CHAPTER I.THE ENGINEERS IN FRANCE.

In describing the activities of the Engineers, we are carried to the front itself, into the zone beaten by enemy fire, where machine-gun bullet, bursting shell, and deadly gases have brought sudden death and painful wounds to many members of the technical services. A large proportion of the Engineers are combatant troops, constituting in the American Expeditionary Forces about 8 per cent of the total combatant troops engaged. These troops, trained and equipped to march and fight as Infantry, demonstrated their fighting qualities during the war on numerous occasions, both when used as Infantry to increase the rifle strength of that arm and when fighting as Engineers to obtain possession of terrain as a preliminary to the exercise of their technical art in its organization.

From the day the first sector was taken over by American troops in November, 1917, until the Meuse River was passed and the enemy, in flight, sought an armistice to save his armies from destruction, the combatant Engineers—the "sappeurs" of French soldier lore and song—- fought and bled in a manner never to be forgotten. Railroad engineers, nominally considered noncombatant, at Cambrai dropped their tools to take arms and stand stubbornly shoulder to shoulder with their British brothers with whom they were learning to work under the special conditions of the front. From Cantigny to Chateau Thierry, Engineer troops fought as well as worked, and often not only advanced with the Infantry under or through the barrage, but actually led the first wave, to demolish or remove the obstacles placed in its path. Through the days when from March 21, 1918, until July 18, 1918, the German army made its rapid plunges toward Paris until checked and thrown back across the Marne at Chateau Thierry, the sapper troops fought and worked with the Infantry of their divisions, enduring the same dangers, privations, and hardships, and winning equal honors and commendation.

In the drive at St. Mihiel and through the Argonne, the combatant Engineers played a conspicuous part. Advancing with the tanks, they made possible the passage of many difficult points for these lumbering monsters, against which was directed a particularlydestructive fire. Using elongated torpedoes of high explosive, known as Bangalore torpedoes, they prepared passages for the Infantry through the broad barbed-wire entanglements, echeloned in depth by numerous separate lines, each to be breached and passed before the objective could be gained. In this work the Engineers reduced the machine-gun nests that hindered their operation, cleaned up the strong points that delayed the advance of the tanks they were assisting, and threw extemporized footbridges across the streams which barred the further advance of the Infantry.

The combatant Engineers did their part in the winning of the reconquered ground as well as the lion's share of its organization for the defense and the maintenance of the communications behind it. In this last respect alone, the Engineers, as combatant troops, opened across No Man's Land the first communications practicable for the light field artillery, which pressed forward immediately behind the Infantry troops to their support and protection.

Filling in trenches, removing wire entanglements, building trestles across wide mine craters, searching for and rendering inoperative treacherous mines and traps of extreme ingenuity and destructiveness, the sapper found a wide field for the exercise of his functions. Shattered and obliterated by four years of shelling and mining, trenching, and countermining, the "roads" across No Man's Land existed only on the map; and as they retreated the Germans demolished and obstructed the highways behind the old front from which they had been driven, with the thoroughness and attention to detail for which they are noted. As our Infantry advanced, upon their heels, literally speaking, came our Engineers, to attack the problem of providing for the Artillery and supply trains a means of following. From the standpoint of the road builder in civil life, their methods were crude in the extreme, but for the military purpose and the pressing immediate needs, their road building achievement was adequate. The Engineers sometimes reopened abandoned quarries, and sometimes started them where none had existed before, to obtain a supply of road metal, which supply was sometimes supplemented and in some cases replaced by the use of debris from ruined villages and shattered farmhouses. From demolished structures many useful materials were extracted and adapted to the military purpose by the Engineers. Where bridge and trestle timbers were lacking, deserted buildings—in one case the tower of a ruined church—filled the need. Where shell hole or crater yawned a remnant of a stable wall might be pulled down by ropes and man power, and broken up to fill the void.

Through the dense woods the soft forest floor offered no support even to the light artillery, and miles of corduroy and brush pathwere built to permit the guns to advance to the reinforcement of the attack. In many places the tactical situation admitted of insufficient time to build even the crudest paths, and then the Engineers fell to and assisted artillery and supply wagons to get through and over the bad spots, replacing guns on the road where they had run into the ditch, righting and reloading combat wagons when they had turned over in shell holes or deep ruts.

While thus engaged the sapper troops were subjected to the fire of enemy artillery seeking to prevent the advance of the supporting guns, and, further, they were working within the zone of combat of enemy aviators, the rattle of whose deadly machine guns, as they plunged at low altitude toward a busy working party, was as much to be dreaded as the high-explosive bombs which they dropped.

Behind the combatant Engineer troops, extending through the service of supply to the base ports and across the ocean to the United States was an organization of technical noncombatant supply and administration.

The work of these production, construction, and supply departments of the Engineer service in France was organized in the American Expeditionary Forces under the administration of three divisions of the office of the Chief Engineer. These were the division of military engineering and engineering supplies, the division of construction and forestry, and the division of light railways and roads.

The division of military engineering and engineering supplies was charged with the procurement, standardization, and distribution of all classes of supplies used by Engineer troops. During the 19 months of warfare this division handled 3,225,121 tons of supplies, storing them and distributing them from immense depots aggregating 25 acres of covered storage and over 756 acres of open storage. This service was further charged with the current investigations into new developments of the art of military engineering, and with the development, operation, and administration of certain technical branches of the American Expeditionary Forces, such as electrical and mechanical troops, water-supply troops, searchlight regiments, etc.

