D.

CYANATES; saline compounds of cyanic acid with the bases potash, soda, ammonia, baryta, &c. The first is prepared by calcining at a dull red heat, a mixture of ferro-cyanide of potassium (prussiate of potash) and black oxide of manganese. The cyanates have not hitherto been applied to any use in the arts.

CYANATES; saline compounds of cyanic acid with the bases potash, soda, ammonia, baryta, &c. The first is prepared by calcining at a dull red heat, a mixture of ferro-cyanide of potassium (prussiate of potash) and black oxide of manganese. The cyanates have not hitherto been applied to any use in the arts.

CYANHYDRIC Acid; another name for the hydrocyanic or prussic acid. SeePrussian BlueandPrussic Acid.

CYANHYDRIC Acid; another name for the hydrocyanic or prussic acid. SeePrussian BlueandPrussic Acid.

CYANIDES; compounds of cyanogen with the metals; as cyanide of potassium, sodium, barium, calcium, iron, mercury. The last is the only one of importance in a manufacturing point of view, since from it prussic acid is made.

CYANIDES; compounds of cyanogen with the metals; as cyanide of potassium, sodium, barium, calcium, iron, mercury. The last is the only one of importance in a manufacturing point of view, since from it prussic acid is made.

CYANIDES, FERRO. Double compounds of cyanogen with iron, and of cyanogen with another metal, such as potassium, sodium, barium, &c. The ordinary yellow prussiate of potash has this constitution, and is called the ferro-cyanide.

CYANIDES, FERRO. Double compounds of cyanogen with iron, and of cyanogen with another metal, such as potassium, sodium, barium, &c. The ordinary yellow prussiate of potash has this constitution, and is called the ferro-cyanide.

CYANOGEN. A gaseous compound of two prime equivalents of charcoal = 12, and one of azote = 14 = 26; hydrogen being the radix or, 1. It consists of two volumes of vapour of carbon, and one volume of azote, condensed into one volume; and has therefore a density equal to the sum of the weights of these 3 gaseous volumes = 1·815. Cyanogen is readily procured by exposing the cyanide of mercury to a dull red heat in a retort; the gas is evolved and may be collected over mercury. Its smell is very sharp and penetrating; it perceptibly reddens tincture of litmus; it is condensable by pressure at a low temperature into a liquid; and by a still greater degree of cold, it is solidified. When a lighted taper is applied to a mixture of cyanogen and oxygen, an explosion takes place; carbonic acid is formed, and the azote is set at liberty.For a connected view of the various compounds of cyanogen employed in the arts, seePrussian Blue.

CYANOGEN. A gaseous compound of two prime equivalents of charcoal = 12, and one of azote = 14 = 26; hydrogen being the radix or, 1. It consists of two volumes of vapour of carbon, and one volume of azote, condensed into one volume; and has therefore a density equal to the sum of the weights of these 3 gaseous volumes = 1·815. Cyanogen is readily procured by exposing the cyanide of mercury to a dull red heat in a retort; the gas is evolved and may be collected over mercury. Its smell is very sharp and penetrating; it perceptibly reddens tincture of litmus; it is condensable by pressure at a low temperature into a liquid; and by a still greater degree of cold, it is solidified. When a lighted taper is applied to a mixture of cyanogen and oxygen, an explosion takes place; carbonic acid is formed, and the azote is set at liberty.

For a connected view of the various compounds of cyanogen employed in the arts, seePrussian Blue.

CYDER; (Cidre, Fr.;Apfelwein, Germ.) the vinous fermented juice of the apple. The ancients were acquainted with cyder and perry, as we learn from the following passage of Pliny the naturalist: “Wine is made from the Syrian pod, from pears and apples of every kind.” Book xiv. chap. 19. The term cyder or cidre in French, at first writtensidre, is derived from the latin wordsicera, which denoted all other fermented liquors except grape wine. Cyder seems to have been brought into Normandy by the Moors of Biscay, who had preserved the use of it after coming into that country from Africa. It was afterwards spread through some other provinces of France, whence it was introduced into England, Germany, and Russia. It is supposed that the first growths of Normandy afford still the best specimens of cyder. Devonshire and Herefordshire are the counties of England most famous for this beverage.Strong and somewhat elevated ground, rather dry, and not exposed to the air of the sea, or to high winds, are the best situations for the growth of the cyder apple. The fruit should be gathered in dry weather. The juice of apples is composed of a great deal of water; a little sugar analogous to that of the grape; a matter capable of causing fermentation with contact of air; a pretty large proportion of mucilage, with malic acid, acetic acid, and an azotized matter in a very small quantity. The seeds contain a bitter substance and a little essential oil; the pure parenchyma or cellular membrane constitutes not more than two per cent. of the whole. After the apples are gathered, they are left in the barn-loft for fifteen days or upwards to mellow; some of them in this case, however, become soft and brown. This degree of maturation diminishes their mucilage, and developes alcohol and carbonic acid; in consequence of which the cyder suffers no injury. There is always however a little loss; and if this ripening goes a little further it is very apt to do harm, notwithstanding the vulgar prejudice of the country people to the contrary. Too much care, indeed, cannot be taken to separate the sound from the spoiled apples; for the latter merely furnish an acid leaven, give a disagreeable taste to the juice, and hinder the cyder from fining, by leaving in it a certain portion of the parenchyma, which the gelatinous matter or the fermentation has diffused through it. Unripe apples should be separated from the ripe also, for they possess too little saccharum to be properly susceptible of the vinous fermentation.In France, where cyder making is most scientifically practised, it is prepared by crushing the apples in a mill with revolving edge-stones, turned in a circular stone cistern by one or two horses. When the fruit is half mashed, about one fifth of its weight of river water is added, or the water of lakes. The latter have been found by experience to be preferable to other water.In some places a mill composed of two cast-iron fluted cylinders placed parallel to each other under the bottom of a hopper, is employed for crushing the apples. One of the cylinders is turned by a winch, and communicates its motion in the opposite directionby means of the flutings working into each other. Each portion of the fruit must be passed thrice through this rude mill in order to be sufficiently mashed; and the same quantity of water must be added as in the edge stone mill.After the apples are crushed they are usually put into a large tub or tun for 12 or 24 hours. This steeping aids the separation of the juice, because the fermentative motion which takes place in the mass breaks down the cellular membranes; but there is always a loss of alcohol carried off by the carbonic acid disengaged, while the skins and seeds develope a disagreeable taste in the liquid. The vatting might be suppressed if the apples were so comminuted as to give out their juice more readily. With slight modifications, the process employed in rasping and squeezing the beet-roots might in my opinion be applied with great advantage to the cyder manufacture. SeeSugar.After the vatting, the mashed fruit is carried to the press and put upon a square wicker frame or into a hair bag, sometimes between layers of straw, and exposed stratum super stratum to strong pressure till what is called a cheese or cake is formed. The mass is to be allowed to drain for some time before applying pressure, which ought to be very gradually increased. The juice which exudes with the least pressure affords the best cyder; that which flows towards the end acquires a disagreeable taste from the seeds and the skins. The must is put into casks with large bungholes, where it soon begins to exhibit a tumultuous fermentation. The cask must be completely filled, in order that all the light bodies suspended in the liquid when floated to the top by the carbonic acid may flow over with the froth; this means of clearing cyder is particularly necessary with the weak kinds, because it cannot be expected that these matters in suspension will fall to the bottom of the casks after the motion has ceased. In almost every circumstance besides, when no saccharine matter has been added to the must, that kind of yeast which rises to the top must be separated, lest by precipitation it may excite an acid fermentation in the cyder. The casks are raised upon gawntrees or stillions, in order to place flat tubs below them to receive the liquor which flows over with the froth. At the end of two or three days, for weak cyders which are to be drunk somewhat sweet, of 6 or 10 days or more for stronger cyders, with variations for the state of the weather, the fermentation will be sufficiently advanced, and the cyder may be racked off into other casks. Spirit puncheons preserve cyder better than any other, but in all cases the casks should be well seasoned and washed. Sometimes a sulphur match is burned in them before introducing the cyder, a precaution to be generally recommended, as it suspends the activity of the fermentation, and prevents the formation of vinegar.The cyder procured by the first expression is called cyder without water. The cake remaining in the press is taken out, divided into small pieces, and mashed anew, adding about half the weight of water, when the whole is carried back to the press and treated as above described. The liquor thus obtained furnishes a weaker cyder which will not keep, and therefore must be drunk soon.The cake is once more mashed up with water, and squeezed, when it yields a liquor which may be used instead of water for moistening fresh ground apples.The processes above described, although they have been long practised, and have therefore the stamp of ancestral wisdom, are extremely defective. Were the apples ground with a proper rotatory rasp which would tear all their cells asunder, and the mash put through the hydraulic press in bags between hurdles of wicker-work, the juice would be obtained in a state of perfection fit to make a cyder superior to many wines. An experimental process of this kind has been actually executed in France upon a considerable scale, with the best results. The juice had the fine flavour of the apple, was fermented by itself without any previous fermentation in the mash, and afforded an excellent strong cyder which kept well.When the must of the apples is weak or sour, good cyder cannot be made from it without the addition of some saccharine matter. The syrup into which potato farina is convertible bydiastase(saccharine ferment), seeStarchandSugar, would answer well for enriching poor apple juice.

CYDER; (Cidre, Fr.;Apfelwein, Germ.) the vinous fermented juice of the apple. The ancients were acquainted with cyder and perry, as we learn from the following passage of Pliny the naturalist: “Wine is made from the Syrian pod, from pears and apples of every kind.” Book xiv. chap. 19. The term cyder or cidre in French, at first writtensidre, is derived from the latin wordsicera, which denoted all other fermented liquors except grape wine. Cyder seems to have been brought into Normandy by the Moors of Biscay, who had preserved the use of it after coming into that country from Africa. It was afterwards spread through some other provinces of France, whence it was introduced into England, Germany, and Russia. It is supposed that the first growths of Normandy afford still the best specimens of cyder. Devonshire and Herefordshire are the counties of England most famous for this beverage.

