The Special Senses.

26.What does this illustrate? Sensation? The feeling after a limb has been amputated? Striking of the "funny bone?"26.This illustrates the manner in which the braininterprets all injuries of the trunk of a nerve. Sensation or pain is not felt at the point of injury, but is referred to the outer extremities of the nerve, where impressions are habitually received. This is the reason why, after a limb has been amputated by the surgeon, the patient appears to suffer pain in the member that has been severed from the body; while some form of irritation at the end of the nerve in the wound, or stump, is the real source of his distress. Again, when the "funny-bone"—that is, the ulnar nerve at the elbow,—is accidentally struck, the tingling sensations thus produced are referred to the outer side of the hand and the little finger, the parts to which that nerve is distributed.27.The spinal nerves, and two from the brain? Of the remainder? Difference in the nerves? How accounted for? The rate of conduction along a nerve? As compared with electricity?27.All the spinal nerves, and two from the brain, are concerned in both sensation and motion. Of the remainder of the cranial nerves, some are exclusively motor, others exclusively sensory; and still others convey, not ordinary sensations, but special impressions, such as sight, hearing, and smell, which we have yet to consider. However much the functions of the nerves seem to vary, there is but little difference discoverable in the nerves themselves, when examined under the microscope. Whatever difference exists must be accounted for in consequence of the nerves communicating with different portions of the gray matter of the brain. The rate of motion of a message, to or from the brain along a nerve, has been measured by experiment upon the lower animals, and estimated in the case of man at about two hundred feet per second. As compared with that of electricity, this is a very slow rate, but, in respect to the size of the human body, it is practically instantaneous.28.Functions of the anterior and posterior columns of the cord? If the cord be divided?28. The Functions of the Spinal Cord.—As theanterior and posterior roots of the spinal nerves have separate functions, so the anterior and posterior columns of the cord are distinct in function. The former are concerned in the production of motion, the latter in sensation. If the cord be divided, as before in the case of the nerve, it is found that the parts below the point of injury are deprived of sensation and of the power of voluntary motion on both sides of the body, a form of paralysis which is calledparaplegia.29.Paraplegia? Result and danger to life? When the injury occurs in the neck?29.This form of disease, paraplegia, is sometimes seen among men, generally as the result of a fall, or some other severe accident, by which the bones of the spine are broken, and the cord is crushed, or pierced by fragments of bone. The parts which are supplied by nerves from the cord above the point of injury are as sensitive and mobile as before. The results are similar, whether the division happens at a higher or lower portion of the spinal cord; but the danger to life increases proportionally as the injury approaches the brain. When it occurs in the neck, the muscles of inspiration are paralyzed, since they are supplied by nerves issuing from that region; and as a result of this paralysis, the lungs are unable to act, and life is speedily brought to a close.30.Experiment of cutting the spinal cord of an animal? What inference is drawn?30.When the spinal cord of an animal has been cut, in experiment, it may be irritated in a manner similar to that alluded to when considering the nerves. If, then, the upper cut surface be excited, it is found that pain, referable to the parts below the cut, is produced; but when the lower cut surface is irritated, no feeling is manifested. So we conclude that in respect to sensation, the spinal cord is not its true centre, but that it is merely a conductor, and is therefore the great sensory nerve of the body. When the lower surface of the cut is irritated, the muscles of theparts below the section are violently contracted. Hence, we conclude that, in respect to the movements ordered by the will, the spinal cord is not their source; but that it acts only as a conductor, and is, accordingly, the great motor nerve of the body.31.What singular fact is noticed? What does the result show?31. Direction of the Fibres of the Cord.—If one lateral half of the spinal cord be cut, or injured, a very singular fact is observed. All voluntary power over the muscles of the corresponding half of the body is lost, but the sensibility of that side remains undiminished. This result seems to show that the motor fibres of the cord pursue a direct course, while its sensory fibres are bent from their course. And this has been proved to be the fact; for immediately after the posterior roots—the conductors of sensory impressions—join the posterior columns, they enter the gray matter of the cord, and passing over, ascend to the brain on the opposite side. Accordingly, the sensory fibres from the right and left sides interlace each other in the gray matter; this arrangement has been termed thedecussation, or crossing of these fibres. This condition serves to explain how a disease or injury of the cord may cause a paralysis of motion in one leg, and a loss of sensation in the other.32.Direction of the anterior or motor columns? In the cord itself? In the medulla oblongata? The decussation?32.The direction of the anterior, or motor columns of the cord, is downward from the brain. In the cord itself, the course of the motor fibres is for the most part, a direct one; but in the medulla oblongata, or upper extremity of the cord, and therefore early in their career, these fibres decussate, or cross from side to side in a mass; and not separately, as in the case of the posterior fibres just mentioned. This arrangement is termed thedecussationof the anterior columns of the medulla.33.Result of the double interlacing of fibres? Where is the seat of pain when the right hand is hurt? The moving of the foot? Loss of sensation in one side of the body?33.From this double interlacing of fibres results acrossed action between the original and terminal extremity of all nerve-fibres which pass through the medulla; namely, those of all the spinal nerves. Consequently, if the right hand be hurt, the left side of the brain feels the pain; and if the left foot move, it is the right hemisphere which dictates its movement. For the same reason, when a loss of sensation and power of motion affecting the right side of the body alone is observed, the physiologist understands that the brain has been invaded by disease upon its left side. This affection is termedhemiplegia, or the "half-stroke." The full-stroke, which often follows the rupture of a blood-vessel in the brain, is commonly calledparalysis.34.What other important use has the cord? What is the activity denominated?34. The Reflex Action of the Cord.