At its seven storage depots in the base, intermediate, and advance sections, this division had in service 23 locomotive cranes, mostly of 15 tons capacity and capable of handling an enormous amount of freight and material at warehouses and cars. The following table of principal items of engineer material shows the kinds and quantities of supplies which were received in France for issue through this division up to December 15, 1918:

To facilitate the procurement of supplies in the existing world markets, this division established in Paris a purchasing board, having branches in England, Switzerland, and Spain. When the war ended this board had accomplished the tremendous task of buying over 1,800,000 tons of engineer supplies, with a total value of $205,242,728. In addition to this material, our own country furnished over 1,500,000 tons, with a value of $248,993,322. France sold to us through this board 1,234,968 tons, valued at $134,393,870, and England 396,000 tons, valued at $56,145,818. In Switzerland, purchases consisting principally of sectional barracks and technical equipment, totaled 96,867 tons, with a value of $14,643,410. Purchases from Spain amounted to only 797 tons, with a value of $59,630.

Much work was done in standardizing supplies of all classes, so that quantity-production methods could be used in their fabrication, thus promoting economy and stimulating the rapidity of supply.

In the procurement of cement for the use of the American Expeditionary Forces, the Engineers dealt successfully with a problem of large magnitude and importance. By contract with English and French mills, by direct purchase for specific jobs from local mills, and by their own manufacturing operations, the Engineers secured enough cement to supply the demands for construction both at the front and in the S. O. S., as the service of supply was generally known. Three large cement mills were leased from the French owners and operated by special troops organized in the United States. To certain other French mills the Engineers furnished labor and materials in return for a certain proportion of their output. It is estimated that about 215,000 tons of cement were thus procured, representing a total cost of about $7,000,000.

ENGINEERS, ASSISTED BY INFANTRY, BUILDING A ROAD OVER WHAT WAS NO MAN'S LAND ONE WEEK BEFORE.The stones from tottering walls of buildings are broken into small pieces and laid on the road bed, making a good military road. Fay on Haye, France.

ENGINEERS, ASSISTED BY INFANTRY, BUILDING A ROAD OVER WHAT WAS NO MAN'S LAND ONE WEEK BEFORE.The stones from tottering walls of buildings are broken into small pieces and laid on the road bed, making a good military road. Fay on Haye, France.

ENGINEERS, ASSISTED BY INFANTRY, BUILDING A ROAD OVER WHAT WAS NO MAN'S LAND ONE WEEK BEFORE.

The stones from tottering walls of buildings are broken into small pieces and laid on the road bed, making a good military road. Fay on Haye, France.

WAREHOUSES AND DOCKS FROM THE RIVER. BASSENS DOCKS, BORDEAUX, FRANCE.

WAREHOUSES AND DOCKS FROM THE RIVER. BASSENS DOCKS, BORDEAUX, FRANCE.

WAREHOUSES AND DOCKS FROM THE RIVER. BASSENS DOCKS, BORDEAUX, FRANCE.

NORTHERN VIEW OF THE AMERICAN DOCKS AT OLD BASSENS, BORDEAUX, FRANCE.

NORTHERN VIEW OF THE AMERICAN DOCKS AT OLD BASSENS, BORDEAUX, FRANCE.

NORTHERN VIEW OF THE AMERICAN DOCKS AT OLD BASSENS, BORDEAUX, FRANCE.

The Engineers operated shops at various points near the front in which were manufactured standard material for dugout, trench, and emplacement construction, such as concrete beams, concrete slabs for overhead protection against high-angle shell fire, trench frames, revetment material, trench duck boards, mine and gallery timbers, knockdown bunk sets, etc.

The division of construction and forestry was charged with all construction work in the service of supply, and also with the procuring of forest products for the American Expeditionary Forces. At the signing of the armistice its organization totaled 150,823 men, of whom about 127,000 were constantly engaged in production work. Using standardized building plans, this force performed a huge amount of construction work in France.

It was assumed that one-third of the American troops in France would have to be housed in new buildings erected specially for the purpose. Thus accommodations for about 750,000 men had to be built at the rate of 16 barracks, each 20 by 100 feet in size, for every 1,000 men. Contracts were let to British and French contractors for 23,000 demountable barracks, this order being based on the ultimate probable size of the Expeditionary Forces. During August, September, and October, 1918, these barracks were being received at the rate of 1,000 per month. To supplement a supply of even such magnitude, our own type of barrack was developed to be built with lumber furnished by the American forestry forces in France. One cantonment project involved the construction of 500 barracks, accommodating 55,000 men. A total of 11,862 barracks were erected for the American Expeditionary Forces in France, representing 225 miles of length, if all the barracks were placed singly end to end.

It was the policy of the American Expeditionary Forces to provide hospital room sufficient to give beds, if necessary, to 15 of every 100 American soldiers in France. On this basis the Engineers set out to provide hospitals with a total of 280,000 beds. Of these, 139,000 beds were in hospitals taken over from the French, 25,000 beds being added to this capacity by new construction. In entirely new base, camp, evacuation, and convalescent hospitals, 116,000 beds were ultimately made available for the casualties of the American Expeditionary Forces, requiring the erection of 7,700 hospital barracks of special type, all of which would have totaled 127 miles in length ifplaced singly end to end. As to the progress of this construction, on November 14, 1918, there were 190,356 beds occupied in American hospitals in France, but all 280,000 beds originally specified were ready and available.