Strong and somewhat elevated ground, rather dry, and not exposed to the air of the sea, or to high winds, are the best situations for the growth of the cyder apple. The fruit should be gathered in dry weather. The juice of apples is composed of a great deal of water; a little sugar analogous to that of the grape; a matter capable of causing fermentation with contact of air; a pretty large proportion of mucilage, with malic acid, acetic acid, and an azotized matter in a very small quantity. The seeds contain a bitter substance and a little essential oil; the pure parenchyma or cellular membrane constitutes not more than two per cent. of the whole. After the apples are gathered, they are left in the barn-loft for fifteen days or upwards to mellow; some of them in this case, however, become soft and brown. This degree of maturation diminishes their mucilage, and developes alcohol and carbonic acid; in consequence of which the cyder suffers no injury. There is always however a little loss; and if this ripening goes a little further it is very apt to do harm, notwithstanding the vulgar prejudice of the country people to the contrary. Too much care, indeed, cannot be taken to separate the sound from the spoiled apples; for the latter merely furnish an acid leaven, give a disagreeable taste to the juice, and hinder the cyder from fining, by leaving in it a certain portion of the parenchyma, which the gelatinous matter or the fermentation has diffused through it. Unripe apples should be separated from the ripe also, for they possess too little saccharum to be properly susceptible of the vinous fermentation.

In France, where cyder making is most scientifically practised, it is prepared by crushing the apples in a mill with revolving edge-stones, turned in a circular stone cistern by one or two horses. When the fruit is half mashed, about one fifth of its weight of river water is added, or the water of lakes. The latter have been found by experience to be preferable to other water.

In some places a mill composed of two cast-iron fluted cylinders placed parallel to each other under the bottom of a hopper, is employed for crushing the apples. One of the cylinders is turned by a winch, and communicates its motion in the opposite directionby means of the flutings working into each other. Each portion of the fruit must be passed thrice through this rude mill in order to be sufficiently mashed; and the same quantity of water must be added as in the edge stone mill.

After the apples are crushed they are usually put into a large tub or tun for 12 or 24 hours. This steeping aids the separation of the juice, because the fermentative motion which takes place in the mass breaks down the cellular membranes; but there is always a loss of alcohol carried off by the carbonic acid disengaged, while the skins and seeds develope a disagreeable taste in the liquid. The vatting might be suppressed if the apples were so comminuted as to give out their juice more readily. With slight modifications, the process employed in rasping and squeezing the beet-roots might in my opinion be applied with great advantage to the cyder manufacture. SeeSugar.

After the vatting, the mashed fruit is carried to the press and put upon a square wicker frame or into a hair bag, sometimes between layers of straw, and exposed stratum super stratum to strong pressure till what is called a cheese or cake is formed. The mass is to be allowed to drain for some time before applying pressure, which ought to be very gradually increased. The juice which exudes with the least pressure affords the best cyder; that which flows towards the end acquires a disagreeable taste from the seeds and the skins. The must is put into casks with large bungholes, where it soon begins to exhibit a tumultuous fermentation. The cask must be completely filled, in order that all the light bodies suspended in the liquid when floated to the top by the carbonic acid may flow over with the froth; this means of clearing cyder is particularly necessary with the weak kinds, because it cannot be expected that these matters in suspension will fall to the bottom of the casks after the motion has ceased. In almost every circumstance besides, when no saccharine matter has been added to the must, that kind of yeast which rises to the top must be separated, lest by precipitation it may excite an acid fermentation in the cyder. The casks are raised upon gawntrees or stillions, in order to place flat tubs below them to receive the liquor which flows over with the froth. At the end of two or three days, for weak cyders which are to be drunk somewhat sweet, of 6 or 10 days or more for stronger cyders, with variations for the state of the weather, the fermentation will be sufficiently advanced, and the cyder may be racked off into other casks. Spirit puncheons preserve cyder better than any other, but in all cases the casks should be well seasoned and washed. Sometimes a sulphur match is burned in them before introducing the cyder, a precaution to be generally recommended, as it suspends the activity of the fermentation, and prevents the formation of vinegar.

The cyder procured by the first expression is called cyder without water. The cake remaining in the press is taken out, divided into small pieces, and mashed anew, adding about half the weight of water, when the whole is carried back to the press and treated as above described. The liquor thus obtained furnishes a weaker cyder which will not keep, and therefore must be drunk soon.

The cake is once more mashed up with water, and squeezed, when it yields a liquor which may be used instead of water for moistening fresh ground apples.

The processes above described, although they have been long practised, and have therefore the stamp of ancestral wisdom, are extremely defective. Were the apples ground with a proper rotatory rasp which would tear all their cells asunder, and the mash put through the hydraulic press in bags between hurdles of wicker-work, the juice would be obtained in a state of perfection fit to make a cyder superior to many wines. An experimental process of this kind has been actually executed in France upon a considerable scale, with the best results. The juice had the fine flavour of the apple, was fermented by itself without any previous fermentation in the mash, and afforded an excellent strong cyder which kept well.

When the must of the apples is weak or sour, good cyder cannot be made from it without the addition of some saccharine matter. The syrup into which potato farina is convertible bydiastase(saccharine ferment), seeStarchandSugar, would answer well for enriching poor apple juice.

DAHLINE, the same asInuline, the fecula obtained from elecampane, analogous in many respects to starch. It is not employed in the arts.

DAHLINE, the same asInuline, the fecula obtained from elecampane, analogous in many respects to starch. It is not employed in the arts.

DAMASCUS BLADES, are swords or scymitars, presenting upon their surface a variegated appearance ofwatering, as white, silvery, or black veins, in fine lines, or fillets; fibrous, crossed, interlaced or parallel, &c. They are brought from the East, being fabricated chiefly at Damascus, whence their name. Their excellent quality has become proverbial; for which reason these blades are much sought after by militarymen, and are high priced. The oriental processes have never been satisfactorily described; but of late years methods have been devised in Europe to imitate the fabric very well.Clouet and Hachette pointed out the three following processes for producing Damascus blades: 1, that ofparallel fillets; 2, that bytorsion; 3, themosaic. The first, which is still pursued by some French cutlers, consists in scooping out with a graving tool the faces of a piece of stuff composed of thin plates of different kinds of steel. These hollows are by a subsequent operation filled up, and brought to a level with the external faces, upon which they subsequently form tress-like figures. 2. The method of torsion, which is more generally employed at present, consists in forming a bundle of rods or slips of steel, which are welded together into a well-wrought bar, twisted several times round its axis. It is repeatedly forged, and twisted alternately; after which it is slit in the line of its axis, and the two halves are welded with their outsides in contact; by which means their faces will exhibit very various configurations. 3. The mosaic method consists in preparing a bar, as by the torsion plan, and cutting this bar into short pieces of nearly equal length, with which a faggot is formed and welded together; taking care to preserve the sections of each piece at the surface of the blade. In this way, all the variety of the design is displayed, corresponding to each fragment of the cut bar.The blades of Clouet, independently of their excellent quality, their flexibility, and extreme elasticity, have this advantage over the oriental blades, that they exhibit in the very substance of the metal, designs, letters, inscriptions, and, generally speaking, all kinds of figures which had been delineated beforehand.Notwithstanding these successful results of Clouet, it was pretty clear that the watered designs of the true Damascus scymitar were essentially different. M. Bréant has at last completely solved this problem. He has demonstrated that the substance of the oriental blades is a cast-steel more highly charged with carbon than our European steels, and in which, by means of a cooling suitably conducted, a crystallization takes place of two distinct combinations of carbon and iron. This separation is the essential condition; for if the melted steel be suddenly cooled in a small crucible or ingot, there is no damascene appearance.If an excess of carbon be mixed with iron, the whole of the metal will be converted into steel; and the residuary carbon will combine in a new proportion with a portion of the steel so formed. There will be two distinct compounds; namely, pure steel, and carburetted steel or cast-iron. These at first being imperfectly mixed will tend to separate, if while still fluid they be left in a state of repose; and form a crystallization in which the particles of the two compounds will place themselves in the crucible in an order determined by their affinity and density conjoined. If a blade forged out of steel so prepared be immersed in acidulous water, it will display a very distinct damascus appearance; the portions of pure steel becoming black, and those of carburetted steel remaining white, because the acids with difficulty disengage its carbon. The slower such a compound is cooled, the larger the damascus veins will be. Travernier relates that the steel crucible ingots, like those of wootz, for making the true oriental damascus, come from Golconda, that they are of the size of a halfpenny roll, and when cut in two, form two swords.Steel combined with manganese forges easily, but it is brittle when cold; it displays however the damascus appearance very strongly.A mixture of 100 parts of soft iron, and 2 of lamp black, melts as readily as ordinary steel. Several of the best blades which M. Bréant presented to the Société d’Encouragement are the product of this combination. This is an easy way of making cast-steel without previous cementation of the iron. 100 parts of filings of very gray cast-iron, and 100 parts of like filings previously oxidized, produced, by their fusion together, a beautiful damascene steel, fit for forging into white arms, sabres, swords, &c. This compound is remarkable for its elasticity, an essential quality, not possessed by the old Indian steel. The greater the proportion of the oxidized cast iron, the tougher is the steel. Care should be taken to stir the materials during their fusion, before it is allowed to cool; otherwise they will not afford a homogeneous damasc. If the steel contains much carbon it is difficult to forge, and cannot be drawn out except within a narrow range of temperature. When heated to a red-white it crumbles under the hammer; at a cherry-red it becomes hard and brittle; and as it progressively cools it becomes still more unmalleable. It resembles completely Indian steel, which European blacksmiths cannot forge, because they are ignorant of the suitable temperature for working it. M. Bréant, by studying this point, succeeded in forging fine blades.Experience has proved that the orbicular veins, called by the workmenknotsorthorns(ronces), which are seen upon the finest Eastern scymitars, are the result of the manner of forging them, as well as the method of twisting the Damascus bars. If these be drawn in length, the veins will be longitudinal; if they be spread equally in alldirections, the stuff will have a crystalline aspect; if they be made wavy in the two directions, undulated veins will be produced like those in the oriental damascus.

DAMASCUS BLADES, are swords or scymitars, presenting upon their surface a variegated appearance ofwatering, as white, silvery, or black veins, in fine lines, or fillets; fibrous, crossed, interlaced or parallel, &c. They are brought from the East, being fabricated chiefly at Damascus, whence their name. Their excellent quality has become proverbial; for which reason these blades are much sought after by militarymen, and are high priced. The oriental processes have never been satisfactorily described; but of late years methods have been devised in Europe to imitate the fabric very well.

Clouet and Hachette pointed out the three following processes for producing Damascus blades: 1, that ofparallel fillets; 2, that bytorsion; 3, themosaic. The first, which is still pursued by some French cutlers, consists in scooping out with a graving tool the faces of a piece of stuff composed of thin plates of different kinds of steel. These hollows are by a subsequent operation filled up, and brought to a level with the external faces, upon which they subsequently form tress-like figures. 2. The method of torsion, which is more generally employed at present, consists in forming a bundle of rods or slips of steel, which are welded together into a well-wrought bar, twisted several times round its axis. It is repeatedly forged, and twisted alternately; after which it is slit in the line of its axis, and the two halves are welded with their outsides in contact; by which means their faces will exhibit very various configurations. 3. The mosaic method consists in preparing a bar, as by the torsion plan, and cutting this bar into short pieces of nearly equal length, with which a faggot is formed and welded together; taking care to preserve the sections of each piece at the surface of the blade. In this way, all the variety of the design is displayed, corresponding to each fragment of the cut bar.