—We have already considered the cord as the great motor and sensory nerve of the body, but it has another and extremely important use. By virtue of the gray matter, which occupies its central portion, it plays the part of an independent nerve centre. The spinal cord not only conducts some impressions to the brain, but it also arrests others; and, as it is expressed, "reflects" them into movements by its own power. This mode of nervous activity is denominated theReflex Actionof the cord.35.Example of the fowl? Centipede? Frog? What do they prove?35.A familiar example of this power of the cord is found in the violent movements which agitate a fowl after its head has been cut off. The cold-blooded animals also exhibit reflex movements in an astonishing degree. A decapitated centipede will run rapidly forward, and will seemingly strive to overturn, or else climb over obstacles placed in its way. A frog similarly mutilated will sustain its headless body upon its feet, in the standing posture, just as it might do if it were still alive. If pushed over, it will regain its feet; and if the feet are irritated, it willjump forward. There can be no doubt that, in the lower animals, movements may take place which are completely divorced from the will, sensation, and consciousness; for in those animals, as well as in man, these faculties have their principal seat within the brain.36.What is necessary in most cases to awaken reflex movements? In the case of the fowl? Convulsions which follow decapitation?36.An irritation is necessary, in most instances, to awaken reflex movements. In the case of the decapitated fowl, its muscles are excited to convulsive action by reason of its being thrown upon the hard ground and roughly handled. Let it be treated differently, and the convulsions will not take place: let it be laid gently upon soft cotton, and the body will remain comparatively quiet. It may comfort some people to know that the convulsions which follow decapitation are not attended with pain; nor are they a necessary part of the "act of death," as some suppose.37.Actions in the human body distinct from voluntary efforts?37.In the human body, likewise, actions are excited that are entirely distinct from the ordinary voluntary efforts. It is not permissible, desirable, nor even necessary to decapitate a man that the body may be disconnected from his brain, in order to test the effect of irritation upon the spinal cord; although the bodies of beheaded criminals have been experimented upon, and caused to move by powerful galvanic batteries. The resort to such means of experiment is rendered unnecessary by the occurrence of certain deplorable cases of disease and injury, which effectually sever all communication between the brain and a large part of the body.38.Reflex action after injury of the cord? Why not due to the muscles?38.Thus, the cord may be so far injured, as the result of accident, as to terminate all sensation and voluntary motion in the lower half of the body, the patient seemingly becoming lifeless and powerless from the waist downward. And yet, by tickling or pinching either foot, the legof the same side may be made to jerk, or even to kick with considerable force; but, unless the patient is observing his limbs, he is wholly unconscious of these movements, which are, therefore, performed independently of the brain. And they are in nowise due to the muscles of the limb; for, if the cord itself becomes diseased below the point of injury, the muscles cease to contract.39.What are the requisites for the production of this form of nervous action?39.For the production of this form of nervous action three things are requisite—(1) a nerve to conduct messages from the surface of the body, one of that variety formerly described as sensory, but which are now incapable of awakening sensation; (2) a portion of uninjured spinal cord which shall reflect or convert impressions into impulses; and (3) a motor nerve to conduct impulses outward to the muscles. The power of the cord to enforce reflex acts resides in the gray matter, into which the reflex nerves enter and from which they depart, by means of their posterior and anterior roots respectively.40.Why do we not readily recognize the reflex activity of the cord in our own bodies? How best studied in others? Example?40. The Uses of the Reflex Action.—The reflex activity of the cord is exhibited in the healthy body in many ways, but since it is never accompanied with sensation, we do not readily recognize it in our own bodies. Reflex movements are best studied in the cases of other persons, when the conditions enable us to distinguish between acts that are consciously, and those that are unconsciously performed. For example, if the foot of a person soundly asleep be tickled or pinched, it will be quickly withdrawn from the irritation.41.Similar movements? Arm of a person? Melted wax or heated coin on the hand?41.Similar movements may be observed in cases where the consciousness and sensation are temporarily obliterated by disease, or by means of narcotic poisons. If the arm of a person who has been rendered insensible bychloroform, be raised, and then allowed to fall, it will be noticed that the limb does not drop instantly, like a lifeless member, but a certain amount of rigidity remains in its muscles, which resists or breaks the force of its descent. Again, when a substance like melted sealing-wax, or a heated coin, falls upon the hand, the limb is snatched away at once, even before the feeling of pain has been recognized by the brain. When jolted in a rapidly moving car, we involuntarily step forward or backward, so as to preserve the centre of gravity of the body.42.Result of healthful reflex activity? When may the reflex energy be deficient?42.These and similar acts are executed by the same mechanism as that previously described in the case of paralysis from an injury of the spinal cord. The muscles thus called into play, are those which are ordinarily under the sway of the will, but which in these cases act through this reflex action of the cord, altogether independently of the will. A healthful reflex activity produces an elasticity, or "tone," of the voluntary muscular system, which, in a great measure, explains the existence in the young and vigorous of a feeling of buoyancy and reserve power. Its possessor is restlessly active, and it may appropriately be said of him, "he rejoiceth as a strong man to run a race." But this reflex energy may be deficient. This is true when the blood is poor and wanting in its solid ingredients, or the circulation is feeble; the muscles, then, are flabby and weak, and the person himself is said to be "nerveless," or indisposed to exertion. Shivering from cold, and trembling from fear, may, in part, be referred to a temporary loss of tone, resulting from a powerful impression upon the brain.43.Excess of this activity in disease? Hydrophobia, etc.? The difference in severity of the convulsions?43.An excess of this activity may also be observed in disease. In this condition, the excitability of the cord is unnaturally aroused, and frequent and violent movementsof the limbs and body, called convulsions, are the result. The convulsions of young children, and the nervous agitation ofchorea, or St. Vitus's dance, are reflex in character; as are also the symptoms attending poisoning by strychnine, and those terrible diseases,tetanus, or "locked jaw," andhydrophobia. The severity of the convulsions is not the same in all cases of these disorders; but, in those last mentioned the most violent spasmodic movements are provoked by the slightest form of irritation—such as the sound of pouring water, the sight of any glittering object, the glancing of a mirror, the contact of cool air, or even the touch of the bedclothes.44.Another variety of reflex motions? What are they? What is stated of the mind in connection with these movements?44.Another variety of reflex motions takes place in certain involuntary muscles, and over these the cord exercises supreme control. They are principally those movements which aid the performance of digestion and nutrition, the valve-action of the pylorus, and other movements of the stomach and intestines. In these movements the mind shares no part. And it is well that this is so; for since the mind is largely occupied with affairs external to the body, it acts irregularly, becomes fatigued, and needs frequent rest. The spinal cord, on the contrary, is well fitted for the form of work on which depends the growth and support of the body, as it acts uniformly, and with a machine-like regularity.45.Consciousness in these operations? Physical wants?45.These operations are not accompanied by consciousness; for, as a general