The base hospital plants were complete municipalities in themselves, and had capacities varying from 1,000 to 6,000 beds. These units were built where nothing had existed before but little French rural communities, devoid of the improvements and modern conveniences with which we in this country are so familiar. To establish a modern military hospital, capable of caring for the varied casualties and illness arising from action and abnormal living conditions, it required the construction of roads, sidings, unloading platforms, sorting and classification buildings, operating rooms, surgical and medical wards, dormitories, morgues, cemeteries, complete water supplies, fire protection systems, sewage and garbage disposal plants, recreation buildings, electric light plants, and all that goes to make complete a modern installation for the care of the wounded and sick. Many of the camp and evacuation hospitals required construction of the same character, but differing in magnitude.

The Engineers developed port faculties at St. Nazaire, Bordeaux, La Pallice, Marseilles, Brest, and at less important harbors. In general, at these places the existing facilities were expanded to meet the needs for the debarkation of troops and the unloading and shipment of supplies. Originally 23 ship berths were placed at our disposal by the French. The Engineers expanded this equipment to a total of 89 berths, with authorized projects for 160 berths by June, 1919. Our overseas shipments grew from 20,000 tons in July, 1917, to 1,000,000 tons in October, 1918, but the port expansion kept abreast of this development. Fifty-eight 300-ton lighters were built by Engineer troops with French timber, and twenty-six 500-ton lighters with American timber. The Engineers constructed seven derrick barges with lifting capacities ranging from 30 to 100 tons.

The existing French railroads running from the base ports to the advanced zone were quite inadequate, so that it was necessary to supplement their facilities with many miles of new track and other construction, including important storage, classification, arrival, and departure yards, warehouse tracks, engine terminals, water points, and repair shops. At Bassens, St. Sulpice, Miramas, and Montoir, enormous storage depots were constructed to handle the supplies entering France for our forces. The American-built railroad yards at these points were comparable in magnitude and completeness to the important yard developments undertaken in this country in recent years by the large railroad systems, the yards at St. Sulpice having a trackage totaling 147 miles of single track. Those at Bassens and St. Sulpice were virtually completed during the war, while the construction at Miramas was well under way at the signing of the armistice. At St. Sulpice the project was designed on the basis of receiving, storing, and forwarding the supplies for 1,000,000 men for 30 days. The others were of like magnitude.

INTERIOR OF SUBSISTENCE WAREHOUSE AT NEVERS, FRANCE, MARCH, 1918 SHOWING FRENCH WOMEN TRUCKING RATIONS.

INTERIOR OF SUBSISTENCE WAREHOUSE AT NEVERS, FRANCE, MARCH, 1918 SHOWING FRENCH WOMEN TRUCKING RATIONS.

INTERIOR OF SUBSISTENCE WAREHOUSE AT NEVERS, FRANCE, MARCH, 1918 SHOWING FRENCH WOMEN TRUCKING RATIONS.

INTERIOR VIEW OF ONE OF THE LARGE WAREHOUSES AT BASSENS DOCKS, BORDEAUX, FRANCE.Picture taken in April, 1918.

INTERIOR VIEW OF ONE OF THE LARGE WAREHOUSES AT BASSENS DOCKS, BORDEAUX, FRANCE.Picture taken in April, 1918.

INTERIOR VIEW OF ONE OF THE LARGE WAREHOUSES AT BASSENS DOCKS, BORDEAUX, FRANCE.

Picture taken in April, 1918.

ICE PLANT, BUILT FOR THE AMERICAN EXPEDITIONARY FORCES AT GIEVRES, FRANCE. IT IS THE THIRD LARGEST PLANT IN THE WORLD.

ICE PLANT, BUILT FOR THE AMERICAN EXPEDITIONARY FORCES AT GIEVRES, FRANCE. IT IS THE THIRD LARGEST PLANT IN THE WORLD.

ICE PLANT, BUILT FOR THE AMERICAN EXPEDITIONARY FORCES AT GIEVRES, FRANCE. IT IS THE THIRD LARGEST PLANT IN THE WORLD.

INTERIOR OF FREEZING ROOM OF ICE PLANT AT GIEVRES.

INTERIOR OF FREEZING ROOM OF ICE PLANT AT GIEVRES.

INTERIOR OF FREEZING ROOM OF ICE PLANT AT GIEVRES.

At Nevers, in the intermediate section, a condition existed requiring the construction of six miles of new double-track line, with a bridge over the Loire River 2,190 feet long. This piece of construction is known as the "Nevers Cut Off." It relieved the railroad congestion at this important point.

At Is-sur-Tille, in the advance section, was built a regulating station at which train loads of supplies and troops were dispatched to points where needed. Still farther toward the front, at Liffol-le-Grand, was another and smaller regulating station, controlling troop movements and the distribution of munitions and subsistence. Both of these projects were entirely new and were in useful operation when the war terminated.

In addition to the above projects, many storage yards, hospital tracks, ordnance depot yards, aviation center tracks, and construction tracks were laid out and built. In all 937 miles of single track were laid, thus fulfilling in the equivalent the prediction that to supply an American Army at the front we should have to build a double-track railroad from the French coast to the trenches.

Storage depots, remount depots, and veterinary hospitals erected by the Engineers proved entirely adequate for the needs of the American Expeditionary Forces at all times. A grand total of 536 acres of covered storage was built or acquired, of which about 482 acres was new construction. Space was provided in remount depots for 29,000 animals, and it was projected to accommodate 48,700 animals had it been necessary. Veterinary hospital space was provided for 17,250 sick animals. Each veterinary hospital required much special construction, such as concrete dipping tanks for the treatment of mange, operating rooms, exercising paddocks, hay sheds, living quarters for attendants and veterinary surgeons, and administration buildings.