The blades of Clouet, independently of their excellent quality, their flexibility, and extreme elasticity, have this advantage over the oriental blades, that they exhibit in the very substance of the metal, designs, letters, inscriptions, and, generally speaking, all kinds of figures which had been delineated beforehand.

Notwithstanding these successful results of Clouet, it was pretty clear that the watered designs of the true Damascus scymitar were essentially different. M. Bréant has at last completely solved this problem. He has demonstrated that the substance of the oriental blades is a cast-steel more highly charged with carbon than our European steels, and in which, by means of a cooling suitably conducted, a crystallization takes place of two distinct combinations of carbon and iron. This separation is the essential condition; for if the melted steel be suddenly cooled in a small crucible or ingot, there is no damascene appearance.

If an excess of carbon be mixed with iron, the whole of the metal will be converted into steel; and the residuary carbon will combine in a new proportion with a portion of the steel so formed. There will be two distinct compounds; namely, pure steel, and carburetted steel or cast-iron. These at first being imperfectly mixed will tend to separate, if while still fluid they be left in a state of repose; and form a crystallization in which the particles of the two compounds will place themselves in the crucible in an order determined by their affinity and density conjoined. If a blade forged out of steel so prepared be immersed in acidulous water, it will display a very distinct damascus appearance; the portions of pure steel becoming black, and those of carburetted steel remaining white, because the acids with difficulty disengage its carbon. The slower such a compound is cooled, the larger the damascus veins will be. Travernier relates that the steel crucible ingots, like those of wootz, for making the true oriental damascus, come from Golconda, that they are of the size of a halfpenny roll, and when cut in two, form two swords.

Steel combined with manganese forges easily, but it is brittle when cold; it displays however the damascus appearance very strongly.

A mixture of 100 parts of soft iron, and 2 of lamp black, melts as readily as ordinary steel. Several of the best blades which M. Bréant presented to the Société d’Encouragement are the product of this combination. This is an easy way of making cast-steel without previous cementation of the iron. 100 parts of filings of very gray cast-iron, and 100 parts of like filings previously oxidized, produced, by their fusion together, a beautiful damascene steel, fit for forging into white arms, sabres, swords, &c. This compound is remarkable for its elasticity, an essential quality, not possessed by the old Indian steel. The greater the proportion of the oxidized cast iron, the tougher is the steel. Care should be taken to stir the materials during their fusion, before it is allowed to cool; otherwise they will not afford a homogeneous damasc. If the steel contains much carbon it is difficult to forge, and cannot be drawn out except within a narrow range of temperature. When heated to a red-white it crumbles under the hammer; at a cherry-red it becomes hard and brittle; and as it progressively cools it becomes still more unmalleable. It resembles completely Indian steel, which European blacksmiths cannot forge, because they are ignorant of the suitable temperature for working it. M. Bréant, by studying this point, succeeded in forging fine blades.

Experience has proved that the orbicular veins, called by the workmenknotsorthorns(ronces), which are seen upon the finest Eastern scymitars, are the result of the manner of forging them, as well as the method of twisting the Damascus bars. If these be drawn in length, the veins will be longitudinal; if they be spread equally in alldirections, the stuff will have a crystalline aspect; if they be made wavy in the two directions, undulated veins will be produced like those in the oriental damascus.

DAMASK is a variegated textile fabric, richly ornamented with figures of flowers, fruits, landscapes, animals, &c., woven in the loom, and is by far the most rich, elegant, and expensive species of ornamental weaving, tapestry alone excepted. The name is said to be derived from Damascus, where it was anciently made.Damask belongs to that species of texture which is distinguished by practical men by the name of tweeling, of which it is the richest pattern. The tweel of damask is usually half that of fullsatin, and consequently consists of eight leaves moved either in regular succession or by regular intervals, eight leaves being the smallest number which will admit of alternate tweeling at equal intervals.In the articleCarpet, two representations have been given of the damask draw-loom.The generic difference of tweeling, when compared with common cloth, consists in the intersections, although uniform and equidistant, being at determinate intervals, and not between the alternate threads. Hence we have specimens of tweeled cloth, where the intersections take place at the third, fourth, fifth, sixth, seventh, eighth, or sixteenth interval only. The threads thus deflecting only from a straight line at intervals, preserve more of their original direction, and a much greater quantity of materials can be combined in an equal space, than in the alternate intersection, where the tortuous deflection, at every interval, keeps them more asunder. On this principle tweeled cloths of three and four leaves are woven for facility of combination alone. The coarser species of ornamented cloths, known by the names of dornock and diaper, usually intersect at the fifth, or half satin interval. The sixth and seventh are rarely used, and the intersection at the eighth is distinguished by the name of satin in common, and of damask in ornamental tweeling. It will further be very obvious, that where the warp and woof cross only at every eighth interval, the two sides of the cloth will present a diversity of appearance; for on one side the longitudinal or warp threads will run parallel from one end of a web to the other, and, on the other, the threads of woof will run also parallel, but in a transverse direction across the cloth, or at right angles to the former. The points of intersection being only at every eighth interval, appear only like points; and in regular tweeling these form the appearance of diagonal lines, inclined at an angle of 45° (or nearly so) to each of the former.The appearance, therefore, of a piece of common tweeled cloth is very similar to that of two thin boards glued together, with the grain of the upper piece at right angles to that of the under one. That of an ornamental piece of damask may, in the same manner, be very properly assimilated to a piece of veneering, where all the wood is of the same substance and colour, and where the figures assume a diversity of appearance from the ground, merely by the grain of the one being disposed perpendicularly to that of the other. SeeTextile Fabric.From this statement of the principle, it results that the most unlimited variety of figures will be produced, by constructing a loom by which every individual thread of warp may be placed either above or below the woof at every intersection; and to effect this, in boundless variety, is the object of theJacquardmounting; which see.The chief seat of this manufacture is probably the town and neighbourhood of Dunfermline, in Fifeshire, and Lisburn and Ardoyne, near Belfast, where it is considered as the staple, having proved a very profitable branch of traffic to the manufacturer, and given employment to many industrious people.The material used there is chiefly linen; but many have been recently woven of cotton, since the introduction of that article into the manufacture of cloth has become so prevalent. The cotton damasks are considerably cheaper than those of linen; but are not considered either so elegant or durable. The cotton, also, unless frequently bleached, does not preserve the purity of the white colour nearly so well as the linen.

DAMASK is a variegated textile fabric, richly ornamented with figures of flowers, fruits, landscapes, animals, &c., woven in the loom, and is by far the most rich, elegant, and expensive species of ornamental weaving, tapestry alone excepted. The name is said to be derived from Damascus, where it was anciently made.

Damask belongs to that species of texture which is distinguished by practical men by the name of tweeling, of which it is the richest pattern. The tweel of damask is usually half that of fullsatin, and consequently consists of eight leaves moved either in regular succession or by regular intervals, eight leaves being the smallest number which will admit of alternate tweeling at equal intervals.

In the articleCarpet, two representations have been given of the damask draw-loom.

The generic difference of tweeling, when compared with common cloth, consists in the intersections, although uniform and equidistant, being at determinate intervals, and not between the alternate threads. Hence we have specimens of tweeled cloth, where the intersections take place at the third, fourth, fifth, sixth, seventh, eighth, or sixteenth interval only. The threads thus deflecting only from a straight line at intervals, preserve more of their original direction, and a much greater quantity of materials can be combined in an equal space, than in the alternate intersection, where the tortuous deflection, at every interval, keeps them more asunder. On this principle tweeled cloths of three and four leaves are woven for facility of combination alone. The coarser species of ornamented cloths, known by the names of dornock and diaper, usually intersect at the fifth, or half satin interval. The sixth and seventh are rarely used, and the intersection at the eighth is distinguished by the name of satin in common, and of damask in ornamental tweeling. It will further be very obvious, that where the warp and woof cross only at every eighth interval, the two sides of the cloth will present a diversity of appearance; for on one side the longitudinal or warp threads will run parallel from one end of a web to the other, and, on the other, the threads of woof will run also parallel, but in a transverse direction across the cloth, or at right angles to the former. The points of intersection being only at every eighth interval, appear only like points; and in regular tweeling these form the appearance of diagonal lines, inclined at an angle of 45° (or nearly so) to each of the former.

The appearance, therefore, of a piece of common tweeled cloth is very similar to that of two thin boards glued together, with the grain of the upper piece at right angles to that of the under one. That of an ornamental piece of damask may, in the same manner, be very properly assimilated to a piece of veneering, where all the wood is of the same substance and colour, and where the figures assume a diversity of appearance from the ground, merely by the grain of the one being disposed perpendicularly to that of the other. SeeTextile Fabric.

From this statement of the principle, it results that the most unlimited variety of figures will be produced, by constructing a loom by which every individual thread of warp may be placed either above or below the woof at every intersection; and to effect this, in boundless variety, is the object of theJacquardmounting; which see.

The chief seat of this manufacture is probably the town and neighbourhood of Dunfermline, in Fifeshire, and Lisburn and Ardoyne, near Belfast, where it is considered as the staple, having proved a very profitable branch of traffic to the manufacturer, and given employment to many industrious people.

The material used there is chiefly linen; but many have been recently woven of cotton, since the introduction of that article into the manufacture of cloth has become so prevalent. The cotton damasks are considerably cheaper than those of linen; but are not considered either so elegant or durable. The cotton, also, unless frequently bleached, does not preserve the purity of the white colour nearly so well as the linen.

DAMASKEENING; the art of ornamenting iron, steel, &c., by making incisions upon its surface, and filling them up with gold or silver wire; chiefly used in enriching sword blades, guards, and gripes, locks of pistols, &c.Its name shows the place of its origin, or, at least, the place where it has been practised in the greatest perfection; viz. the city of Damascus, in Syria; though M. Felibien attributes the perfection of the art to his countryman, Cursinet, who wrought under the reign of Henry IV.Damaskeening is partly mosaic work, partly engraving, and partly carving. As mosaic work, it consists of pieces inlaid; as engraving, the metal is indented, or cut in intaglio; and as carving, gold and silver are wrought into it inrelievo.There are two ways of damaskeening; in the first, which is the most beautiful, the artists cut into the metal with a graver, and other tools proper for engraving upon steel, and afterwards fill up the incisions, or notches, with a pretty thick silver or gold wire. In the other, which is only superficial, they content themselves to make hatches,or strokes across the iron, &c. with a cutting knife, such as is used in making of small files. As to the first, it is necessary for the gravings or incisions to be made in the dove-tail form; that the gold or silver wire, which is thrust forcibly into them, may adhere the more strongly. As to the second, which is the more usual, the method is this:—Having heated the steel till it changes to a violet, or blue colour, they hatch it over and across with the knife; then draw the ensign or ornament intended, upon this hatching, with a fine brass point or bodkin. This done, they take fine gold wire, and conducting or chasing it according to the figures already designed, they sink it carefully into the hatches of the metal with a copper tool.

