in a factory stalk of well-built brick work. In comparing the numbers resulting from the trials made on chimneys of different materials and of different forms, it has been concluded that the obstruction to the draught of the air, or the deduction to be made from the theoretical velocity of efflux, is directly proportional to the length of the chimneys and to the square of the velocity, and inversely to their diameter. With an ordinary wrought-iron pipe, of from 4 inchesto 5 inches diameter, attached to an ordinary stove, burning good charcoal, the difference is prodigious between the velocity calculated by the above theoretical rule, and that observed by means of a stop-watch, and the ascent of a puff of smoke from a little tow, dipped in oil of turpentine thrust quickly into the fire. The chimney being 45 feet high, the temperature of the atmosphere 68° Fahr., the velocity per second was,—Trials.Bytheory.Byexperiment.Mean temperatureof chimney.126·4feet5feet190° Fahr.229·45·76214334·56·3270To obtain congruity between calculation and experiment, several circumstances must be introduced into our formulæ. In the first place, the theoretical velocity must be multiplied by a factor, which is different according as the chimney is made of bricks, pottery, sheet iron, or cast iron. This factor must be multiplied by the square root of the diameter of the chimney (supposed to be round), divided by its length, increased by four times its diameter. Thus, for pottery, its expression is 2·06√DL+D;Dbeing the diameter, andLthe length of the chimney.A pottery chimney, 33 feet high, and 7 inches in diameter, when the excess of its mean temperature above that of the atmosphere was 205° Fahr., had a pressure of hot air equal to 11·7 feet, and a velocity of 7·2 feet per second. By calculating from the last formula, the same number very nearly is obtained. In none of the experiments did the velocity exceed 12 feet per second, when the difference of temperature was more than 410° Fahr.Every different form of chimney would require a special set of experiments to be made for determining the proper factor to be used.This troublesome operation may be saved by the judicious application of a delicate differential barometer, such as that invented by Dr. Wollaston; though this instrument does not seem to have been applied by its very ingenious author in measuring the draughts or ventilating powers of furnaces.If into one leg of this differential syphon, water be put, and fine spermaceti oil into the other, we shall have two liquids, which are to each other in density as the numbers 8 and 7. If proof spirit be employed instead of water, we shall then have the relation of very nearly 20 to 19. I have made experiments on furnace draughts with the instrument in each of these states, and find the water and oil syphon to be sufficiently sensible: for the weaker draughts of common fire-places the spirits and oil will be preferable barometric fluids.To the lateral projecting tube of the instrument, as described by Dr. Wollaston, I found it necessary to attach a stop-cock, in order to cut off the action of the chimney, while placing the syphon, to allow of its being fixed in a proper state of adjustment, with its junction line of the oil and water at the zero of the scale. Since a slight deviation of the legs of the syphon from the perpendicular, changes very considerably the line of the level, this adjustment should be made secure by fixing the horizontal pipe tightly into a round hole, bored into the chimney stalk, or drilled through the furnace door. On gently turning the stop-cock, the difference of atmospherical pressure corresponding to the chimney draught, will be immediately indicated by the ascent of the junction-line of the liquids in the syphon. This modification of apparatus permits the experiment to be readily rectified by again shutting off the draught, when the air will slowly re-enter the syphon; because the projecting tube of the barometer is thrust into the stop-cock, but not hermetically joined; whereby its junction line is allowed to return to the zero of the scale in the course of a few seconds.Out of many experiments made with this instrument, I shall content myself with describing a few, very carefully performed at the breweries of Messrs. Trueman, Hanbury, and Buxton, and of Sir H. Meux, Bart., and at the machine factory of Messrs. Braithwaite; in the latter of which I was assisted by Captain Ericsson. In the first trials at the breweries, the end of the stop-cock attached to the differential barometer was lapped round with hemp, and made fast into the circular peep-hole of the furnace door of a wort copper, communicating with two upright parallel chimneys, each 18 inches square, and 50 feet high. The fire was burning with fully its average intensity at the time. The adjustment of the level being perfect, the stop-cock orifice was opened, and