rule, the attention is only called to them when they become disordered. Many a person does not know where his stomach is situated, until he discovers its position by reason of a feeling of distress within it, produced by giving that organ improper work to perform. In this manner the higher and nobler faculties of the mind are liberated from the simply routine duties of thebody; and we are thus left to direct the attention, the reason, and the will to the accomplishment of the great ends of our existence. If it were otherwise, we could only find time to attend to our ordinary physical wants.46.How many objects may the reflex activity be said to have? State the first. The second. The third.46.The objects of the reflex activity of the cord are threefold. In the first place, it acts as the protector of man, in his unconscious moments. It is his unseen guardian, always ready to act, never growing weary, and never requiring sleep. Nor does its faithful action wholly cease with the cessation of life in other parts. In the second place, it is the regulator of numerous involuntary motions that are necessary to the nutrition of the body. Here its actions are entirely independent of the brain, and are performed in a secret and automatic manner. And, thirdly, it acts as a substitute, and regulates involuntary movements in the muscles usually under the influence of the will. It thus takes the place of the higher faculties in performing habitual acts, and permits them to extend their operations more and more beyond the body and its material wants.47.How does the medulla oblongata resemble the cord?47. The Functions of the Medulla Oblongata.—The prolongation of the spinal cord, within the skull, has been previously spoken of as the medulla oblongata. It resembles the cord, in being composed of both white and gray matter, and in conducting sensory and motor influences. It likewise gives rise to certain nerves, which are here called cranial nerves (fromcranium, the skull). All except two of these important nerves spring from the medulla, or the parts immediately adjoining it; the exceptions are the two nerves taking part in the special senses of sight and smell, which nerves have their origin at the base of the cerebrum.48.What final fact is observed in the crossing of the motor columns?48.The decussation, or crossing of the motor columns, has been previously described, when treating of thedirection of the nerve-fibres of the cord; and the singular fact has been alluded to, that when one side of the brain is injured, its effects are limited to the opposite side of the body. One more fact remains to be observed in this connection, namely, this crossed action does not usually take place in the cranial nerves. Accordingly, when apoplexy, or the rupture of a blood-vessel, occurs in the right hemisphere of the cerebrum, the left side of the body is paralyzed, but the right side of the face is affected; this is because that part of the body is supplied by the cranial nerves.49.The pneumogastric nerve? The feelings aroused by it? The "vital knot?"49.A portion of the medulla presides over the important function of respiration, and from it arises thepneumogastricnerve, so called because its branches serve both the lungs and stomach. The feelings of hunger, thirst, and the desire for air are aroused by means of this nerve. The wounding of the gray matter of the medulla, even of a small portion of it, near the origin of the pneumogastric nerve, at once stops the action of the lungs and causes death. In consequence of the importance of this part, it has been termed the "vital knot." We find, also, that its location within the skull is exceedingly well protected, it being quite beyond the reach of any ordinary form of harm from without.50.The uses of the smaller gray masses at the base of the brain?50. The Functions of the Cranial Ganglia.—The uses of the smaller gray masses lying at the base of the brain are not well ascertained; and, on account of their position, so remote from the surface, it would, at first, seem well-nigh impossible to study them. But, from the results following diseases in these parts, and from experiments upon inferior animals, they are becoming gradually better understood; and there is reason to believe that eventually the physiological office of each part will be clearly ascertained and defined. It is believed, however, but notabsolutely proven, that the anterior masses, like the anterior roots of the spinal nerves and the anterior columns of the cord, are concerned in the production of motion; in fact, that they are the central organs of that function. The posterior gray masses are, on the contrary, supposed to be the seat of sensation.51.Function of the cerebellum? When it is diseased?51. The Function of the Cerebellum.—The function of the cerebellum, or "little brain," is the direction of the movements of the voluntary muscles. When this organ is the seat of disease or injury, it is usually observed that the person is unable to execute orderly and regular acts, but moves in a confused manner as if in a state of intoxication. Like the larger brain, or cerebrum, it appears to be devoid of feeling; but it takes no part in the operations of the mind.52.Where is the seat of the mind? The subordination of the other organs? The gray matter?52. The Function of the Cerebrum.—The cerebrum, or brain proper, is the seat of the mind; or, speaking more exactly, it is the material instrument by which the mind acts; and, as it occupies the highest position in the body, so it fulfils the loftiest uses. All the other organs are subordinate to it: the senses are its messengers, which bring it information from the outer world, and the organs of motion are its servants, which execute its commands. Here, as in the nervous apparatus of lower grade already considered, the gray matter is the element of power; and, in proportion as this substance increases in extent, and in proportion to the number of convolutions in the hemispheres, do the mental faculties expand.53.What is stated of men in connection with the size of their brain? With the brains of other animals?53.There have been a few, but only a few, men of distinguished ability whose brains have been comparatively small in size; the rule being that great men possess large brains. The relative weight of the brain of man, ascompared with the weight of the body, does not, in all instances, exceed that of the inferior animals; the canary and other singing-birds have a greater relative amount of nervous matter than man; but man surpasses all other creatures in the size of the hemispheres of the cerebrum, and in the amount of gray substance which they contain.54.Sensitiveness of the brain substance? The removal of a portion of the brain? State the remarkable case mentioned?54.It is a singular fact that this cerebral substance is insensitive, and may be cut without causing pain. The removal of a considerable quantity of the brain has taken place, as the result of accident, without causing death, and without even affecting seriously the intellect. A remarkable case of injury of the brain is recorded, in which, from the accidental explosion of gunpowder used in blasting a rock, the "tamping-iron" was driven directly through the skull of a man. This iron rod, three feet and seven inches long, an inch and a quarter in diameter, and weighing more than thirteen pounds, entered the head below the ear and passed out at the top of the skull, carrying with it portions of the brain and fragments of bone. The man sustained the loss of sight on one side, but otherwise recovered his health and the use of his faculties. Moreover, disease has occurred, compromising a large portion of the brain, without impairing the faculties of the mind, when the disease was limited to one side only.55.Thought, emotion, and will? What power do they give us?55.Impressions conveyed to the hemispheres from the