DAMASKEENING; the art of ornamenting iron, steel, &c., by making incisions upon its surface, and filling them up with gold or silver wire; chiefly used in enriching sword blades, guards, and gripes, locks of pistols, &c.

Its name shows the place of its origin, or, at least, the place where it has been practised in the greatest perfection; viz. the city of Damascus, in Syria; though M. Felibien attributes the perfection of the art to his countryman, Cursinet, who wrought under the reign of Henry IV.

Damaskeening is partly mosaic work, partly engraving, and partly carving. As mosaic work, it consists of pieces inlaid; as engraving, the metal is indented, or cut in intaglio; and as carving, gold and silver are wrought into it inrelievo.

There are two ways of damaskeening; in the first, which is the most beautiful, the artists cut into the metal with a graver, and other tools proper for engraving upon steel, and afterwards fill up the incisions, or notches, with a pretty thick silver or gold wire. In the other, which is only superficial, they content themselves to make hatches,or strokes across the iron, &c. with a cutting knife, such as is used in making of small files. As to the first, it is necessary for the gravings or incisions to be made in the dove-tail form; that the gold or silver wire, which is thrust forcibly into them, may adhere the more strongly. As to the second, which is the more usual, the method is this:—Having heated the steel till it changes to a violet, or blue colour, they hatch it over and across with the knife; then draw the ensign or ornament intended, upon this hatching, with a fine brass point or bodkin. This done, they take fine gold wire, and conducting or chasing it according to the figures already designed, they sink it carefully into the hatches of the metal with a copper tool.

DAMASSIN is a kind of damask, with gold and silver flowers, woven in the warp and woof; or occasionally with silk organzine.

DAMASSIN is a kind of damask, with gold and silver flowers, woven in the warp and woof; or occasionally with silk organzine.

DAMPS, in mining, are noxious exhalations, or rather gases, so called from the Germandampf, vapour. There are two principal kinds of mine gases, thefire-damp, or carburetted hydrogen, and thechoke-damp, or carbonic acid gas. SeeMines.

DAMPS, in mining, are noxious exhalations, or rather gases, so called from the Germandampf, vapour. There are two principal kinds of mine gases, thefire-damp, or carburetted hydrogen, and thechoke-damp, or carbonic acid gas. SeeMines.

DAPHNINE; the bitter principle of theDaphne Alpina.

DAPHNINE; the bitter principle of theDaphne Alpina.

DATOLITE. A mineral composed of silica, lime, and boracic acid.

DATOLITE. A mineral composed of silica, lime, and boracic acid.

DECANTATION, (Eng. and Fr.;Abgiessen, Germ.) is the act of pouring off the clear supernatant fluid from any sediment or deposit. It is much employed in the chemical arts; and is most conveniently effected by a syphon.

DECANTATION, (Eng. and Fr.;Abgiessen, Germ.) is the act of pouring off the clear supernatant fluid from any sediment or deposit. It is much employed in the chemical arts; and is most conveniently effected by a syphon.

DECOCTION, (Eng. and Fr.;Abkochung, Germ.) means either the act of boiling a liquid along with some organic substance, or the liquid compound resulting from that act.

DECOCTION, (Eng. and Fr.;Abkochung, Germ.) means either the act of boiling a liquid along with some organic substance, or the liquid compound resulting from that act.

DECOMPOSITION, (Eng. and Fr.;Zersetzung, Germ.) is the separation of the constituent principles of any compound body. The following table, the result of important researches recently made by M. Persoz, Professor of Chemistry at Strasburgh, shows the order in which decompositions take place among the successive substances.Nitric Acid.Muriatic Acid.Oxide of MagnesiumOxide of MagnesiumOx—ofSilverOx—ofCobaltOx—ofCobaltOx—ofNickelOx—ofNickelProtox. of MercuryProtox. of CeriumPro—. ofCeriumOxide of ZincOxide of ZincProtox. of ManganeseProtox. of ManganeseOxide of LeadPro—. ofIronOx—ofCadmiumPro—. ofUraniumOx—ofCopperPro—. ofCopperOx—ofGlucinumPro—. ofTinOx—ofAlumiumOxide of GlucinumOx—ofUraniumOx—ofAlumiumOx—ofChromiumOx—ofUraniumProtox. of MercuryOx—ofChromiumOxide of MercuryOx—ofIronOx—ofIronOx—ofTinOx—ofBismuthOx—ofBismuthOx—ofAntimonyBy means of the cupric oxide we may separate, 1, the ferric oxide from the manganous oxide; 2, the cobaltic, nickelic, zincic and cerous oxides from the uranic, ferric, chromic, and aluminic oxides; 3, the ferrous oxide from the chromic oxide, when dissolved in the muriatic acid.In boiling a muriatic solution of the cobaltic, nickelic, and manganous oxides, with the mercuric oxide, the first two oxides alone are precipitated. Alumina separates the cadmic oxide from the bismuthic oxide, the stannous oxide from the stannic oxide, and the stannous oxide from the antimonic acid. The cupric oxide separates also by precipitation, the aluminic, uranic, chromic, titanic, and vanadic oxides from all the oxides which are precipitable in the state of sulphuret, by hydrosulphuret of ammonia.As an example of this mode of analysis—Dissolve pech-blende in aqua regia, precipitate its copper by sulphuretted hydrogen, boil the liquid along with nitric acid, in order to transform all the uranium into uranic acid. Next boil it along with cupric oxide, which precipitates only the uranic and ferric oxides. Redissolve the precipitate in nitric acid, and boil the solution with mercuric oxide, which does not precipitate the ferric oxide. Finally, separate the copper and the mercury from the uranium, by means of sulphuretted hydrogen. In this process we may substitute plumbic oxide for the cupric oxide, and succeed equally well.Knowledge, like the above, of the elective affinities and habitudes of chemical bodies, simple and compound, imparts to its possessor an irresistible power over the unions anddisunions of the elements, which he can exercise with certainty in effecting innumerable transformations in the arts.

DECOMPOSITION, (Eng. and Fr.;Zersetzung, Germ.) is the separation of the constituent principles of any compound body. The following table, the result of important researches recently made by M. Persoz, Professor of Chemistry at Strasburgh, shows the order in which decompositions take place among the successive substances.

By means of the cupric oxide we may separate, 1, the ferric oxide from the manganous oxide; 2, the cobaltic, nickelic, zincic and cerous oxides from the uranic, ferric, chromic, and aluminic oxides; 3, the ferrous oxide from the chromic oxide, when dissolved in the muriatic acid.

In boiling a muriatic solution of the cobaltic, nickelic, and manganous oxides, with the mercuric oxide, the first two oxides alone are precipitated. Alumina separates the cadmic oxide from the bismuthic oxide, the stannous oxide from the stannic oxide, and the stannous oxide from the antimonic acid. The cupric oxide separates also by precipitation, the aluminic, uranic, chromic, titanic, and vanadic oxides from all the oxides which are precipitable in the state of sulphuret, by hydrosulphuret of ammonia.

As an example of this mode of analysis—

Dissolve pech-blende in aqua regia, precipitate its copper by sulphuretted hydrogen, boil the liquid along with nitric acid, in order to transform all the uranium into uranic acid. Next boil it along with cupric oxide, which precipitates only the uranic and ferric oxides. Redissolve the precipitate in nitric acid, and boil the solution with mercuric oxide, which does not precipitate the ferric oxide. Finally, separate the copper and the mercury from the uranium, by means of sulphuretted hydrogen. In this process we may substitute plumbic oxide for the cupric oxide, and succeed equally well.

Knowledge, like the above, of the elective affinities and habitudes of chemical bodies, simple and compound, imparts to its possessor an irresistible power over the unions anddisunions of the elements, which he can exercise with certainty in effecting innumerable transformations in the arts.

DECREPITATION, (Eng. and Fr.;Verknistern, Germ.) is the crackling noise, attended with the flying asunder of their parts, made by several salts and minerals, when heated. It is caused by the unequal sudden expansion of their substance by the heat. Sulphate of baryta, chloride of sodium, calcareous spar, nitrate of baryta, and many more bodies which contain no water, decrepitate most violently, separating at the natural joints of their crystalline structure. Some chemists have preposterously enough ascribed the phenomenon to the expansion of the combined water into steam. What a specimen of inductive philosophy!

DECREPITATION, (Eng. and Fr.;Verknistern, Germ.) is the crackling noise, attended with the flying asunder of their parts, made by several salts and minerals, when heated. It is caused by the unequal sudden expansion of their substance by the heat. Sulphate of baryta, chloride of sodium, calcareous spar, nitrate of baryta, and many more bodies which contain no water, decrepitate most violently, separating at the natural joints of their crystalline structure. Some chemists have preposterously enough ascribed the phenomenon to the expansion of the combined water into steam. What a specimen of inductive philosophy!

DEFECATION, (Eng. and Fr.;Klaren, Germ.) the freeing from dregs or impurities.

DEFECATION, (Eng. and Fr.;Klaren, Germ.) the freeing from dregs or impurities.

DEFLAGRATION, (Eng. and Fr.;Verpuffung, Germ.) the sudden blazing up of a combustible; as of a charcoal or sulphur when thrown into melted nitre.

DEFLAGRATION, (Eng. and Fr.;Verpuffung, Germ.) the sudden blazing up of a combustible; as of a charcoal or sulphur when thrown into melted nitre.

DELPHINIA. The vegeto-alkaline principle of theDelphinium staphysagria, or stavesacre. It is poisonous.

DELPHINIA. The vegeto-alkaline principle of theDelphinium staphysagria, or stavesacre. It is poisonous.

DELIQUESCENT, (Zerfliessen, Germ.) is said of a solid which attracts so much moisture from the air as to become spontaneously soft or liquid; such as potash and muriate of lime.

DELIQUESCENT, (Zerfliessen, Germ.) is said of a solid which attracts so much moisture from the air as to become spontaneously soft or liquid; such as potash and muriate of lime.