At Gievres, in connection with the important storage depot built there, was constructed the third largest refrigerating plant in the world. This plant, built by the Engineers from plans prepared by experts, was capable of caring for 5,200 tons of meat at once, and of producing 250 tons of ice per day. Another similar plant at Bassens had a capacity for 4,000 tons of meat.

Miscellaneous construction work in France covered many fields of activity. The question of adequate water supply was ever present, and in most places where hospitals, depots, shops, or warehousing plants were built, a water supply development was incidentally necessary. Many systems were installed complete from the collection of the water at its source to its distribution to the points of consumption, while in some other cases only extensions and ameliorations of existing systems were undertaken. Water supply in the service of supply was placed under as fine and complete a system of bacteriological inspection and examination as is customary under more normal conditions. At Tours, Vierzon, St. Nazaire, and Dijon, where unfavorable bacteriological conditions existed, arrangements were entered into with these municipalities whereby the existing water supplies were chlorinated by the American water supply service.

At Is-sur-Tille was built a mechanical bakery at which 500,000 pounds of bread, fresh for immediate shipment to the troops at the front, could be produced in one day. Another such plant was built and put into service at Neufchateau, and at Liffol-le-Grand it was proposed, and plans had been prepared, to construct a third plant for 400,000 pounds of bread per day, but this project was canceled just after the armistice. In addition to these plants, bakery capacity for 240,000 pounds per day was provided at the base ports.

Oil storage was provided for 175,000 barrels of oil and gasoline. The large plants, with tanks having a capacity of 25,000 barrels each, built with enduring concrete foundations and equipped with connections and pumping plant for the loading of tank cars destined for the front, rivaled in size the installations at large refineries of this country.

For the operation of these many plants numerous power developments were undertaken, and a total of 5,000 kilowatts of new power, being provided for at the time of the armistice, was canceled. Plants of the capacity of 750 kilowatts each, providing 3,500 kilowatts of electric power in all, were in operation when the armistice was signed, not to mention numerous smaller units installed at various points where needed.

Ordnance repair shops were erected, as were also assembling plants for ordnance material, and heavy gun-mounting plants. Repair shops of enormous extent were established near the front, equipped with machine-tool equipment for the repair and maintenance of tank and motor transport material. Schools for the line and staff were constructed, the first and largest being at Gondrecourt and Longres. Laundry plants, salvage depots, aviation assembly plants, sewage disposal plants, refuse incinerators, mechanical repair shops, locomotive assembly plants and locomotive round-houses were placed at convenient points. At Chalmdray and at Colombey-les-Belles, both within a short day's automobile ride of the front, were the tank and air-service repair depots, each one covering many acres of ground and each provided with full equipment for any job of manufacture or repair in their respective fields.

AMERICAN ENGINEERS QUARRYING STONE TO REPAIR MILITARY ROADS DESTROYED BY GERMAN SHELL NEAR MENIL-LA-TOUR, FRANCE.

AMERICAN ENGINEERS QUARRYING STONE TO REPAIR MILITARY ROADS DESTROYED BY GERMAN SHELL NEAR MENIL-LA-TOUR, FRANCE.

AMERICAN ENGINEERS QUARRYING STONE TO REPAIR MILITARY ROADS DESTROYED BY GERMAN SHELL NEAR MENIL-LA-TOUR, FRANCE.

SAWMILL AT LARGEST LUMBER CAMP IN FRANCE. TWENTIETH ENGINEERS NEAR ECLARON, FRANCE.

SAWMILL AT LARGEST LUMBER CAMP IN FRANCE. TWENTIETH ENGINEERS NEAR ECLARON, FRANCE.

SAWMILL AT LARGEST LUMBER CAMP IN FRANCE. TWENTIETH ENGINEERS NEAR ECLARON, FRANCE.

HAULING LOGS BY MOTOR TRUCK, CAMP KELLOG, BORDEAUX, FRANCE.

HAULING LOGS BY MOTOR TRUCK, CAMP KELLOG, BORDEAUX, FRANCE.

HAULING LOGS BY MOTOR TRUCK, CAMP KELLOG, BORDEAUX, FRANCE.

STORAGE DAM AT SAVENAY, FRANCE, AND THE LAND THAT WILL BE INUNDATED WHEN IT IS COMPLETED.

STORAGE DAM AT SAVENAY, FRANCE, AND THE LAND THAT WILL BE INUNDATED WHEN IT IS COMPLETED.

STORAGE DAM AT SAVENAY, FRANCE, AND THE LAND THAT WILL BE INUNDATED WHEN IT IS COMPLETED.

The forestry work of the American Expeditionary Forces was developed to meet the heavy demands of our armies for forest products of all kinds. The first move in this direction was the dispatch to France of the Tenth Engineers, a forestry regiment of two battalions. This was in September, 1917. By the spring of 1918 we had recruited and trained the Twentieth Engineers, a forestry regiment of 10 battalions. Later additional forestry troops were sent across. Shortly before hostilities ceased all these troops were consolidated into a single regiment of 13,000 men, known as the Twentieth Engineers. To this force were added negro service troops to the number of 9,000, making 22,000 men engaged exclusively in the work of cutting down French forests and turning them into lumber required by our forces.