external world arouse the mental operations called thought, emotion, and the will. These are the godlike attributes which enable man to subjugate a world, and afterward cause him to "sigh for other worlds to conquer;" which enable him to acquaint himself with the properties of planets millions of miles distant from him, and which give him that creative power by which he builds and peoples the new worlds of poetry and art.56.Are the brain and the mind identical?56.All these mental acts, and many others, are developed through the action of the brain; not that the brain and the mind are the same, or that the brain secretes memory, imagination, or the ideas of truth and justice, as the stomach secretes the gastric juice. But rather, as the nerve of the eye, stimulated by the subtile waves of light, occasions the notion of color, so the brain, called into action by the mysterious influences of the immaterial soul, gives rise to all the intellectual, emotional, and voluntary activities of mankind.57.What do we know of the cerebrum and its powers?57.The cerebrum, according to our present knowledge of it, must be regarded as a single organ, which produces different results, according as it is acted upon by the immaterial mind in different ways. Recent investigations, however, seem to prove that the faculty of language is dependent upon a small part of the left hemisphere of the cerebrum, near the temple. At least, in almost every instance where this part is diseased, the patient can no longer express himself in speech and writing.58.The reflex function of the organs within the skull? The reflex power of the medulla? Respiration?58. The Reflex Action of the Brain.—The reflex function of the organs within the skull is very active and important. Like that of the cord, it protects the body by involuntary movements, it regulates the so-called vegetative acts, and it takes the place of the will in controlling the voluntary muscles, when the attention is turned in other directions. The reflex power of the medulla governs the acts of respiration, which are absolutely and continuously essential to life. Respiration is, as we have seen, partly under the influence of the will; but this is due in part to the fact that respiration is indirectly concerned in one of the animal functions, that of speech.59.What else does reflex action occasion? Winking? Other examples?59.Reflex action also occasions coughing and sneezing,whenever improper substances enter the air-passages. Winking is an act of the same sort, and serves both to shield the eyes from too great glare of light, and to preserve them by keeping the cornea moist. Looking at the sun or other strong light, causes sneezing by reflex action. Laughing, whether caused by tickling the feet or by some happy thought, and also sobbing, are reflex acts, taking place by means of the respiratory muscles.60.Muscles called into play by certain reflex movements? The somnambulist?60.Certain of the protective reflex movements call into play a large number of muscles, as in the balancing of the body when walking along a narrow ledge, or on a slippery pavement. The dodging motion of the recruit, when the first cannon ball passes over his head, is reflex and involuntary. The fact that these involuntary, reflex acts are performed with great precision, will explain why it is that accidents seldom befall the somnambulist, or sleep-walker, although he often ventures in most perilous places.61.What is said of walking and other acts in connection with the office performed by the medulla and spinal cord?61.Walking, sitting, and other acts of daily life, become automatic, or reflex, from habit: the mind is seldom directed to them, but delegates their control to the medulla and spinal cord. Thus a person in walking, may traverse several miles while absorbed in thought, or in argument with a companion, and yet be conscious of scarcely one in a thousand of the acts that have been necessary to carry his body from one point to another. By this admirable and beautiful provision, the mind is released from the charge of the ordinary mechanical acts of life, and may devote itself to the exercise of its nobler faculties. And it is worthy of notice, that the greater the use of these faculties, the more work does the reflex function assume and perform; and thus the employment of the one insures the improvement of the other.QUESTIONS FOR TOPICAL REVIEW.PAGE1. State fully what is meant by the term vegetable function.1482. To what is man indebted for his position as the head of the animal creation?148,1493. What can you state on the subject of special organs for separate functions?1494. Describe, as fully as you can, the structure of the nervous system.149,1505. Describe the brain, its location, size, shape, and structure.150,1526. Describe the brain proper, or cerebrum.152,153,1747. What connection is noticed between the cerebrum and mental power?153,172,1748. Describe the little brain, or cerebellum.153,154,1729. Describe the spinal cord.154,155,15610. What are the spinal nerves, and how are they arranged?156,15711. What is the character and substance of their tissues?15712. State how the nerve-fibres perform their office, and give the illustration.157,15813. Describe the sympathetic system of nerves.15814. State what is meant by the properties of nervous tissue, and give the illustration.159,16015. Explain what is meant by the functions of the nerves, and give the illustration.160,161,16216. What is meant by a transient paralysis of a nerve? Give the illustration.161,16217. What can you state of the rate of message-motion along a nerve?16218. What are the functions of the spinal cord?162,163,164,16519. State what you can of the form of paralysis known as paraplegia.16320. What experiments, with results, upon the spinal cord are noted?163,16421. Explain how injury of the cord may produce paralysis of motion in one leg, and at the same timea loss of sensation in the other.16422. Explain how, if the right hand be hurt, the left side of the brain is made to feel the pain.16523. Now, explain as fully as you can the direction of the fibres of the cord.164,16524. What is understood by the reflex action of the cord?16525. What experiments are mentioned to prove this power of the cord?165,16626. What are the uses of the reflex action of the cord?167-17027. What illustrations are mentioned to show such uses?167-17028. What is the medulla oblongata?154,17029. What are the functions of the medulla oblongata?170,17130. What can you state of the functions of the cranial ganglia?171,17231. What are the functions of the cerebellum?17232. What is the function of the cerebrum?172,17433. In what way does the size of the brain generally indicate the character of the man?172,17334. What facts show that the gray substance of the brain is insensitive?17335. Upon what does the faculty of language seem to depend?17436. What has been observed in support of this statement?17437. Of what importance is the reflex action of the brain?174,17538. In what ways is this importance made manifest?174,175CHAPTER X.The Special Senses.The Production of Sensations—Variety of Sensations—General Sensibility—Pain and its Function—Special Sensation, Touch, Taste, Smell, Sight, and Hearing—The Hand, the Organ of Touch—The Sense of Touch—Delicacy of Touch—Sensation of Temperature and Weight—The Tongue the Organ of Taste—The Nerves of Taste—The Sense of Taste and its Relations with the other Senses—The Influence of Education on the Taste—The Nasal Cavities, or the organs of Smell—The Olfactory Nerve—The Uses of the Sense of Smell—The Sense of Sight—Light—The Optic Nerve—The Eyeball and its Coverings—The Function of the Iris—The Sclerotic, Choroid, and Retina—The Tears and their Function—The Movements of the Eyeball—The Function of Accommodation—The Sense of Hearing and Sound—The Ear, or the organ of Hearing—The External, Middle, and Internal Ear.