DEPHLEGMATION is the process by which liquids are deprived of their watery particles. It is applied chiefly to spirituous liquors, and is now nearly obsolete, as involving the alchemistical notion of a peculiar principle called phlegm.

DEPHLEGMATION is the process by which liquids are deprived of their watery particles. It is applied chiefly to spirituous liquors, and is now nearly obsolete, as involving the alchemistical notion of a peculiar principle called phlegm.

DEPHLOGISTICATED; deprived of phlogiston,—formerly supposed to be the common combustible principle. It is nearly synonymous with oxygenated. The idea originally attached to the word having proceeded from false logic, the word itself should never be used either in science or manufactures.

DEPHLOGISTICATED; deprived of phlogiston,—formerly supposed to be the common combustible principle. It is nearly synonymous with oxygenated. The idea originally attached to the word having proceeded from false logic, the word itself should never be used either in science or manufactures.

DEPILATORY. (Depilatoire, Fr.;Enthaarensmittel, Germ.) is the name of any substance capable of removing hairs from the human skin without injuring its texture. They act either mechanically or chemically. The first are commonly glutinous plasters formed of pitch and rosin, which stick so closely to the part of the skin where they are applied, that when removed, they tear away the hairs with them. This method is more painful, but less dangerous than the other, which consists in the solvent action of a menstruum, so energetic as to penetrate the pores of the skin, and destroy the bulbous roots of the hairs. This is composed either of caustic alkalis, sulphuret of baryta, or arsenical preparations. Certain vegetable juices have also been recommended for the same purpose; as spurge and acacia. The bruised eggs of ants have likewise been prescribed. But theoriental rusmayields to nothing in depilatory power. Gadet de Gassincourt has published in theDictionnaire des Sciences Medicales, the following recipe for preparing it.Mix two ounces of quicklime, with half an ounce of orpiment or realgar, (sulphuret of arsenic;) boil that mixture in one pound of strong alkaline lye, then try its strength by dipping a feather into it, and when the flue falls off, therusmais quite strong enough. It is applied to the human skin by a momentary friction, followed by washing with warm water. Such a caustic liquid should be used with the greatest circumspection, beginning with it somewhat diluted. A soap is sometimes made with lard and the above ingredients; or soft soap is combined with them; in either case to form a depilatory pommade. Occasionally one ounce of orpiment is taken to eight ounces of quicklime, or two to twelve, or three to fifteen; the last mixture being of course the most active. Its causticity may be tempered by the addition of one eighth of starch or rye flour, so as to form a soft paste, which being laid upon the hairy spot for a few minutes, usually carries away the hairs with it.Therusmashould never be applied but to a small surface at a time, for independently of the risk of corroding the skin, dangerous consequences might ensue from absorption of the arsenic.

DEPILATORY. (Depilatoire, Fr.;Enthaarensmittel, Germ.) is the name of any substance capable of removing hairs from the human skin without injuring its texture. They act either mechanically or chemically. The first are commonly glutinous plasters formed of pitch and rosin, which stick so closely to the part of the skin where they are applied, that when removed, they tear away the hairs with them. This method is more painful, but less dangerous than the other, which consists in the solvent action of a menstruum, so energetic as to penetrate the pores of the skin, and destroy the bulbous roots of the hairs. This is composed either of caustic alkalis, sulphuret of baryta, or arsenical preparations. Certain vegetable juices have also been recommended for the same purpose; as spurge and acacia. The bruised eggs of ants have likewise been prescribed. But theoriental rusmayields to nothing in depilatory power. Gadet de Gassincourt has published in theDictionnaire des Sciences Medicales, the following recipe for preparing it.

Mix two ounces of quicklime, with half an ounce of orpiment or realgar, (sulphuret of arsenic;) boil that mixture in one pound of strong alkaline lye, then try its strength by dipping a feather into it, and when the flue falls off, therusmais quite strong enough. It is applied to the human skin by a momentary friction, followed by washing with warm water. Such a caustic liquid should be used with the greatest circumspection, beginning with it somewhat diluted. A soap is sometimes made with lard and the above ingredients; or soft soap is combined with them; in either case to form a depilatory pommade. Occasionally one ounce of orpiment is taken to eight ounces of quicklime, or two to twelve, or three to fifteen; the last mixture being of course the most active. Its causticity may be tempered by the addition of one eighth of starch or rye flour, so as to form a soft paste, which being laid upon the hairy spot for a few minutes, usually carries away the hairs with it.

Therusmashould never be applied but to a small surface at a time, for independently of the risk of corroding the skin, dangerous consequences might ensue from absorption of the arsenic.

DETONATION. SeeFulminating, for the mode of preparing detonating powder for the percussion caps of fire-arms.

DETONATION. SeeFulminating, for the mode of preparing detonating powder for the percussion caps of fire-arms.

DEUTOXIDE literally means the second oxide, but is usually employed to denote a compound containing two atoms or two prime equivalents of oxygen to one or more of a metal. Thus we say deutoxide of copper, and deutoxide of mercury. Berzelius has abbreviated this expression by adopting the principles of the French nomenclature of 1787; according to which the higher stage of oxidizement is characterized by the terminationic, and the lower byous, and he writes accordingly cupric and mercuric, to designate the deutoxides of these two metals; cuprous and mercurous to designate their protoxides. I have adopted this nomenclature in the articleDecomposition, and in some other parts of this Dictionary, as being short and sufficiently precise.

DEUTOXIDE literally means the second oxide, but is usually employed to denote a compound containing two atoms or two prime equivalents of oxygen to one or more of a metal. Thus we say deutoxide of copper, and deutoxide of mercury. Berzelius has abbreviated this expression by adopting the principles of the French nomenclature of 1787; according to which the higher stage of oxidizement is characterized by the terminationic, and the lower byous, and he writes accordingly cupric and mercuric, to designate the deutoxides of these two metals; cuprous and mercurous to designate their protoxides. I have adopted this nomenclature in the articleDecomposition, and in some other parts of this Dictionary, as being short and sufficiently precise.

DEXTRINE, is a matter of a gummy appearance into which the interior substance of the molecules of starch are converted, through the influence of diastase or acids. It derives its name from the circumstance that it turns, more than any other body, theplane of polarization to the right hand. It is white, insipid, without smell, transparent in thin plates, friable, with a glassy fracture when well dried. It is not altered by the heat of boiling water, but at 280° F. it becomes brown, and acquires the flavour of toasted bread. It is not coloured by iodine, like starch, it does not form muric acid with the nitric, as common gum does, and it is transformed into grape sugar, when heated along with dilute sulphuric acid or diastase.Dextrine is much employed by the French pastrycooks and confectioners; it is a good substitute for gum arabic in medicine. For the conversion of potato or other starch into dextrine, by the action ofdiastase, see this article.

DEXTRINE, is a matter of a gummy appearance into which the interior substance of the molecules of starch are converted, through the influence of diastase or acids. It derives its name from the circumstance that it turns, more than any other body, theplane of polarization to the right hand. It is white, insipid, without smell, transparent in thin plates, friable, with a glassy fracture when well dried. It is not altered by the heat of boiling water, but at 280° F. it becomes brown, and acquires the flavour of toasted bread. It is not coloured by iodine, like starch, it does not form muric acid with the nitric, as common gum does, and it is transformed into grape sugar, when heated along with dilute sulphuric acid or diastase.

Dextrine is much employed by the French pastrycooks and confectioners; it is a good substitute for gum arabic in medicine. For the conversion of potato or other starch into dextrine, by the action ofdiastase, see this article.