the junction level of the oil and water rose steadily, and stood at 11⁄4inches, corresponding to1·258= 0·156 of 1 inch of water, or a column of air 10·7 feet high. This difference of pressure indicates a velocity of 26 feet per second. In a second set of experiments, the extremity of the stop-cock was inserted into a hole, bored through the chimney stalk of the boiler of a Boulton and Watt steam-engine of twenty-horse power. The area of this chimney was exactly 18 inches square at the level of the bored hole, and its summit rose 50 feet above it. The fire-grate was about 10 feet below that level. Onopening the stop-cock, the junction line rose 21⁄4inches. This experiment was verified by repetition upon different days, with fires burning at their average intensity, and consuming fully 12 lbs. of the best coals hourly for each horse’s power, or nearly one ton and a third in twelve hours. If we divide the number 21⁄4by 8, the quotient 0·28 will represent the fractional part of 1 inch of water, supported in the syphon by the unbalanced pressure of the atmosphere in the said chimney; which corresponds to 191⁄4feet of air, and indicates a velocity in the chimney current of 35 feet per second. The consumption of fuel was much more considerable in the immense grate under the wort copper, than it was under the steam-engine boiler.In my experiments at Messrs. Braithwaite’s factory, the maximum displacement of the junction line was 1 inch, when the differential oil and water barometer was placed in direct communication with a chimney 15 inches square, belonging to a steam boiler, and when the fire was made to burn so fiercely, that, on opening the safety-valve of the boiler, the excess of steam beyond the consumption of the engine, rushed out with such violence as to fill the whole premises. The pressure of one-eighth of an inch of water denotes a velocity of draught of 23·4 feet per second.In building chimneys, we should be careful to make their area rather too large than too small; because we can readily reduce it to any desired size, by means of a sliding register plate near its bottom, or a damper plate applied to its top, adjustable by wires or chains, passing over pulleys. Wide chimneys are not so liable as narrow ones to have their draught affected by strong winds. In a factory, many furnace flues are often conducted into one vertical chimney stalk, with great economy in the first erection, and increased power of draught in the several fires.Vast improvements have been made in this country, of late years, in building stalks for steam boilers and chemical furnaces. Instead of constructing an expensive, lofty scaffolding of timber round the chimney, for the bricklayers to stand upon, and to place their materials, pigeon-holes, or recesses, are left at regular intervals, a few feet apart, within the chimney, for receiving the ends of stout wooden bars, which are laid across, so as to form a species of temporary ladder in the interior of the tunnel. By means of these bars, with the aid of ropes and pulleys, every thing may be progressively hoisted, for the building of the highest engine or other stalks. An expert bricklayer, with a handy labourer, can in this way raise, in a few weeks, a considerable chimney, 40 feet high, 5 feet 8 inches square outside, 2 feet 8 inches inside at the base, 28 inches outside, and 20 inches inside at the top. To facilitate the erection, and at the same time increase the solidity of an insulated stalk of this kind, it is built with three or more successive plinths, or recedures, as shown infig.281.It is necessary to make such chimneys thick and substantial near the base, in order that they may sustain the first violence of the fire, and prevent the sudden dissipation of the heat. When many flues are conducted into one chimney stalk, the area of the latter should be nearly equal to the sum of the areas of the former, or at least of as many of them as shall be going simultaneously. When the products of combustion from any furnace must be conducted downwards, in order to enter near the bottom of the main stalk, they will not flow off until the lowest part of the channel be heated by burning some wood shavings or straw in it, whereby the air syphon is set agoing. Immediately after kindling this transient fire at that spot, the orifice must be shut by which it was introduced; otherwise the draught of the furnace would be seriously impeded. But this precaution is seldom necessary in great factories, where a certain degree of heat is always maintained in the flues, or, at least, should be preserved, by shutting the damper plate of each separate flue, whenever its own furnace ceases to act. Such chimneys are finished at top with a coping of stone-slabs, to secure their brickwork against the infiltration of rains, and they should be furnished with metallic conducting rods, to protect them from explosions of