26.What does this illustrate? Sensation? The feeling after a limb has been amputated? Striking of the "funny bone?"

26.This illustrates the manner in which the braininterprets all injuries of the trunk of a nerve. Sensation or pain is not felt at the point of injury, but is referred to the outer extremities of the nerve, where impressions are habitually received. This is the reason why, after a limb has been amputated by the surgeon, the patient appears to suffer pain in the member that has been severed from the body; while some form of irritation at the end of the nerve in the wound, or stump, is the real source of his distress. Again, when the "funny-bone"—that is, the ulnar nerve at the elbow,—is accidentally struck, the tingling sensations thus produced are referred to the outer side of the hand and the little finger, the parts to which that nerve is distributed.

27.The spinal nerves, and two from the brain? Of the remainder? Difference in the nerves? How accounted for? The rate of conduction along a nerve? As compared with electricity?

27.All the spinal nerves, and two from the brain, are concerned in both sensation and motion. Of the remainder of the cranial nerves, some are exclusively motor, others exclusively sensory; and still others convey, not ordinary sensations, but special impressions, such as sight, hearing, and smell, which we have yet to consider. However much the functions of the nerves seem to vary, there is but little difference discoverable in the nerves themselves, when examined under the microscope. Whatever difference exists must be accounted for in consequence of the nerves communicating with different portions of the gray matter of the brain. The rate of motion of a message, to or from the brain along a nerve, has been measured by experiment upon the lower animals, and estimated in the case of man at about two hundred feet per second. As compared with that of electricity, this is a very slow rate, but, in respect to the size of the human body, it is practically instantaneous.

28.Functions of the anterior and posterior columns of the cord? If the cord be divided?

28. The Functions of the Spinal Cord.—As theanterior and posterior roots of the spinal nerves have separate functions, so the anterior and posterior columns of the cord are distinct in function. The former are concerned in the production of motion, the latter in sensation. If the cord be divided, as before in the case of the nerve, it is found that the parts below the point of injury are deprived of sensation and of the power of voluntary motion on both sides of the body, a form of paralysis which is calledparaplegia.

29.Paraplegia? Result and danger to life? When the injury occurs in the neck?

29.This form of disease, paraplegia, is sometimes seen among men, generally as the result of a fall, or some other severe accident, by which the bones of the spine are broken, and the cord is crushed, or pierced by fragments of bone. The parts which are supplied by nerves from the cord above the point of injury are as sensitive and mobile as before. The results are similar, whether the division happens at a higher or lower portion of the spinal cord; but the danger to life increases proportionally as the injury approaches the brain. When it occurs in the neck, the muscles of inspiration are paralyzed, since they are supplied by nerves issuing from that region; and as a result of this paralysis, the lungs are unable to act, and life is speedily brought to a close.

30.Experiment of cutting the spinal cord of an animal? What inference is drawn?

30.When the spinal cord of an animal has been cut, in experiment, it may be irritated in a manner similar to that alluded to when considering the nerves. If, then, the upper cut surface be excited, it is found that pain, referable to the parts below the cut, is produced; but when the lower cut surface is irritated, no feeling is manifested. So we conclude that in respect to sensation, the spinal cord is not its true centre, but that it is merely a conductor, and is therefore the great sensory nerve of the body. When the lower surface of the cut is irritated, the muscles of theparts below the section are violently contracted. Hence, we conclude that, in respect to the movements ordered by the will, the spinal cord is not their source; but that it acts only as a conductor, and is, accordingly, the great motor nerve of the body.

31.What singular fact is noticed? What does the result show?

31. Direction of the Fibres of the Cord.—If one lateral half of the spinal cord be cut, or injured, a very singular fact is observed. All voluntary power over the muscles of the corresponding half of the body is lost, but the sensibility of that side remains undiminished. This result seems to show that the motor fibres of the cord pursue a direct course, while its sensory fibres are bent from their course. And this has been proved to be the fact; for immediately after the posterior roots—the conductors of sensory impressions—join the posterior columns, they enter the gray matter of the cord, and passing over, ascend to the brain on the opposite side. Accordingly, the sensory fibres from the right and left sides interlace each other in the gray matter; this arrangement has been termed thedecussation, or crossing of these fibres. This condition serves to explain how a disease or injury of the cord may cause a paralysis of motion in one leg, and a loss of sensation in the other.

32.Direction of the anterior or motor columns? In the cord itself? In the medulla oblongata? The decussation?

32.The direction of the anterior, or motor columns of the cord, is downward from the brain. In the cord itself, the course of the motor fibres is for the most part, a direct one; but in the medulla oblongata, or upper extremity of the cord, and therefore early in their career, these fibres decussate, or cross from side to side in a mass; and not separately, as in the case of the posterior fibres just mentioned. This arrangement is termed thedecussationof the anterior columns of the medulla.

33.Result of the double interlacing of fibres? Where is the seat of pain when the right hand is hurt? The moving of the foot? Loss of sensation in one side of the body?

33.From this double interlacing of fibres results acrossed action between the original and terminal extremity of all nerve-fibres which pass through the medulla; namely, those of all the spinal nerves. Consequently, if the right hand be hurt, the left side of the brain feels the pain; and if the left foot move, it is the right hemisphere which dictates its movement. For the same reason, when a loss of sensation and power of motion affecting the right side of the body alone is observed, the physiologist understands that the brain has been invaded by disease upon its left side. This affection is termedhemiplegia, or the "half-stroke." The full-stroke, which often follows the rupture of a blood-vessel in the brain, is commonly calledparalysis.