DIAMOND. Since this body is merely a condensed form of carbon, it cannot in a chemical classification be ranked among stones; but as it forms in commerce the most precious of the gems, it claims our first attention in a practical treatise on the arts. Diamonds are distinguishable by a great many peculiar properties, very remarkable and easily recognized, both in their rough state, and when cut and polished. Their most absolute and constant character is a degree of hardness superior to that of every mineral, whence diamonds scratch all other bodies, and are scratched by none. Their peculiar adamantine lustre, not easy to define, but readily distinguishable by the eye from that of every other gem, is their most obvious feature. Their specific gravity is 3·55. Whether rough or polished, diamonds acquire by friction, positive electricity, but do not retain it for more than half an hour. The natural form of diamonds is derivable from an octahedron, and they never present crystals having one axis longer than the other. Their structure is very perceptibly lamellar, and therefore, notwithstanding their great hardness, they are brittle and give way in the line of their cleavage, affording a direct means of arriving at their primitive form, the regular octahedron.The diamond possesses either single or double refraction, according to its different crystalline forms; its refractive power on light is far greater than it ought to be in the ratio of its density; the index of refraction being 2·44, whence Newton long ago supposed it to consist of inflammable matter. Its various forms in nature present a circumstance peculiar to this body; its faces are rarely terminated by planes, like most other native crystals, but they are often rounded off, and the edges between them are curved. When these secondary faces are attentively examined with a lens, we remark that they are marked with striæ, sometimes very fine and almost imperceptible, but at others well defined; and that these striæ are parallel to the edges of the octahedron, and consequently to those of the plates that are applied on the primitive faces of this figure.Diamonds are usually colourless and transparent; when coloured, their ordinary tint verges upon yellow, or smoke-yellow, approaching sometimes to blackish-brown. Green diamonds are next to yellow the most common; the blue possess rarely a lively hue, but they are much esteemed in Scotland. The rose or pink diamonds are the most valued of the coloured kind, and exceed sometimes in price the most limpid; though generally speaking the latter are the most highly prized.The geological locality of the diamond seems to be in diluvial gravel, and among conglomerate rocks; consisting principally of fragments of quartz, or rolled pebbles of quartz mixed with ferruginous sand, which compose sometimes hard aggregated masses. This kind of formation is calledcascalhoin Brazil. Its accompanying minerals are few in number, being merely black oxide of iron, micaceous iron ore, pisiform iron ore, fragments of slaty jasper, several varieties of quartz, principally amethyst. In Mr. Heuland’s splendid collection there was a Brazilian diamond imbedded in brown iron ore; another in the same, belonging to M. Schuch, librarian to the Crown Princess of Portugal; and in the cabinet of M. Eschwege there is a mass of brown iron ore, containing a diamond in the drusy cavity of a green mineral, conjectured to be arseniate of iron. From these facts it may be inferred with much probability that the matrix or original repository of the diamond of Brazil is brown iron ore, which occurs in beds of slaty quartzose micaceous iron ore, or in beds composed of iron-glance and magnetic iron ore, both of which are apparently subordinate in that country to primitive clay slate.The loose earth containing diamonds lies always a little way beneath the surface of the soil, towards the lower outlet of broad valleys, rather than upon the ridges of the adjoining hills.Only twoplaceson the earth can be adduced with certainty, as diamond mines, or rather districts; a portion of the Indian peninsula, and of Brazil.India has been celebrated from the most remote antiquity as the country of diamonds. Its principal mines are in the kingdoms of Golconda and Visapour, extending from Cape Comorin to Bengal, at the foot of a chain of mountains called theOrixa, which appear to belong to the trap rock formation. In all the Indian diamond soils, these gems are so dispersed, that they are rarely found directly, even in searching the richest spots, because they are enveloped in an earthy crust, which must be removed before they can be seen. The stony matter is therefore broken into pieces, and is then, as well as the looser earth, washed in basins scooped out on purpose. The gravel thus washed iscollected, spread out on a smooth piece of ground, and left to dry. The diamonds are now recognized by their sparkling in the sun, and are picked out from the stones.The diamond mines of Brazil were discovered in 1728, in the district of Serro-do-Frio. The ground in which they are imbedded has the most perfect resemblance to that of the East Indies, where the diamonds occur. It is a solid or friable conglomerate, consisting chiefly of a ferruginous sand, which encloses fragments of various magnitude of yellow and bluish quartz, of schistose jasper, and grains of gold disseminated with oligist iron ore; all mineral matters different from those that constitute the neighbouring mountains; this conglomerate, or species of pudding-stone, almost always superficial, occurs sometimes at a considerable height on the mountainous table-land. The most celebrated diamond mine is that of Mandarga, on the Jigitonhonha, in the district of Serro-do-Frio to the north of Rio-Janeiro. The river Jigitonhonha, three times broader than the Seine at Paris, and from 3 to 9 feet deep, is made nearly dry, by drawing the waters off with sluices at a certain season; and thecascalhoor diamond-gravel is removed from the channel by various mechanical means, to be washed elsewhere at leisure. This cascalho, the same as the matrix of the gold mines, is collected in the dry season, to be searched into during the rainy; for which purpose it is formed into little mounds of 15 or 16 tons weight each. The washing is carried on beneath an oblong shed, by means of a stream of water admitted in determinate quantities into boxes containing the cascalho. A negro washer is attached to each box; inspectors are placed at regular distances on elevated stools, and whenever a negro has found a diamond, he rises up and exhibits it. If it weighs 171⁄2carats, he receives his liberty. Many precautions are taken to prevent the negroes from secreting the diamonds. Each squad of workmen consists of 200 negroes, with a surgeon and an almoner or priest.The flat lands on either side of the river are equally rich in diamonds over their whole surface, so that it becomes very easy to estimate what a piece of ground not yet washed may produce.It is said that the diamonds surrounded with a greenish crust, are of thefirstwater, or are the most limpid when cut. The diamonds received in the different mines of the district, are deposited once a month in the treasury of Tejuco; and the amount of what was thus delivered from 1801 to 1806, may be estimated at about 18 or 19 thousand caratsper annum.On the banks of the torrent called Rio-Pardo, there is another mine of diamonds. The ground presents a great many friable rocks of pudding-stone, distributed in irregular strata. It is chiefly in the bed of this stream, that masses of cascalho occur, peculiarly rich in diamonds. They are much esteemed, particularly those of a greenish-blue colour. The ores that accompany the diamond at Rio-Pardo differ somewhat from those of the washing grounds of Mandanga, for they contain no pisiform iron ore; but a great many pebbles of slaty jasper. This table land seems to be very high, probably not less than 5500 feet above the level of the sea.Tocaya, a principal village of Minas-Novas, is 34 leagues to the north-east of Tejuco, in an acute angle of the confluence of the Jigitonhonha, and the Rio-Grande. In the bed of the streamlets which fall westward into the Jigitonhonha, those rolled white topazes are found which are known under the name ofminas-novaswithblue topazes, and aquamarine beryls. In the same country are found the beautiful cymophanes or chrysoberyls so much prized in Brazil. And it is from the cantons of Indaia and Abaite that the largest diamonds of Brazil come; yet they have not so pure a water as those of the district of Serro-do-Frio, but incline a little to the lemon yellow.Diamonds are said to come also from the interior of the island of Borneo, on the banks of the river Succadan, and from the peninsula of Malacca.It is known that many minerals become phosphorescent by heat, or exposure to the sun’s light. Diamonds possess this property, but all not in equal degree, and certain precautions must be observed to make it manifest. Diamonds need to be exposed to the sunbeam for a certain time, in order to become self-luminous; or to the blue rays of the prismatic spectrum, which augment still more the faculty of shining in the dark. Diamonds susceptible of phosphorescence exhibit it either after a heat not raised to redness, or the electric discharge. They possess not only a great refractive power in the mean ray of light, but a high dispersive agency, which enables them to throw out the most varied and vivid colours in multiplied directions.Louis de Berquem discovered in 1476, the art of cutting diamonds by rubbing them against one another, and of polishing them with their own powder. These operations may be abridged by two methods: 1. by availing ourselves of the direction of the laminæ of the diamond to split them in that direction, and thus to produce several facets. This process is called cleaving the diamond. Some, which appear to bemaclecrystals, resist this mechanical division, and are calleddiamonds of nature. 2. by sawing the diamonds by means of a very delicate wire, coated with diamond powder.Diamondstake precedence of every gem for the purposes of dress and decoration; andhence the price attached to those of a pure water, increases in so rapid a proportion, that beyond a certain term, there is no rule of commercial valuation. The largest diamond that is known seems to be that of the Rajah of Mattan, in the East Indies. It is of the purest water, and weighs 367 carats, or at the rate of 4 grains to a carat, upwards of 3 ounces troy. It is shaped like an egg, with an indented hollow near the smaller end; it was discovered at Landak about 100 years ago; and though the possession of it has cost several wars, it has remained in the Mattan family for 90 years. A governor of Batavia, after ascertaining the qualities of the gem, wished to be the purchaser, and offered 150,000 dollars for it, besides two war brigs with their guns and ammunition, together with a certain number of great guns, and a quantity of powder and shot. But this diamond possessed such celebrity in India, and was regarded as a talisman involving the fortunes of the Rajah and his family, that he refused to part with it at any price.The diamond possessed in the time of the traveller Tavernier, by the emperor of Mogul, a kingdom now no more, weighed 279 carats, and was reckoned worth upwards of 400,000l.sterling. It was said to have lost the half of its original weight in the cutting. After these prodigious gems, the next are:—1. That of the emperor of Russia, bought by the late empress Catherine, which weighs 193 carats. It is said to be of the size of a pigeon’s egg, and to have been bought for 90,000l., besides an annuity to the Greek merchant of 4000l.It is reported that the above diamond formed one of the eyes of the famous statue of Sheringan, in the temple of Brama, and that a French grenadier, who had deserted into the Malabar service, found the means of robbing the pagoda of this precious gem; and escaped with it to Madras, where he disposed of it to a ship captain for 2,000l., who resold it to a Jew for 12,000l.From him it was transferred for a large sum to the Greek merchant. 2. That of the emperor of Austria, which weighs 139 carats, and has a slightly yellowish hue. It has, however, been valued at 100,000l.3. That of the king of France, called the Regent or Pitt diamond, remarkable for its form and its perfect limpidity. Although it weighs only 136 carats, its fine qualities have caused it to be valued at 160,000l.though it cost only 100,000l.The largest diamond furnished by Brazil, now in possession of the crown of Portugal, weighs, according to the highest estimates, 120 carats. It was found in the streamlet of Abaïte, in a clay-slate district.The diamonds possessed of no extraordinary magnitude, but of a good form and a pure water, may be valued by a certain standard rule. In a brilliant, or rose-diamond of regular proportions, so much is cut away that the weight of the polished gem does not exceed one half the weight of the diamond in the rough state; whence the value of a cut diamond is esteemed equal to that of a similar rough diamond of double weight, exclusive of the cost of workmanship. The weight and value of diamonds is reckoned by carats of 4 grains each; and the comparative value of two diamonds of equal quality but different weights, is as the squares of these weights respectively. The average price of rough diamonds that are worth working, is about 2l.for one of a single carat; but as a polished diamond of one carat must have taken one of 2 carats, its price in the rough state is double the square of 2l., or 8l.Therefore, to estimate the value of a wrought diamond, ascertain its weight in carats, double that weight, and multiply the square of this product by 2l.Hence, a wrought diamond of1carat is worth£82—323—724—1285—2006—2887—3928—5129—61210—80020—3200,beyond which weight the prices can no longer rise in this geometrical progression, from the small number of purchasers of such expensive toys. A very trifling spot or flaw of any kind, lowers exceedingly the commercial value of a diamond.Diamonds are used not only as decorative gems, but for more useful purposes, as for cutting glass by the glazier, and all kinds of hard stones by the lapidary.On the structure of the glazier’s diamond, we possess some very interesting observations and reflections by Dr. Wollaston. He remarks, that the hardest substances brought to a sharp point scratch glass, indeed, but do not cut it, and that diamond alone possessed that property; which he ascribes to the peculiarity of its crystallization in rounded faces, and curvilinear edges. For glass-cutting, those rough diamonds are always selected which are sharply crystallized, hence called diamond sparks; but cutdiamonds are never used. The inclination to be given to a set diamond in cutting glass is comprised within very narrow limits; and it ought, moreover, to be moved in the direction of one of its angles. The curvilinear edge adjoining the curved faces, entering as a wedge into the furrow opened up by itself, thus tends to separate the parts of the glass; and in order that the crack which causes the separation of the vitreous particles may take place, the diamond must be held almost perpendicular to the surface of the glass. The Doctor proved this theory by an experiment. If, by suitable cutting with the wheel, we make the edges of a spinel ruby, or corundum-telesie (sapphire) curvilinear, and the adjacent faces curved, these stones will cut glass as well as a glazier’s diamond, but being less hard than it, they will not preserve this property so long. He found that upon giving the surface of even a fragment of flint the same shape as that of the cutting diamond, it acquired the same property; but, from its relative softness, was of little duration. The depth to which the fissure caused by the glazier’s diamond penetrates, does not seem to exceed the two-hundredth of an inch.I shall here introduce Mr. Milburn’s valuable observations on the choice of rough diamonds, as published in his work onOriental Commerce.The colour should be perfectly crystalline, resembling a drop of clear spring water, in the middle of which you will perceive a strong light, playing with a great deal of spirit. If the coat be smooth and bright, with a little tincture of green in it, it is not the worse, and seldom proves bad, but if there is a mixture of yellow with green, then beware of it; it is a soft greasy stone, and will prove bad.If the stone has a rough coat, so that you can hardly see through it, and the coat be white and look as if it were rough by art, and clear of flaws or veins, and no blemish cast in the body of the stone, (which may be discovered by holding it against the light) the stone will prove good.It often happens that a stone will appear of a reddish hue on the outward coat, not unlike the colour of rusty iron, yet by looking through it against the light, you may observe the heart of the stone to be white (and if there be any black spots, or flaws, or veins in it, they may be discovered by a true eye, although the coat of the stone be the same), and such stones are generally good and clear.If a diamond appears of a greenish bright coat, resembling a piece of green glass, inclining to black, it generally proves hard, and seldom bad; such stones have been known to have been of the first water, and seldom worse than the second; but if any tincture of yellow seems to be mixed with it, you may depend on its being a very bad stone.All stones of a milky cast, whether the coat be bright or dull, if ever so little inclining to a bluish cast, are naturally soft, and in danger of being flawed in the cutting; and though they should have the good fortune to escape, yet they will prove dead and milky, and turn to no account.All diamonds of cinnamon colour are dubious; but if of a bright coat mixed with a little green, then they are certainly bad, and are accounted among the worst of colours. You will meet with a great many diamonds of a rough cinnamon-coloured coat, opaque; this sort is generally very hard, and, when cut, contain a great deal of life and spirit; but the colour is very uncertain; it is sometimes white, sometimes brown, and sometimes of a fine yellow. Rough diamonds are frequentlybeamy, that is look fair to the eye, yet are so full of veins to the centre, that no art or labour can polish them. A good diamond should never contain small spots of a white or gray colour of a nebulous form; it should be free from small reddish and brownish grains, that sometimes occur on their surface, or in their interior. A good diamond should split readily in the direction of the cleavage; it sometimes happens, however, that the folia are curved, as is the case in twin crystals. When this happens, the stone does not readily cut and polish, and is therefore of inferior value.In the cut and polished gem, the thickness must always bear a certain proportion to the breadth. It must not be too thin nor thick; for, when too thin, it loses much of its fire, and appears not unlike glass.The termcaratis said to be derived from the name of a bean, the produce of a species oferythina, a native of the district of Shangallas, in Africa; a famous mart of gold-dust. The tree is calledkuara, a word signifying sun in the language of the country; because it bears flowers and fruit of a flame colour. As the dry seeds of this pod are always of nearly uniform weight, the savages have used them from time immemorial to weigh gold. The beans were transported into India, at an ancient period, and have been long employed there for weighing diamonds. The carat of the civilized world is, in fact, an imaginary weight, consisting of 4 nominal grains, a little lighter than 4 grains troy (poids de marc); it requires 74 carat grains and1⁄16to equipoise 72 of the other.In valuing a cut diamond, we must reckon that one half of its weight has been lost in the lapidary’s hands; whence its weight in this state should be doubled before we calculate its price by the general rule for estimating diamonds. The French multiplyby 48 the square of this weight, and they call the product in francs the value of the diamond. Thus, for example, a cut diamond of 10 carats would be worth (10 × 2)2× 48 = 19,200 francs, or 768l., allowing only 25 francs to the pound sterling.The diamond mines of Brazil have brought to its government, from the year 173~ till 1814, 3,023,000 carats; being at the average rate annually of 36,000 carats, or a little more than 16 libs., weight. They have not been so productive in the later years of that period; for, according to Mr. Mawe, between 1801 and 1806, only 115,675 carats were obtained, being 19,279 a year. The actual expenses incurred by the government, during this interval, was 4,419,700 francs; and, deducting the production in gold from the washings of the diamond gravel, orcascalho, it is found that the rough diamonds cost in exploration, per carat, 38 francs 20 c., or nearly 31s.British money. The contraband is supposed to amount to one third of the above legitimate trade. Brazil is almost the only country where diamonds are mined at the present day; it sends annually to Europe from 25 to 30 thousand carats, or from 10 to 161⁄2libs.