At first we had difficulty in supplying the necessary machinery. Until the sawmills came the forestry troops were engaged in building camps and hewing out railroad ties. In January, 1918, the machine equipment began to arrive. In February our troops cut about 3,500,000 feet of lumber; while in October the cut for the single month had reached the enormous figure of 50,000,000 feet. When the war ended we were expanding our forestry operations in France to produce 1,000,000,000 feet of lumber in a year.

The lumber produced by our sawmills in France up to November 30, 1918, would build completely enough barrack buildings 20 feet wide to stretch out to a distance of 600 miles if placed end to end, quarters enough for 3,107,600 men. In addition to this output the railroad ties produced would build 1,091 miles of standard-gauge railway and the small ties for the 24-inch track would build a double-track railroad behind 185 miles of trenches.

Just the posts and poles produced, if all cut into 6-foot posts, would be sufficient to support a wire fence, with posts one rod apart, reaching one-third of the distance around the earth. The piling, if stood end to end, would make a flagpole 362 miles high. The cord-wood produced would make a rack 1 yard wide, 1 yard high, and 600 miles long.

The sawmill machinery installed to accomplish such a production comprised 30 mills of 20,000 feet per day capacity, 56 mills of 10,000 feet per day capacity, and 92 smaller mills capable of producing ties and rough timber.

In the base and intermediate sections a large amount of work was necessary in the maintenance of the existing roads and highways, and in the construction of new roads in the vicinity of the various new projects. Experienced road engineers, drawn from civil life and commissioned as officers of the Army, were put in charge of this work, and specialist engineer troops and labor battalions were assigned to them. Quarrying the rock, grading the road, surfacing it, and maintaining it in good condition thereafter—all these duties fell within the province of the engineers.

The light railway and road regiments of engineers attached to the armies at the front, while their duties did not carry them so far or so much into the zone of enemy fire, may be considered as combatant units, since they operated with and in support of combatant troops in the field. To the light railway regiments were assigned the construction, operation, and maintenance of the light railroads of 60-centimeter gauge (about 24-inch gauge). A great quantity of such trackage was used during the war. These narrow-gauge railroads, capable of being operated under extreme conditions of grade and curvature, and powered with light steam and gasoline locomotives, were essential to the proper supply of a stabilized sector. They were the lines of communication between the railheads of the broad-gauge system and the dumps and depots within the front sectors. At the very front, sometimes within a few hundred meters of the German lines, these light railroads were operated by hand or animal traction, while further back the gasoline locomotive, less conspicuous than the steam engine, came well within range of the enemy's light field pieces. In periods of activity and during an advance these railroads did a tremendous service, not only in transporting troops, munitions, materials, and subsistence stores, but in affording a means of bringing up rapidly a certain class of railway artillery adapted for use upon 60-centimeter gauge trucks. Built of light rail and steel ties assembled in portable sections, this track was easily destroyed by shell fire, and such was often its fate, yet it was but short work for the engineers to replace broken sections with new material, a work frequently done under heavy fire. Engineer troops suffered many casualties in this service.

In cooperation with the Engineer Department in the United States, a practical, efficient, and standard type of narrow-gauge motive power and rolling stock was developed by American manufacturers. This material was shipped to France knocked down, and was assembled and set upon the rails at Gondrecourt, where a plant for this purpose had been established. Up to November 30, 1918, there had been built and placed in operation 538 miles of 60-centimeter track, with 347 steam and gasoline locomotives furnishing motive power for the operation of 3,281 cars of different types.

TYPE-PRINTING, BASE PRINTING PLANT, 29TH ENGINEERS, A. E. F.

TYPE-PRINTING, BASE PRINTING PLANT, 29TH ENGINEERS, A. E. F.

TYPE-PRINTING, BASE PRINTING PLANT, 29TH ENGINEERS, A. E. F.

LITHOGRAPHIC PRESSROOM, BASE PRINTING PLANT, 29TH ENGINEERS, A. E. F.

LITHOGRAPHIC PRESSROOM, BASE PRINTING PLANT, 29TH ENGINEERS, A. E. F.

LITHOGRAPHIC PRESSROOM, BASE PRINTING PLANT, 29TH ENGINEERS, A. E. F.

BINDING DEPARTMENT OF THE PRINTING PLANT OF THE SOCIÉTÉ PUBLICATIONS PERIODIQUES.The new pay books were manufactured at this plant and were turned out at the rate of 100,000 a day, using 36 tons of print paper, 16 tons of parchment cover, 15 tons of paper for envelopes, 6 tons of paste, 10,000 rolls of moleskin. Paris, France.

BINDING DEPARTMENT OF THE PRINTING PLANT OF THE SOCIÉTÉ PUBLICATIONS PERIODIQUES.The new pay books were manufactured at this plant and were turned out at the rate of 100,000 a day, using 36 tons of print paper, 16 tons of parchment cover, 15 tons of paper for envelopes, 6 tons of paste, 10,000 rolls of moleskin. Paris, France.

BINDING DEPARTMENT OF THE PRINTING PLANT OF THE SOCIÉTÉ PUBLICATIONS PERIODIQUES.

The new pay books were manufactured at this plant and were turned out at the rate of 100,000 a day, using 36 tons of print paper, 16 tons of parchment cover, 15 tons of paper for envelopes, 6 tons of paste, 10,000 rolls of moleskin. Paris, France.

The new pay books were manufactured at this plant and were turned out at the rate of 100,000 a day, using 36 tons of print paper, 16 tons of parchment cover, 15 tons of paper for envelopes, 6 tons of paste, 10,000 rolls of moleskin. Paris, France.