34.What other important use has the cord? What is the activity denominated?

34. The Reflex Action of the Cord.—We have already considered the cord as the great motor and sensory nerve of the body, but it has another and extremely important use. By virtue of the gray matter, which occupies its central portion, it plays the part of an independent nerve centre. The spinal cord not only conducts some impressions to the brain, but it also arrests others; and, as it is expressed, "reflects" them into movements by its own power. This mode of nervous activity is denominated theReflex Actionof the cord.

35.Example of the fowl? Centipede? Frog? What do they prove?

35.A familiar example of this power of the cord is found in the violent movements which agitate a fowl after its head has been cut off. The cold-blooded animals also exhibit reflex movements in an astonishing degree. A decapitated centipede will run rapidly forward, and will seemingly strive to overturn, or else climb over obstacles placed in its way. A frog similarly mutilated will sustain its headless body upon its feet, in the standing posture, just as it might do if it were still alive. If pushed over, it will regain its feet; and if the feet are irritated, it willjump forward. There can be no doubt that, in the lower animals, movements may take place which are completely divorced from the will, sensation, and consciousness; for in those animals, as well as in man, these faculties have their principal seat within the brain.

36.What is necessary in most cases to awaken reflex movements? In the case of the fowl? Convulsions which follow decapitation?

36.An irritation is necessary, in most instances, to awaken reflex movements. In the case of the decapitated fowl, its muscles are excited to convulsive action by reason of its being thrown upon the hard ground and roughly handled. Let it be treated differently, and the convulsions will not take place: let it be laid gently upon soft cotton, and the body will remain comparatively quiet. It may comfort some people to know that the convulsions which follow decapitation are not attended with pain; nor are they a necessary part of the "act of death," as some suppose.

37.Actions in the human body distinct from voluntary efforts?

37.In the human body, likewise, actions are excited that are entirely distinct from the ordinary voluntary efforts. It is not permissible, desirable, nor even necessary to decapitate a man that the body may be disconnected from his brain, in order to test the effect of irritation upon the spinal cord; although the bodies of beheaded criminals have been experimented upon, and caused to move by powerful galvanic batteries. The resort to such means of experiment is rendered unnecessary by the occurrence of certain deplorable cases of disease and injury, which effectually sever all communication between the brain and a large part of the body.

38.Reflex action after injury of the cord? Why not due to the muscles?

38.Thus, the cord may be so far injured, as the result of accident, as to terminate all sensation and voluntary motion in the lower half of the body, the patient seemingly becoming lifeless and powerless from the waist downward. And yet, by tickling or pinching either foot, the legof the same side may be made to jerk, or even to kick with considerable force; but, unless the patient is observing his limbs, he is wholly unconscious of these movements, which are, therefore, performed independently of the brain. And they are in nowise due to the muscles of the limb; for, if the cord itself becomes diseased below the point of injury, the muscles cease to contract.

39.What are the requisites for the production of this form of nervous action?

39.For the production of this form of nervous action three things are requisite—(1) a nerve to conduct messages from the surface of the body, one of that variety formerly described as sensory, but which are now incapable of awakening sensation; (2) a portion of uninjured spinal cord which shall reflect or convert impressions into impulses; and (3) a motor nerve to conduct impulses outward to the muscles. The power of the cord to enforce reflex acts resides in the gray matter, into which the reflex nerves enter and from which they depart, by means of their posterior and anterior roots respectively.

40.Why do we not readily recognize the reflex activity of the cord in our own bodies? How best studied in others? Example?

40. The Uses of the Reflex Action.—The reflex activity of the cord is exhibited in the healthy body in many ways, but since it is never accompanied with sensation, we do not readily recognize it in our own bodies. Reflex movements are best studied in the cases of other persons, when the conditions enable us to distinguish between acts that are consciously, and those that are unconsciously performed. For example, if the foot of a person soundly asleep be tickled or pinched, it will be quickly withdrawn from the irritation.

41.Similar movements? Arm of a person? Melted wax or heated coin on the hand?

41.Similar movements may be observed in cases where the consciousness and sensation are temporarily obliterated by disease, or by means of narcotic poisons. If the arm of a person who has been rendered insensible bychloroform, be raised, and then allowed to fall, it will be noticed that the limb does not drop instantly, like a lifeless member, but a certain amount of rigidity remains in its muscles, which resists or breaks the force of its descent. Again, when a substance like melted sealing-wax, or a heated coin, falls upon the hand, the limb is snatched away at once, even before the feeling of pain has been recognized by the brain. When jolted in a rapidly moving car, we involuntarily step forward or backward, so as to preserve the centre of gravity of the body.

42.Result of healthful reflex activity? When may the reflex energy be deficient?

42.These and similar acts are executed by the same mechanism as that previously described in the case of paralysis from an injury of the spinal cord. The muscles thus called into play, are those which are ordinarily under the sway of the will, but which in these cases act through this reflex action of the cord, altogether independently of the will. A healthful reflex activity produces an elasticity, or "tone," of the voluntary muscular system, which, in a great measure, explains the existence in the young and vigorous of a feeling of buoyancy and reserve power. Its possessor is restlessly active, and it may appropriately be said of him, "he rejoiceth as a strong man to run a race." But this reflex energy may be deficient. This is true when the blood is poor and wanting in its solid ingredients, or the circulation is feeble; the muscles, then, are flabby and weak, and the person himself is said to be "nerveless," or indisposed to exertion. Shivering from cold, and trembling from fear, may, in part, be referred to a temporary loss of tone, resulting from a powerful impression upon the brain.

43.Excess of this activity in disease? Hydrophobia, etc.? The difference in severity of the convulsions?

43.An excess of this activity may also be observed in disease. In this condition, the excitability of the cord is unnaturally aroused, and frequent and violent movementsof the limbs and body, called convulsions, are the result. The convulsions of young children, and the nervous agitation ofchorea, or St. Vitus's dance, are reflex in character; as are also the symptoms attending poisoning by strychnine, and those terrible diseases,tetanus, or "locked jaw," andhydrophobia. The severity of the convulsions is not the same in all cases of these disorders; but, in those last mentioned the most violent spasmodic movements are provoked by the slightest form of irritation—such as the sound of pouring water, the sight of any glittering object, the glancing of a mirror, the contact of cool air, or even the touch of the bedclothes.