DIAMOND. Since this body is merely a condensed form of carbon, it cannot in a chemical classification be ranked among stones; but as it forms in commerce the most precious of the gems, it claims our first attention in a practical treatise on the arts. Diamonds are distinguishable by a great many peculiar properties, very remarkable and easily recognized, both in their rough state, and when cut and polished. Their most absolute and constant character is a degree of hardness superior to that of every mineral, whence diamonds scratch all other bodies, and are scratched by none. Their peculiar adamantine lustre, not easy to define, but readily distinguishable by the eye from that of every other gem, is their most obvious feature. Their specific gravity is 3·55. Whether rough or polished, diamonds acquire by friction, positive electricity, but do not retain it for more than half an hour. The natural form of diamonds is derivable from an octahedron, and they never present crystals having one axis longer than the other. Their structure is very perceptibly lamellar, and therefore, notwithstanding their great hardness, they are brittle and give way in the line of their cleavage, affording a direct means of arriving at their primitive form, the regular octahedron.

The diamond possesses either single or double refraction, according to its different crystalline forms; its refractive power on light is far greater than it ought to be in the ratio of its density; the index of refraction being 2·44, whence Newton long ago supposed it to consist of inflammable matter. Its various forms in nature present a circumstance peculiar to this body; its faces are rarely terminated by planes, like most other native crystals, but they are often rounded off, and the edges between them are curved. When these secondary faces are attentively examined with a lens, we remark that they are marked with striæ, sometimes very fine and almost imperceptible, but at others well defined; and that these striæ are parallel to the edges of the octahedron, and consequently to those of the plates that are applied on the primitive faces of this figure.

Diamonds are usually colourless and transparent; when coloured, their ordinary tint verges upon yellow, or smoke-yellow, approaching sometimes to blackish-brown. Green diamonds are next to yellow the most common; the blue possess rarely a lively hue, but they are much esteemed in Scotland. The rose or pink diamonds are the most valued of the coloured kind, and exceed sometimes in price the most limpid; though generally speaking the latter are the most highly prized.

The geological locality of the diamond seems to be in diluvial gravel, and among conglomerate rocks; consisting principally of fragments of quartz, or rolled pebbles of quartz mixed with ferruginous sand, which compose sometimes hard aggregated masses. This kind of formation is calledcascalhoin Brazil. Its accompanying minerals are few in number, being merely black oxide of iron, micaceous iron ore, pisiform iron ore, fragments of slaty jasper, several varieties of quartz, principally amethyst. In Mr. Heuland’s splendid collection there was a Brazilian diamond imbedded in brown iron ore; another in the same, belonging to M. Schuch, librarian to the Crown Princess of Portugal; and in the cabinet of M. Eschwege there is a mass of brown iron ore, containing a diamond in the drusy cavity of a green mineral, conjectured to be arseniate of iron. From these facts it may be inferred with much probability that the matrix or original repository of the diamond of Brazil is brown iron ore, which occurs in beds of slaty quartzose micaceous iron ore, or in beds composed of iron-glance and magnetic iron ore, both of which are apparently subordinate in that country to primitive clay slate.

The loose earth containing diamonds lies always a little way beneath the surface of the soil, towards the lower outlet of broad valleys, rather than upon the ridges of the adjoining hills.

Only twoplaceson the earth can be adduced with certainty, as diamond mines, or rather districts; a portion of the Indian peninsula, and of Brazil.

India has been celebrated from the most remote antiquity as the country of diamonds. Its principal mines are in the kingdoms of Golconda and Visapour, extending from Cape Comorin to Bengal, at the foot of a chain of mountains called theOrixa, which appear to belong to the trap rock formation. In all the Indian diamond soils, these gems are so dispersed, that they are rarely found directly, even in searching the richest spots, because they are enveloped in an earthy crust, which must be removed before they can be seen. The stony matter is therefore broken into pieces, and is then, as well as the looser earth, washed in basins scooped out on purpose. The gravel thus washed iscollected, spread out on a smooth piece of ground, and left to dry. The diamonds are now recognized by their sparkling in the sun, and are picked out from the stones.

The diamond mines of Brazil were discovered in 1728, in the district of Serro-do-Frio. The ground in which they are imbedded has the most perfect resemblance to that of the East Indies, where the diamonds occur. It is a solid or friable conglomerate, consisting chiefly of a ferruginous sand, which encloses fragments of various magnitude of yellow and bluish quartz, of schistose jasper, and grains of gold disseminated with oligist iron ore; all mineral matters different from those that constitute the neighbouring mountains; this conglomerate, or species of pudding-stone, almost always superficial, occurs sometimes at a considerable height on the mountainous table-land. The most celebrated diamond mine is that of Mandarga, on the Jigitonhonha, in the district of Serro-do-Frio to the north of Rio-Janeiro. The river Jigitonhonha, three times broader than the Seine at Paris, and from 3 to 9 feet deep, is made nearly dry, by drawing the waters off with sluices at a certain season; and thecascalhoor diamond-gravel is removed from the channel by various mechanical means, to be washed elsewhere at leisure. This cascalho, the same as the matrix of the gold mines, is collected in the dry season, to be searched into during the rainy; for which purpose it is formed into little mounds of 15 or 16 tons weight each. The washing is carried on beneath an oblong shed, by means of a stream of water admitted in determinate quantities into boxes containing the cascalho. A negro washer is attached to each box; inspectors are placed at regular distances on elevated stools, and whenever a negro has found a diamond, he rises up and exhibits it. If it weighs 171⁄2carats, he receives his liberty. Many precautions are taken to prevent the negroes from secreting the diamonds. Each squad of workmen consists of 200 negroes, with a surgeon and an almoner or priest.

The flat lands on either side of the river are equally rich in diamonds over their whole surface, so that it becomes very easy to estimate what a piece of ground not yet washed may produce.

It is said that the diamonds surrounded with a greenish crust, are of thefirstwater, or are the most limpid when cut. The diamonds received in the different mines of the district, are deposited once a month in the treasury of Tejuco; and the amount of what was thus delivered from 1801 to 1806, may be estimated at about 18 or 19 thousand caratsper annum.

On the banks of the torrent called Rio-Pardo, there is another mine of diamonds. The ground presents a great many friable rocks of pudding-stone, distributed in irregular strata. It is chiefly in the bed of this stream, that masses of cascalho occur, peculiarly rich in diamonds. They are much esteemed, particularly those of a greenish-blue colour. The ores that accompany the diamond at Rio-Pardo differ somewhat from those of the washing grounds of Mandanga, for they contain no pisiform iron ore; but a great many pebbles of slaty jasper. This table land seems to be very high, probably not less than 5500 feet above the level of the sea.

Tocaya, a principal village of Minas-Novas, is 34 leagues to the north-east of Tejuco, in an acute angle of the confluence of the Jigitonhonha, and the Rio-Grande. In the bed of the streamlets which fall westward into the Jigitonhonha, those rolled white topazes are found which are known under the name ofminas-novaswithblue topazes, and aquamarine beryls. In the same country are found the beautiful cymophanes or chrysoberyls so much prized in Brazil. And it is from the cantons of Indaia and Abaite that the largest diamonds of Brazil come; yet they have not so pure a water as those of the district of Serro-do-Frio, but incline a little to the lemon yellow.