The road-building regiments in the zone of the armies built and maintained the roads immediately behind the front. Equipped with modern road-building machinery and motor trucks, these regiments maintained the roads in shape to handle the abnormally dense and heavy traffic incidental to operations at the front. The Army road troops were recruited from among men accustomed in civil life to road building, quarrying, and construction operations. They usually worked well within sound of the enemy guns, and frequently under their direct fire. During the advances made from the stabilized line of June, 1918, these regiments improved and perfected the hasty roads thrown across No Man's Land by the sapper regiments of the fighting divisions, so that transport of supplies and troops could be maintained to the advancing armies. To furnish materials for this construction many quarries were opened or taken over from the French road service. A total of 42,000 cubic meters of rock was quarried and prepared for use in quarries operated exclusively by American engineers, while in quarries jointly operated with French forces 75,000 cubic meters were produced.

A vitally important part of the work of Engineer troops was the making and reproduction of the many maps required for the conduct of tactical and strategic operations by the American Expeditionary Forces. A highly specialized regiment was organized to conduct the topographic surveying operations, map reproduction, and printing work in France. Many of the officers of this regiment had been formerly connected with the American Coast and Geodetic Survey and the Geological Survey, and they were well qualified for the work of war-map making. At Chateau Thierry a portion of this organization rapidly mapped to a large scale the new region in which the theater of operations suddenly found itself, thus supplementing the excellent small-scale map which was in existence for the whole of France, but which was not sufficiently precise for the conduct of our artillery fire. This work was done under pressure, but it contributed its share to the later American successes in that locality. These troops also were charged with furnishing to the Artillery the mathematical azimuths and coordinates, on the basis of which artillery indirect fire was executed.

The maps in use even on stabilized fronts were in a constant process of revision and change. The data and information on which these changes and revisions were based were constantly pouring in from the photographic branch of the air service, from the intelligence service, the Artillery, and from the sapper regiments at the front. Consequently new maps had to be prepared continually and furnished to all the organizations and officers concerned with their use. Then, too, an Army as large as ours required an impressive amount of field printing in order to distribute its orders and information.

As soon as our forces reached France it was apparent that the French map-production plant could not take care of our needs. The Chief of Engineers in the United States thereupon ordered the purchase of equipment for a base printing plant large enough to take care of all the map printing for an army of 1,000,000 men.The special machinery ordered in the United States for this plant did not arrive in France during 1917, and so the American Expeditionary Forces purchased abroad five large rotary lithographic presses, several type presses, and a number of linotype machines and other printing equipment.

The base printing plant was established at Langres, France. In the spring of 1918 the American equipment arrived, and thereafter the base printing plant was able to print not only the current maps required but also the base maps which the French had been supplying. In addition, during the heavy fighting in July and August, 1918, our printing plant supplied to the Seventh and Eighth French Armies the base maps of their fronts.

The demands for maps and printing steadily increased until the base printing plant grew to have a working force of 35 officers and 750 men. From July 15 until September 15, 1918, the plant worked continuously 24 hours a day to turn out the work required. By this time the shop had 10 rotary lithographic presses, 4 linotype machines, and several job presses, printing each month an average of over 1,200,000 lithographic impressions and 500,000 sheets of printed matter. In November the plant turned out 1,900,000 lithographic impressions and over 1,000,000 sheets of type work.

To supplement the base printing plant we had at each army headquarters an advanced printing shop to supply maps when they were needed within a few hours. At the base printing plant we had a department for making relief maps, which work had been done for us previously by the French Government.

The equipment for military map making was enriched during this period by an invention of Maj. James N. Bagley, United States Engineers, called the aerial cartograph, or map camera. The Bagley camera's three lenses at the height of 5,000 feet could photograph a strip of territory 3½ miles wide.

The science of building military bridges is an old one. When war with Germany was declared the United States had developed its heavy ponton equipment, which was standard in design and yet which had changed but little since the Civil War. As soon as we formally took the step to send troops against Germany the Engineers ordered great quantities of this equipment and by the latter part of 1917 had plenty of it ready to go overseas. Our deliveries to France, however, were hindered by the shortage in ocean tonnage, particularly after we had begun to use every available ship for the transport of men.

TRUCKS LOADED WITH PILING EN ROUTE TO FRENCH RAILWAY YARDS NEAR BRUYERS, FRANCE.

TRUCKS LOADED WITH PILING EN ROUTE TO FRENCH RAILWAY YARDS NEAR BRUYERS, FRANCE.

TRUCKS LOADED WITH PILING EN ROUTE TO FRENCH RAILWAY YARDS NEAR BRUYERS, FRANCE.

PILE DRIVING FOR FOOTBRIDGE BY ENGINEERS IN FRANCE.

PILE DRIVING FOR FOOTBRIDGE BY ENGINEERS IN FRANCE.

PILE DRIVING FOR FOOTBRIDGE BY ENGINEERS IN FRANCE.

FOOTBRIDGE BUILT BY ENGINEERS ACROSS CANAL DE L'EST NEAR THE VILLAGE OF BRIEULLES, FRANCE.This bridge was constructed under heavy fire from enemy guns.

FOOTBRIDGE BUILT BY ENGINEERS ACROSS CANAL DE L'EST NEAR THE VILLAGE OF BRIEULLES, FRANCE.This bridge was constructed under heavy fire from enemy guns.

FOOTBRIDGE BUILT BY ENGINEERS ACROSS CANAL DE L'EST NEAR THE VILLAGE OF BRIEULLES, FRANCE.

This bridge was constructed under heavy fire from enemy guns.