44.Another variety of reflex motions? What are they? What is stated of the mind in connection with these movements?

44.Another variety of reflex motions takes place in certain involuntary muscles, and over these the cord exercises supreme control. They are principally those movements which aid the performance of digestion and nutrition, the valve-action of the pylorus, and other movements of the stomach and intestines. In these movements the mind shares no part. And it is well that this is so; for since the mind is largely occupied with affairs external to the body, it acts irregularly, becomes fatigued, and needs frequent rest. The spinal cord, on the contrary, is well fitted for the form of work on which depends the growth and support of the body, as it acts uniformly, and with a machine-like regularity.

45.Consciousness in these operations? Physical wants?

45.These operations are not accompanied by consciousness; for, as a general rule, the attention is only called to them when they become disordered. Many a person does not know where his stomach is situated, until he discovers its position by reason of a feeling of distress within it, produced by giving that organ improper work to perform. In this manner the higher and nobler faculties of the mind are liberated from the simply routine duties of thebody; and we are thus left to direct the attention, the reason, and the will to the accomplishment of the great ends of our existence. If it were otherwise, we could only find time to attend to our ordinary physical wants.

46.How many objects may the reflex activity be said to have? State the first. The second. The third.

46.The objects of the reflex activity of the cord are threefold. In the first place, it acts as the protector of man, in his unconscious moments. It is his unseen guardian, always ready to act, never growing weary, and never requiring sleep. Nor does its faithful action wholly cease with the cessation of life in other parts. In the second place, it is the regulator of numerous involuntary motions that are necessary to the nutrition of the body. Here its actions are entirely independent of the brain, and are performed in a secret and automatic manner. And, thirdly, it acts as a substitute, and regulates involuntary movements in the muscles usually under the influence of the will. It thus takes the place of the higher faculties in performing habitual acts, and permits them to extend their operations more and more beyond the body and its material wants.

47.How does the medulla oblongata resemble the cord?

47. The Functions of the Medulla Oblongata.—The prolongation of the spinal cord, within the skull, has been previously spoken of as the medulla oblongata. It resembles the cord, in being composed of both white and gray matter, and in conducting sensory and motor influences. It likewise gives rise to certain nerves, which are here called cranial nerves (fromcranium, the skull). All except two of these important nerves spring from the medulla, or the parts immediately adjoining it; the exceptions are the two nerves taking part in the special senses of sight and smell, which nerves have their origin at the base of the cerebrum.

48.What final fact is observed in the crossing of the motor columns?

48.The decussation, or crossing of the motor columns, has been previously described, when treating of thedirection of the nerve-fibres of the cord; and the singular fact has been alluded to, that when one side of the brain is injured, its effects are limited to the opposite side of the body. One more fact remains to be observed in this connection, namely, this crossed action does not usually take place in the cranial nerves. Accordingly, when apoplexy, or the rupture of a blood-vessel, occurs in the right hemisphere of the cerebrum, the left side of the body is paralyzed, but the right side of the face is affected; this is because that part of the body is supplied by the cranial nerves.

49.The pneumogastric nerve? The feelings aroused by it? The "vital knot?"

49.A portion of the medulla presides over the important function of respiration, and from it arises thepneumogastricnerve, so called because its branches serve both the lungs and stomach. The feelings of hunger, thirst, and the desire for air are aroused by means of this nerve. The wounding of the gray matter of the medulla, even of a small portion of it, near the origin of the pneumogastric nerve, at once stops the action of the lungs and causes death. In consequence of the importance of this part, it has been termed the "vital knot." We find, also, that its location within the skull is exceedingly well protected, it being quite beyond the reach of any ordinary form of harm from without.

50.The uses of the smaller gray masses at the base of the brain?

50. The Functions of the Cranial Ganglia.—The uses of the smaller gray masses lying at the base of the brain are not well ascertained; and, on account of their position, so remote from the surface, it would, at first, seem well-nigh impossible to study them. But, from the results following diseases in these parts, and from experiments upon inferior animals, they are becoming gradually better understood; and there is reason to believe that eventually the physiological office of each part will be clearly ascertained and defined. It is believed, however, but notabsolutely proven, that the anterior masses, like the anterior roots of the spinal nerves and the anterior columns of the cord, are concerned in the production of motion; in fact, that they are the central organs of that function. The posterior gray masses are, on the contrary, supposed to be the seat of sensation.

51.Function of the cerebellum? When it is diseased?

51. The Function of the Cerebellum.—The function of the cerebellum, or "little brain," is the direction of the movements of the voluntary muscles. When this organ is the seat of disease or injury, it is usually observed that the person is unable to execute orderly and regular acts, but moves in a confused manner as if in a state of intoxication. Like the larger brain, or cerebrum, it appears to be devoid of feeling; but it takes no part in the operations of the mind.

52.Where is the seat of the mind? The subordination of the other organs? The gray matter?

52. The Function of the Cerebrum.—The cerebrum, or brain proper, is the seat of the mind; or, speaking more exactly, it is the material instrument by which the mind acts; and, as it occupies the highest position in the body, so it fulfils the loftiest uses. All the other organs are subordinate to it: the senses are its messengers, which bring it information from the outer world, and the organs of motion are its servants, which execute its commands. Here, as in the nervous apparatus of lower grade already considered, the gray matter is the element of power; and, in proportion as this substance increases in extent, and in proportion to the number of convolutions in the hemispheres, do the mental faculties expand.

53.What is stated of men in connection with the size of their brain? With the brains of other animals?

53.There have been a few, but only a few, men of distinguished ability whose brains have been comparatively small in size; the rule being that great men possess large brains. The relative weight of the brain of man, ascompared with the weight of the body, does not, in all instances, exceed that of the inferior animals; the canary and other singing-birds have a greater relative amount of nervous matter than man; but man surpasses all other creatures in the size of the hemispheres of the cerebrum, and in the amount of gray substance which they contain.

54.Sensitiveness of the brain substance? The removal of a portion of the brain? State the remarkable case mentioned?