lightning.When small domestic stoves are used, with very slow combustion, as has been recently proposed, upon the score of a misjudged economy, there is great danger of the inmates being suffocated or asphyxied, by the regurgitation of the noxious burned air. The smoke doctors who recommend such a vicious plan, from their ignorance of chemical science, are not aware that the carbonic acid gas, of coke or coal, must be heated 250° F. above the atmospheric air, to acquire the same low specific gravity with it. In other words, unless so rarefied by heat, that gaseous poison will descend through the orifice of the ash-pit, and be replaced by the lighter air of the apartment. Drs. Priestley and Dalton have long ago shown the co-existence of these two-fold crossing currents of air, even through the substance of stone-ware tubes. True economy of heat, and salubrity, alike require vivid combustion of the fuel, with a somewhat brisk draught inside of the chimney, and a corresponding abstraction of air from the apartment. Wholesome continuous ventilation, under the ordinary circumstances of dwelling houses, cannot be secured in any other way. Were these mephitic stoves, which have been of late so ridiculously puffed in the public prints, generally introduced, the faculty wouldneed to be immediately quadrupled to supply the demand for medical advice; for headaches, sickness, nervous ailments, and apoplexy, would become the constant inmates of every inhabited mansion. The phenomena of the grotto of Pausilippo might then be daily realised at home, among those who ventured to recline upon sofas in such carbonated apartments; only instead of a puppy being suffocatedpro tempore, human beings would be sacrificed, to save two-penny worth of fuelper diem.ChimneysThefiguresupon the preceding page represent one of the two chimneys, recently erected at the Camden Town station, for the steam boilers of the two engines of 60 horse-power each, belonging to the London and Birmingham Railway Company. These engines draw their train of carriages up the inclined plane of Hampstead Hill. The chimneys were designed by Robert Stephenson, Esq., engineer to the Company, executed by William Cubitt, Esq., of Gray’s Inn Road,—and do equal honour to both gentlemen, being probably the most elegant and substantial specimens of this style of architecture in the world. In the section,fig.281.,Arepresents a bed ofconcrete, 6 feet thick, and 24 feet square.B, brick footings set in cement; the lower course 19 feet square.C, Bramley-fall stone base, with a chain of wrought iron let into it.D, a portion, 15 feet high, curved to a radius of 113 feet, built entirely of Malm paviours, (a peculiarly good kind of bricks.)E, shaft built of Malm paviours in mortar.F, ditto, built from the inside, without exterior scaffolding.G, the cap ornamented, (as shown in the plan alongside,) with Portland stone, the dressings being tied together with copper cramps and an iron bond.Fig.282.represents the mouldings of the top, upon an enlarged scale.Fig.283., a plan of the foundation, ditto.Fig.284., ditto, at the level of the entrance of the flue, as seen inFig.285., the elevation of the chimney.Fig.286., plan at the ground levelI, infig.281.and285.K,fig.281., the lightning conducting rod.
CHIMNEY. (Cheminée, Fr.;Schornstein, Germ.) Chimney is a modern invention for promoting the draught of fires and carrying off the smoke, introduced into England so late as the age of Elizabeth, though it seems to have been employed in Italy 100 years before. The Romans, with all their luxurious refinements, must have had their epicurean cookery placed in perpetual jeopardy from their kitchen fires, which, having no vent by a vertical tunnel in the walls, discharged their smoke and frequently their flames at the windows, to the no small alarm of their neighbours, and annoyance of even the street passengers.
Chimneys in dwelling houses serve also the valuable purpose of promoting salubrious circulation of air in the apartments, when not foolishly sealed with anti-ventilating stove-chests.
The first person who sought to investigate the general principles of chimney draughts, in subserviency to manufacturing establishments, was the celebrated Montgolfier. As the ascent of heated air in a conduit depends upon the diminution of its specific gravity, or, in other words, upon the increase of its volume by the heat, the ascensional force may be deduced from the difference between the density of the elastic fluid in the interior of the chimney, and of the external air; that is, between the different heights of the internal and external columns of elastic fluid supposed to be reduced to the same density. In the latter case, the velocity of the gaseous products of combustion in the interior of the chimney is equal to that of a heavy body let fall from a height equal to the difference in height of the two aerial columns.