Diamonds are said to come also from the interior of the island of Borneo, on the banks of the river Succadan, and from the peninsula of Malacca.

It is known that many minerals become phosphorescent by heat, or exposure to the sun’s light. Diamonds possess this property, but all not in equal degree, and certain precautions must be observed to make it manifest. Diamonds need to be exposed to the sunbeam for a certain time, in order to become self-luminous; or to the blue rays of the prismatic spectrum, which augment still more the faculty of shining in the dark. Diamonds susceptible of phosphorescence exhibit it either after a heat not raised to redness, or the electric discharge. They possess not only a great refractive power in the mean ray of light, but a high dispersive agency, which enables them to throw out the most varied and vivid colours in multiplied directions.

Louis de Berquem discovered in 1476, the art of cutting diamonds by rubbing them against one another, and of polishing them with their own powder. These operations may be abridged by two methods: 1. by availing ourselves of the direction of the laminæ of the diamond to split them in that direction, and thus to produce several facets. This process is called cleaving the diamond. Some, which appear to bemaclecrystals, resist this mechanical division, and are calleddiamonds of nature. 2. by sawing the diamonds by means of a very delicate wire, coated with diamond powder.

Diamondstake precedence of every gem for the purposes of dress and decoration; andhence the price attached to those of a pure water, increases in so rapid a proportion, that beyond a certain term, there is no rule of commercial valuation. The largest diamond that is known seems to be that of the Rajah of Mattan, in the East Indies. It is of the purest water, and weighs 367 carats, or at the rate of 4 grains to a carat, upwards of 3 ounces troy. It is shaped like an egg, with an indented hollow near the smaller end; it was discovered at Landak about 100 years ago; and though the possession of it has cost several wars, it has remained in the Mattan family for 90 years. A governor of Batavia, after ascertaining the qualities of the gem, wished to be the purchaser, and offered 150,000 dollars for it, besides two war brigs with their guns and ammunition, together with a certain number of great guns, and a quantity of powder and shot. But this diamond possessed such celebrity in India, and was regarded as a talisman involving the fortunes of the Rajah and his family, that he refused to part with it at any price.

The diamond possessed in the time of the traveller Tavernier, by the emperor of Mogul, a kingdom now no more, weighed 279 carats, and was reckoned worth upwards of 400,000l.sterling. It was said to have lost the half of its original weight in the cutting. After these prodigious gems, the next are:—1. That of the emperor of Russia, bought by the late empress Catherine, which weighs 193 carats. It is said to be of the size of a pigeon’s egg, and to have been bought for 90,000l., besides an annuity to the Greek merchant of 4000l.It is reported that the above diamond formed one of the eyes of the famous statue of Sheringan, in the temple of Brama, and that a French grenadier, who had deserted into the Malabar service, found the means of robbing the pagoda of this precious gem; and escaped with it to Madras, where he disposed of it to a ship captain for 2,000l., who resold it to a Jew for 12,000l.From him it was transferred for a large sum to the Greek merchant. 2. That of the emperor of Austria, which weighs 139 carats, and has a slightly yellowish hue. It has, however, been valued at 100,000l.3. That of the king of France, called the Regent or Pitt diamond, remarkable for its form and its perfect limpidity. Although it weighs only 136 carats, its fine qualities have caused it to be valued at 160,000l.though it cost only 100,000l.

The largest diamond furnished by Brazil, now in possession of the crown of Portugal, weighs, according to the highest estimates, 120 carats. It was found in the streamlet of Abaïte, in a clay-slate district.

The diamonds possessed of no extraordinary magnitude, but of a good form and a pure water, may be valued by a certain standard rule. In a brilliant, or rose-diamond of regular proportions, so much is cut away that the weight of the polished gem does not exceed one half the weight of the diamond in the rough state; whence the value of a cut diamond is esteemed equal to that of a similar rough diamond of double weight, exclusive of the cost of workmanship. The weight and value of diamonds is reckoned by carats of 4 grains each; and the comparative value of two diamonds of equal quality but different weights, is as the squares of these weights respectively. The average price of rough diamonds that are worth working, is about 2l.for one of a single carat; but as a polished diamond of one carat must have taken one of 2 carats, its price in the rough state is double the square of 2l., or 8l.Therefore, to estimate the value of a wrought diamond, ascertain its weight in carats, double that weight, and multiply the square of this product by 2l.

beyond which weight the prices can no longer rise in this geometrical progression, from the small number of purchasers of such expensive toys. A very trifling spot or flaw of any kind, lowers exceedingly the commercial value of a diamond.

Diamonds are used not only as decorative gems, but for more useful purposes, as for cutting glass by the glazier, and all kinds of hard stones by the lapidary.

On the structure of the glazier’s diamond, we possess some very interesting observations and reflections by Dr. Wollaston. He remarks, that the hardest substances brought to a sharp point scratch glass, indeed, but do not cut it, and that diamond alone possessed that property; which he ascribes to the peculiarity of its crystallization in rounded faces, and curvilinear edges. For glass-cutting, those rough diamonds are always selected which are sharply crystallized, hence called diamond sparks; but cutdiamonds are never used. The inclination to be given to a set diamond in cutting glass is comprised within very narrow limits; and it ought, moreover, to be moved in the direction of one of its angles. The curvilinear edge adjoining the curved faces, entering as a wedge into the furrow opened up by itself, thus tends to separate the parts of the glass; and in order that the crack which causes the separation of the vitreous particles may take place, the diamond must be held almost perpendicular to the surface of the glass. The Doctor proved this theory by an experiment. If, by suitable cutting with the wheel, we make the edges of a spinel ruby, or corundum-telesie (sapphire) curvilinear, and the adjacent faces curved, these stones will cut glass as well as a glazier’s diamond, but being less hard than it, they will not preserve this property so long. He found that upon giving the surface of even a fragment of flint the same shape as that of the cutting diamond, it acquired the same property; but, from its relative softness, was of little duration. The depth to which the fissure caused by the glazier’s diamond penetrates, does not seem to exceed the two-hundredth of an inch.

I shall here introduce Mr. Milburn’s valuable observations on the choice of rough diamonds, as published in his work onOriental Commerce.

The colour should be perfectly crystalline, resembling a drop of clear spring water, in the middle of which you will perceive a strong light, playing with a great deal of spirit. If the coat be smooth and bright, with a little tincture of green in it, it is not the worse, and seldom proves bad, but if there is a mixture of yellow with green, then beware of it; it is a soft greasy stone, and will prove bad.

If the stone has a rough coat, so that you can hardly see through it, and the coat be white and look as if it were rough by art, and clear of flaws or veins, and no blemish cast in the body of the stone, (which may be discovered by holding it against the light) the stone will prove good.

It often happens that a stone will appear of a reddish hue on the outward coat, not unlike the colour of rusty iron, yet by looking through it against the light, you may observe the heart of the stone to be white (and if there be any black spots, or flaws, or veins in it, they may be discovered by a true eye, although the coat of the stone be the same), and such stones are generally good and clear.

If a diamond appears of a greenish bright coat, resembling a piece of green glass, inclining to black, it generally proves hard, and seldom bad; such stones have been known to have been of the first water, and seldom worse than the second; but if any tincture of yellow seems to be mixed with it, you may depend on its being a very bad stone.

All stones of a milky cast, whether the coat be bright or dull, if ever so little inclining to a bluish cast, are naturally soft, and in danger of being flawed in the cutting; and though they should have the good fortune to escape, yet they will prove dead and milky, and turn to no account.

All diamonds of cinnamon colour are dubious; but if of a bright coat mixed with a little green, then they are certainly bad, and are accounted among the worst of colours. You will meet with a great many diamonds of a rough cinnamon-coloured coat, opaque; this sort is generally very hard, and, when cut, contain a great deal of life and spirit; but the colour is very uncertain; it is sometimes white, sometimes brown, and sometimes of a fine yellow. Rough diamonds are frequentlybeamy, that is look fair to the eye, yet are so full of veins to the centre, that no art or labour can polish them. A good diamond should never contain small spots of a white or gray colour of a nebulous form; it should be free from small reddish and brownish grains, that sometimes occur on their surface, or in their interior. A good diamond should split readily in the direction of the cleavage; it sometimes happens, however, that the folia are curved, as is the case in twin crystals. When this happens, the stone does not readily cut and polish, and is therefore of inferior value.

In the cut and polished gem, the thickness must always bear a certain proportion to the breadth. It must not be too thin nor thick; for, when too thin, it loses much of its fire, and appears not unlike glass.

The termcaratis said to be derived from the name of a bean, the produce of a species oferythina, a native of the district of Shangallas, in Africa; a famous mart of gold-dust. The tree is calledkuara, a word signifying sun in the language of the country; because it bears flowers and fruit of a flame colour. As the dry seeds of this pod are always of nearly uniform weight, the savages have used them from time immemorial to weigh gold. The beans were transported into India, at an ancient period, and have been long employed there for weighing diamonds. The carat of the civilized world is, in fact, an imaginary weight, consisting of 4 nominal grains, a little lighter than 4 grains troy (poids de marc); it requires 74 carat grains and1⁄16to equipoise 72 of the other.

In valuing a cut diamond, we must reckon that one half of its weight has been lost in the lapidary’s hands; whence its weight in this state should be doubled before we calculate its price by the general rule for estimating diamonds. The French multiplyby 48 the square of this weight, and they call the product in francs the value of the diamond. Thus, for example, a cut diamond of 10 carats would be worth (10 × 2)2× 48 = 19,200 francs, or 768l., allowing only 25 francs to the pound sterling.

The diamond mines of Brazil have brought to its government, from the year 173~ till 1814, 3,023,000 carats; being at the average rate annually of 36,000 carats, or a little more than 16 libs., weight. They have not been so productive in the later years of that period; for, according to Mr. Mawe, between 1801 and 1806, only 115,675 carats were obtained, being 19,279 a year. The actual expenses incurred by the government, during this interval, was 4,419,700 francs; and, deducting the production in gold from the washings of the diamond gravel, orcascalho, it is found that the rough diamonds cost in exploration, per carat, 38 francs 20 c., or nearly 31s.British money. The contraband is supposed to amount to one third of the above legitimate trade. Brazil is almost the only country where diamonds are mined at the present day; it sends annually to Europe from 25 to 30 thousand carats, or from 10 to 161⁄2libs.


Back to IndexNext