Meanwhile the efforts of the Engineers were being directed to the development of standard ponton equipment strong enough to carry tanks and the ponderous artillery of the present day. The old ponton bridge was first strengthened to carry loads of 5 tons on each of two axles spaced 10 feet or more apart. The standard prewar equipment would support only 3 tons similarly spaced.

The next step was to develop a bridge that would hold up axle loads of 10 tons with a distance of 12 feet or more between axles, although in actual use this bridge showed itself capable of supporting a load of 15 tons concentrated on one axle. As soon as these developments were made, the plans were mailed to the American Expeditionary Forces, so that the Engineer Corps abroad could provide the beams and metal parts at its own mills and shops in France. When the fighting ceased, the Engineers were designing a raft capable of transporting the heaviest portable ordnance then under manufacture in the United States.

In 1917 the Engineer Department made designs for a standard sectional steel bridge, consisting of short latticed steel truss sections capable of being assembled to form trusses varying by increments of 11 feet up to a maximum span of about 90 feet. Two of these trusses with the span mentioned were capable of supporting a load of 30 tons, and they could be erected in a matter of hours over abutments prepared in advance or extemporized from the ruins of a demolished structure. These bridges had been manufactured in quantity in this country and were ready for shipment when the armistice was signed.

In the Argonne push Army bridge troops repaired and replaced the bridges destroyed by the retreating enemy as fast as material and labor could be provided at the points needed. For this work much heavy timber was utilized, and, in general, trestle structures were erected as best meeting the conditions of relatively soft crossings and soft river bottoms.

The fighting in the French terrain with its numerous narrow but deep streams and canals indicated to us the desirability of a portable floating footbridge. Such a bridge was designed and produced by the Engineers in France. Many of the crossings of the Meuse River and near-by canals under machine-gun and artillery fire from the high hills on the eastern side were made possible by the use of these bridges.

While camouflage has existed in nature since the beginning of time, its application to warfare on a grand, scientific scale was almost solely a development of the great war. Camouflage, due to the great developments of aerial observation and aerophotography, as well as of air bombing and indirect artillery fire, became a vital necessity for every branch of the service, far back in the rear as well as at the front. Any matériel or personnel the position of which was observed was at the mercy of the enemy, but, further, such observation might betray strategic plans. The need for camouflage became universal.

Camouflage organization was carefully developed for both the field and the factory, while one of the most important duties, that of instruction, was carried out in Army and corps schools and artillery camps, where thousands of officers and men were taught both the necessity and the methods of camouflage.

Our undertakings in this direction were based largely upon the methods developed by the French and British. In one respect camouflage was a matter of quantity production. This was in the manufacture of material used for concealing guns, roads, and other strategic locations which fall under the eyes of enemy observers on the ground or in the air.

In this work the British did nothing without the most careful scientific investigation, including the aerial photography of all their materials used, while the French relied more on their innate artistic sense of color and form. The camouflage material produced in quantity by the British consisted principally of burlap cut in strips about 1 inch wide and 12 inches long, colored in the desired hues with oil-emulsion paint. For artillery cover this was knotted in fish nets and chicken wire. The French for this purpose used raffia, a common product of Madagascar, whose natives use it largely for making their fantastic garments. The raffia was dyed and then knotted on nets and wire in the French camouflage factories.

After a careful study we adopted the British system and used burlap. Our Engineers made this decision because of the impossibility of finding permanent dyes for raffia and because raffia is more inflammable than burlap and scarcer and higher in price.

The first demand for camouflage material which we received embraced coverings for guns, sniper's suits, dummy heads, silhouettes, and some airplane hangar covers. In order to supply this material at the outset the engineering forces abroad leased a factory building in Paris and turned out a sufficient quantity with a working force of 30 enlisted soldiers and 100 French women.

But, as the American troops at the front increased in number, the demands for camouflage material became rapidly heavier. Battery positions of some types required about 4,000 square yards of camouflage cover. Aviation hangar covers were demanded in large numbers, and each one was a special order due to the varying conditions of terrain encountered. It became evident that we needed a vast increase in our camouflage-factory space.

In January, 1918, the Engineers secured about 20 acres of ground in Dijon, Haute Marne, a city on the main supply line north through the regulating station at Is-sur-Tille. They started to erect buildings immediately, and within 20 days this plant began turning out material. By November the Dijon factory numbered about 40 buildings, including blacksmith and machine shop, a sewing shop,a paint shop, laboratory, and a toy shop where dummies and silhouettes were made. The factory turned out artillery cover at the rate of 50,000 square yards per day.

The total output of camouflage cover for all purposes required about 3,000,000 square yards of burlap per month. When the fighting stopped the American Expeditionary Forces were using camouflage materials to the value of $1,500,000 monthly.

By new methods of manufacture, we succeeded in reducing the weight of fish-net covers. We designed two important field devices, one being an improved frame and set for mobile artillery protection, this equipment being later adopted by the British, and the other an umbrella machine-gun cover having special advantages. The central camouflage works of the American Expeditionary Forces at Dijon was declared by unprejudiced observers to be the best equipped and most efficient of any on the western front.

When the Dijon camouflage plant was projected it was expected that the American forces would require great quantities of camouflaged observation posts, silhouettes, dummy heads, snipers' suits, and other concealing devices. It was for this production that the toy shop at Dijon was erected, this shop being a kind of studio for the painters and sculptors connected with the Fortieth Engineers, which was the camouflage regiment. These various devices for deceiving the enemy, however, were used principally in the stagnant action of the trench warfare deadlock. By the time American forces came into the war in large numbers the struggle had become one of movement in which the trenches were left far behind. Also, American troops found themselves largely in sectors which were well wooded and therefore provided plenty of secure observation. The result was that there was never a great use on the part of American troops of these clever and interesting exploits in camouflage with which the public is familiar.