To illustrate this position by an example, let us consider the simple case of a chimney of ventilation for carrying off foul air from a factory of any kind; and suppose that the tunnel of iron be incased throughout with steam at 212 degrees Fahr. Suppose this tunnel to be 100 yards high, then the weight of the column of air in it will be to that of a column of external air 100 yards high, assumed at 32° F. inversely as its expansion by 180°; that is, as 1000 is to 1·375; or as 72·727 is to 100. The column of external air at 32° being 100 yards, the internal column will be represented by 72·727; and the difference = 27·27, will be the amount of unbalanced weight or pressure, which is the effective cause of the ventilation. Calculating the velocity of current due to this difference of weight by the well-known formula for the fall of heavy bodies, that is to say, multiplying the above difference, which is 27·27, by the constant factor 19·62, and extracting the square root of the product; thus, √19·62 × 27·27= 23·13 will be the velocity in yards per second, which, multiplied by 3, gives 69·39 feet. The quantity of air which passes in a second is obtained of course by multiplying the area or cross section of the tunnel by this velocity. If that section is half a yard, that is = a quadrangle 21⁄4feet by 2, we shall have 23·13 × 0·5 = 11·565 cubic yards, = 3121⁄4cubic feet.
The problem becomes a little more complicated in calculating the velocity of air which has served for combustion, because it has changed its nature, a variable proportion of its oxygen gas of specific gravity 1·111, being converted into carbonic acid gas of specific gravity 1·524. The quantity of air passed through well-constructed furnaces may, in general, be regarded as double of what is rigorously necessary for combustion, and the proportion of carbonic acid generated, therefore, not one half of what it would be were all the oxygen so combined. The increase of weight in such burned air of the temperature of 212°, over that of pure air equally heated, being taken into account in the preceding calculation, will give us about 19 yards or 57 feet per second for the velocity in a chimney 100 yards high incased in steam.
Such are the deductions of theory; but they differ considerably from practical results, in consequence of the friction of the air upon the sides of the chimneys, which varies likewise with its form, length, and quality. The direction and force of the winds also exercise a variable influence upon chimney furnaces differently situated. In chimnies made of wrought iron, like those of steam boats, the refrigeration is considerable, and causes a diminution of velocity far greater than what occurs in a factory stalk of well-built brick work. In comparing the numbers resulting from the trials made on chimneys of different materials and of different forms, it has been concluded that the obstruction to the draught of the air, or the deduction to be made from the theoretical velocity of efflux, is directly proportional to the length of the chimneys and to the square of the velocity, and inversely to their diameter. With an ordinary wrought-iron pipe, of from 4 inchesto 5 inches diameter, attached to an ordinary stove, burning good charcoal, the difference is prodigious between the velocity calculated by the above theoretical rule, and that observed by means of a stop-watch, and the ascent of a puff of smoke from a little tow, dipped in oil of turpentine thrust quickly into the fire. The chimney being 45 feet high, the temperature of the atmosphere 68° Fahr., the velocity per second was,—
To obtain congruity between calculation and experiment, several circumstances must be introduced into our formulæ. In the first place, the theoretical velocity must be multiplied by a factor, which is different according as the chimney is made of bricks, pottery, sheet iron, or cast iron. This factor must be multiplied by the square root of the diameter of the chimney (supposed to be round), divided by its length, increased by four times its diameter. Thus, for pottery, its expression is 2·06√DL+D;Dbeing the diameter, andLthe length of the chimney.
A pottery chimney, 33 feet high, and 7 inches in diameter, when the excess of its mean temperature above that of the atmosphere was 205° Fahr., had a pressure of hot air equal to 11·7 feet, and a velocity of 7·2 feet per second. By calculating from the last formula, the same number very nearly is obtained. In none of the experiments did the velocity exceed 12 feet per second, when the difference of temperature was more than 410° Fahr.
Every different form of chimney would require a special set of experiments to be made for determining the proper factor to be used.
This troublesome operation may be saved by the judicious application of a delicate differential barometer, such as that invented by Dr. Wollaston; though this instrument does not seem to have been applied by its very ingenious author in measuring the draughts or ventilating powers of furnaces.
If into one leg of this differential syphon, water be put, and fine spermaceti oil into the other, we shall have two liquids, which are to each other in density as the numbers 8 and 7. If proof spirit be employed instead of water, we shall then have the relation of very nearly 20 to 19. I have made experiments on furnace draughts with the instrument in each of these states, and find the water and oil syphon to be sufficiently sensible: for the weaker draughts of common fire-places the spirits and oil will be preferable barometric fluids.