54.It is a singular fact that this cerebral substance is insensitive, and may be cut without causing pain. The removal of a considerable quantity of the brain has taken place, as the result of accident, without causing death, and without even affecting seriously the intellect. A remarkable case of injury of the brain is recorded, in which, from the accidental explosion of gunpowder used in blasting a rock, the "tamping-iron" was driven directly through the skull of a man. This iron rod, three feet and seven inches long, an inch and a quarter in diameter, and weighing more than thirteen pounds, entered the head below the ear and passed out at the top of the skull, carrying with it portions of the brain and fragments of bone. The man sustained the loss of sight on one side, but otherwise recovered his health and the use of his faculties. Moreover, disease has occurred, compromising a large portion of the brain, without impairing the faculties of the mind, when the disease was limited to one side only.

55.Thought, emotion, and will? What power do they give us?

55.Impressions conveyed to the hemispheres from the external world arouse the mental operations called thought, emotion, and the will. These are the godlike attributes which enable man to subjugate a world, and afterward cause him to "sigh for other worlds to conquer;" which enable him to acquaint himself with the properties of planets millions of miles distant from him, and which give him that creative power by which he builds and peoples the new worlds of poetry and art.

56.Are the brain and the mind identical?

56.All these mental acts, and many others, are developed through the action of the brain; not that the brain and the mind are the same, or that the brain secretes memory, imagination, or the ideas of truth and justice, as the stomach secretes the gastric juice. But rather, as the nerve of the eye, stimulated by the subtile waves of light, occasions the notion of color, so the brain, called into action by the mysterious influences of the immaterial soul, gives rise to all the intellectual, emotional, and voluntary activities of mankind.

57.What do we know of the cerebrum and its powers?

57.The cerebrum, according to our present knowledge of it, must be regarded as a single organ, which produces different results, according as it is acted upon by the immaterial mind in different ways. Recent investigations, however, seem to prove that the faculty of language is dependent upon a small part of the left hemisphere of the cerebrum, near the temple. At least, in almost every instance where this part is diseased, the patient can no longer express himself in speech and writing.

58.The reflex function of the organs within the skull? The reflex power of the medulla? Respiration?

58. The Reflex Action of the Brain.—The reflex function of the organs within the skull is very active and important. Like that of the cord, it protects the body by involuntary movements, it regulates the so-called vegetative acts, and it takes the place of the will in controlling the voluntary muscles, when the attention is turned in other directions. The reflex power of the medulla governs the acts of respiration, which are absolutely and continuously essential to life. Respiration is, as we have seen, partly under the influence of the will; but this is due in part to the fact that respiration is indirectly concerned in one of the animal functions, that of speech.

59.What else does reflex action occasion? Winking? Other examples?

59.Reflex action also occasions coughing and sneezing,whenever improper substances enter the air-passages. Winking is an act of the same sort, and serves both to shield the eyes from too great glare of light, and to preserve them by keeping the cornea moist. Looking at the sun or other strong light, causes sneezing by reflex action. Laughing, whether caused by tickling the feet or by some happy thought, and also sobbing, are reflex acts, taking place by means of the respiratory muscles.

60.Muscles called into play by certain reflex movements? The somnambulist?

60.Certain of the protective reflex movements call into play a large number of muscles, as in the balancing of the body when walking along a narrow ledge, or on a slippery pavement. The dodging motion of the recruit, when the first cannon ball passes over his head, is reflex and involuntary. The fact that these involuntary, reflex acts are performed with great precision, will explain why it is that accidents seldom befall the somnambulist, or sleep-walker, although he often ventures in most perilous places.

61.What is said of walking and other acts in connection with the office performed by the medulla and spinal cord?

61.Walking, sitting, and other acts of daily life, become automatic, or reflex, from habit: the mind is seldom directed to them, but delegates their control to the medulla and spinal cord. Thus a person in walking, may traverse several miles while absorbed in thought, or in argument with a companion, and yet be conscious of scarcely one in a thousand of the acts that have been necessary to carry his body from one point to another. By this admirable and beautiful provision, the mind is released from the charge of the ordinary mechanical acts of life, and may devote itself to the exercise of its nobler faculties. And it is worthy of notice, that the greater the use of these faculties, the more work does the reflex function assume and perform; and thus the employment of the one insures the improvement of the other.

QUESTIONS FOR TOPICAL REVIEW.

CHAPTER X.

The Production of Sensations—Variety of Sensations—General Sensibility—Pain and its Function—Special Sensation, Touch, Taste, Smell, Sight, and Hearing—The Hand, the Organ of Touch—The Sense of Touch—Delicacy of Touch—Sensation of Temperature and Weight—The Tongue the Organ of Taste—The Nerves of Taste—The Sense of Taste and its Relations with the other Senses—The Influence of Education on the Taste—The Nasal Cavities, or the organs of Smell—The Olfactory Nerve—The Uses of the Sense of Smell—The Sense of Sight—Light—The Optic Nerve—The Eyeball and its Coverings—The Function of the Iris—The Sclerotic, Choroid, and Retina—The Tears and their Function—The Movements of the Eyeball—The Function of Accommodation—The Sense of Hearing and Sound—The Ear, or the organ of Hearing—The External, Middle, and Internal Ear.

The Production of Sensations—Variety of Sensations—General Sensibility—Pain and its Function—Special Sensation, Touch, Taste, Smell, Sight, and Hearing—The Hand, the Organ of Touch—The Sense of Touch—Delicacy of Touch—Sensation of Temperature and Weight—The Tongue the Organ of Taste—The Nerves of Taste—The Sense of Taste and its Relations with the other Senses—The Influence of Education on the Taste—The Nasal Cavities, or the organs of Smell—The Olfactory Nerve—The Uses of the Sense of Smell—The Sense of Sight—Light—The Optic Nerve—The Eyeball and its Coverings—The Function of the Iris—The Sclerotic, Choroid, and Retina—The Tears and their Function—The Movements of the Eyeball—The Function of Accommodation—The Sense of Hearing and Sound—The Ear, or the organ of Hearing—The External, Middle, and Internal Ear.


Back to IndexNext