To the lateral projecting tube of the instrument, as described by Dr. Wollaston, I found it necessary to attach a stop-cock, in order to cut off the action of the chimney, while placing the syphon, to allow of its being fixed in a proper state of adjustment, with its junction line of the oil and water at the zero of the scale. Since a slight deviation of the legs of the syphon from the perpendicular, changes very considerably the line of the level, this adjustment should be made secure by fixing the horizontal pipe tightly into a round hole, bored into the chimney stalk, or drilled through the furnace door. On gently turning the stop-cock, the difference of atmospherical pressure corresponding to the chimney draught, will be immediately indicated by the ascent of the junction-line of the liquids in the syphon. This modification of apparatus permits the experiment to be readily rectified by again shutting off the draught, when the air will slowly re-enter the syphon; because the projecting tube of the barometer is thrust into the stop-cock, but not hermetically joined; whereby its junction line is allowed to return to the zero of the scale in the course of a few seconds.
Out of many experiments made with this instrument, I shall content myself with describing a few, very carefully performed at the breweries of Messrs. Trueman, Hanbury, and Buxton, and of Sir H. Meux, Bart., and at the machine factory of Messrs. Braithwaite; in the latter of which I was assisted by Captain Ericsson. In the first trials at the breweries, the end of the stop-cock attached to the differential barometer was lapped round with hemp, and made fast into the circular peep-hole of the furnace door of a wort copper, communicating with two upright parallel chimneys, each 18 inches square, and 50 feet high. The fire was burning with fully its average intensity at the time. The adjustment of the level being perfect, the stop-cock orifice was opened, and the junction level of the oil and water rose steadily, and stood at 11⁄4inches, corresponding to1·258= 0·156 of 1 inch of water, or a column of air 10·7 feet high. This difference of pressure indicates a velocity of 26 feet per second. In a second set of experiments, the extremity of the stop-cock was inserted into a hole, bored through the chimney stalk of the boiler of a Boulton and Watt steam-engine of twenty-horse power. The area of this chimney was exactly 18 inches square at the level of the bored hole, and its summit rose 50 feet above it. The fire-grate was about 10 feet below that level. Onopening the stop-cock, the junction line rose 21⁄4inches. This experiment was verified by repetition upon different days, with fires burning at their average intensity, and consuming fully 12 lbs. of the best coals hourly for each horse’s power, or nearly one ton and a third in twelve hours. If we divide the number 21⁄4by 8, the quotient 0·28 will represent the fractional part of 1 inch of water, supported in the syphon by the unbalanced pressure of the atmosphere in the said chimney; which corresponds to 191⁄4feet of air, and indicates a velocity in the chimney current of 35 feet per second. The consumption of fuel was much more considerable in the immense grate under the wort copper, than it was under the steam-engine boiler.
In my experiments at Messrs. Braithwaite’s factory, the maximum displacement of the junction line was 1 inch, when the differential oil and water barometer was placed in direct communication with a chimney 15 inches square, belonging to a steam boiler, and when the fire was made to burn so fiercely, that, on opening the safety-valve of the boiler, the excess of steam beyond the consumption of the engine, rushed out with such violence as to fill the whole premises. The pressure of one-eighth of an inch of water denotes a velocity of draught of 23·4 feet per second.
In building chimneys, we should be careful to make their area rather too large than too small; because we can readily reduce it to any desired size, by means of a sliding register plate near its bottom, or a damper plate applied to its top, adjustable by wires or chains, passing over pulleys. Wide chimneys are not so liable as narrow ones to have their draught affected by strong winds. In a factory, many furnace flues are often conducted into one vertical chimney stalk, with great economy in the first erection, and increased power of draught in the several fires.
Vast improvements have been made in this country, of late years, in building stalks for steam boilers and chemical furnaces. Instead of constructing an expensive, lofty scaffolding of timber round the chimney, for the bricklayers to stand upon, and to place their materials, pigeon-holes, or recesses, are left at regular intervals, a few feet apart, within the chimney, for receiving the ends of stout wooden bars, which are laid across, so as to form a species of temporary ladder in the interior of the tunnel. By means of these bars, with the aid of ropes and pulleys, every thing may be progressively hoisted, for the building of the highest engine or other stalks. An expert bricklayer, with a handy labourer, can in this way raise, in a few weeks, a considerable chimney, 40 feet high, 5 feet 8 inches square outside, 2 feet 8 inches inside at the base, 28 inches outside, and 20 inches inside at the top. To facilitate the erection, and at the same time increase the solidity of an insulated stalk of this kind, it is built with three or more successive plinths, or recedures, as shown infig.281.It is necessary to make such chimneys thick and substantial near the base, in order that they may sustain the first violence of the fire, and prevent the sudden dissipation of the heat. When many flues are conducted into one chimney stalk, the area of the latter should be nearly equal to the sum of the areas of the former, or at least of as many of them as shall be going simultaneously. When the products of combustion from any furnace must be conducted downwards, in order to enter near the bottom of the main stalk, they will not flow off until the lowest part of the channel be heated by burning some wood shavings or straw in it, whereby the air syphon is set agoing. Immediately after kindling this transient fire at that spot, the orifice must be shut by which it was introduced; otherwise the draught of the furnace would be seriously impeded. But this precaution is seldom necessary in great factories, where a certain degree of heat is always maintained in the flues, or, at least, should be preserved, by shutting the damper plate of each separate flue, whenever its own furnace ceases to act. Such chimneys are finished at top with a coping of stone-slabs, to secure their brickwork against the infiltration of rains, and they should be furnished with metallic conducting rods, to protect them from explosions of lightning.
When small domestic stoves are used, with very slow combustion, as has been recently proposed, upon the score of a misjudged economy, there is great danger of the inmates being suffocated or asphyxied, by the regurgitation of the noxious burned air. The smoke doctors who recommend such a vicious plan, from their ignorance of chemical science, are not aware that the carbonic acid gas, of coke or coal, must be heated 250° F. above the atmospheric air, to acquire the same low specific gravity with it. In other words, unless so rarefied by heat, that gaseous poison will descend through the orifice of the ash-pit, and be replaced by the lighter air of the apartment. Drs. Priestley and Dalton have long ago shown the co-existence of these two-fold crossing currents of air, even through the substance of stone-ware tubes. True economy of heat, and salubrity, alike require vivid combustion of the fuel, with a somewhat brisk draught inside of the chimney, and a corresponding abstraction of air from the apartment. Wholesome continuous ventilation, under the ordinary circumstances of dwelling houses, cannot be secured in any other way. Were these mephitic stoves, which have been of late so ridiculously puffed in the public prints, generally introduced, the faculty wouldneed to be immediately quadrupled to supply the demand for medical advice; for headaches, sickness, nervous ailments, and apoplexy, would become the constant inmates of every inhabited mansion. The phenomena of the grotto of Pausilippo might then be daily realised at home, among those who ventured to recline upon sofas in such carbonated apartments; only instead of a puppy being suffocatedpro tempore, human beings would be sacrificed, to save two-penny worth of fuelper diem.
Chimneys
Thefiguresupon the preceding page represent one of the two chimneys, recently erected at the Camden Town station, for the steam boilers of the two engines of 60 horse-power each, belonging to the London and Birmingham Railway Company. These engines draw their train of carriages up the inclined plane of Hampstead Hill. The chimneys were designed by Robert Stephenson, Esq., engineer to the Company, executed by William Cubitt, Esq., of Gray’s Inn Road,—and do equal honour to both gentlemen, being probably the most elegant and substantial specimens of this style of architecture in the world. In the section,fig.281.,
Arepresents a bed ofconcrete, 6 feet thick, and 24 feet square.
B, brick footings set in cement; the lower course 19 feet square.
C, Bramley-fall stone base, with a chain of wrought iron let into it.
D, a portion, 15 feet high, curved to a radius of 113 feet, built entirely of Malm paviours, (a peculiarly good kind of bricks.)
E, shaft built of Malm paviours in mortar.
F, ditto, built from the inside, without exterior scaffolding.
G, the cap ornamented, (as shown in the plan alongside,) with Portland stone, the dressings being tied together with copper cramps and an iron bond.
Fig.282.represents the mouldings of the top, upon an enlarged scale.
Fig.283., a plan of the foundation, ditto.
Fig.284., ditto, at the level of the entrance of the flue, as seen in
Fig.285., the elevation of the chimney.
Fig.286., plan at the ground levelI, infig.281.and285.
K,fig.281., the lightning conducting rod.