One of the best observation posts was the imitation of a tree trunk made of armor plate and set up in advanced positions during the night. Both the British and the French made considerable use of these. The British tree consisted of an oval shell of manganese steel. This was covered with tin, crimped in imitation of bark, and further camouflaged with paint and plaster and natural bark.

When it was desired to set up such a post a camouflage artist would surreptitiously make a faithful sketch of the tree trunk to be duplicated in armor plate. This sketch was then taken back to the workshop, where the spurious tree was built in exact duplication. The metal tree was built to rest on a base with hinges holding it down on one side. During the night two saps, or trenches, would be dug to the natural tree selected. Workers in one of these trenches would fell the branchless stub and carry it back out of the way. The armor plate tree would be drawn up in the other trench. Thebase would be set in place, and then the whole tree was raised on its hinges by means of ropes until it was upright and as life-like as artistry could make it. Inside the tree was a flight of iron steps leading to a seat in the upper part of the trunk. At this seat were peepholes and a stand for the phone which was connected up with the exchange at the adjoining trench. The sap, covered over, served as the gallery leading back to the trench.

The American camouflage force built only a single one of these trees, using it as a training device. Such objects were useless in an advancing movement, since, under such circumstances, they would play an important part only a short while and would then be left far in the rear.

The Dijon factory, however, turned out a number of small observation posts for use at the edges of shell holes. These were known to our troops as beehives and to the English soldiers as domes. Each one was built of light metal and covered with chicken wire and plaster. It was camouflaged with paint and bits of grass to simulate the appearance of the surrounding terrain, often being studded with tin cans or old shoes to make it appear to be an accumulation of rubbish. The favorite way of making the peephole for a beehive was to cover with gauze a hole cut in the bottom of an old shoe, which was then fastened to the observation post.

Another device built by the Dijon factory was the trench periscope. This was built and set up to look like an ordinary stick, thrown down casually upon the ground. For periscopes, too, we also used imitation stakes placed naturally in the barbed-wire entanglements. The British on occasions used imitation trench telephone poles to mask their periscopes.

The Dijon shop turned out large numbers of silhouettes and dummies. They were drawn from life by artists at Dijon and then cut out from ordinary wall board. Soldiers of the Fortieth Regiment posed as models for these silhouettes. All sorts of postures were employed, but nearly all of them represented soldiers in the act of climbing out of a trench or running, gun in hand, towards the enemy. The uniforms were painted in neutral shades, but the faces and hands were highly colored to be visible at considerable distances during the gray and mist of dawn, when silhouettes were usually employed.

The object of these dummy heads and silhouettes was to draw the fire of the enemy so as to make him reveal his strength and positions. The usual method of use was to place a number of silhouettes, possibly several dozen of them, in shell holes out in front of the trenches. The silhouettes were mounted so that they could be made to stand erect instantly whenever the ropes were pulled from the trenches. At the appointed moment the ropes would all be pulled at once, and the appearance to the enemy would be that of a raiding party starting out at top speed.

The British troops called this operation the Chinese attack. The Germans made no extensive employment of it. The silhouettes nearly always fooled the enemy, as indeed they would deceive anybody in such light and under such circumstances. The British were often amused to read in the German communiques that these Chinese attacks were regarded by the enemy as the real thing. More than one such "repulse" of silhouettes has gone down into the German records as a local success. On one occasion the Germans took a Chinese attack so seriously that they concentrated troops against it with the result that the British were able to gain considerable ground at the points weakened on both sides of the pseudo attack.

The Dijon factory made a thousand or so silhouettes, as well as a large number of dummy heads, these latter devices to draw the fire of snipers. These simulacra, however, had their principal use at the training schools in France, since they were peculiarly adapted to trench warfare, and by the time the American forces reached the front in strength the war of movement was in progress.

Several thousand sniper suits were turned out at Dijon. These suits were made of burlap, resembling in appearance the teddy-bear pajamas which little children wear. They were colored to match the terrain, either painted to resemble rocks or fitted with a grasslike covering. An adjunct to this suit was the cloth cover for the sniper's rifle.

Sniper suits were so deceptive that they would protect a man from observation even at short distances, and if exceptional care were used in the making of one, a man could conceal himself so effectually that an observer might step on him before seeing him. An American camouflage officer upon his return from France brought a sniper's suit with him and found a novel but practical use for it when he was invited to go duck hunting with a party of sportsmen. The other hunters stayed in their blinds, but the officer in the sniper suit went out in the open and shot more ducks than all the other gunners together were able to bring down.

The Dijon camouflage factory also turned out a large number of covers for the so-called Bessenaux hangars for airplanes. These hangars were large tents set up at aviation fields near the front. It was soon found to be impracticable to attempt to camouflage such tents by day, as they gave plenty of indication of their position in spite of the best efforts at concealment on the American and allied sides. However, the great danger at aviation fields came at night when the German bombing planes were abroad. Even on a dark night a white tent proved to be a good mark for the hostile airmen. Consequently the attempt was made to camouflage Bessenaux hangars at night only. It was found impracticable to paint the tents themselves, since the waterproof canvas would not take the paint readily. The solution was a large cover of burlap. This was paintedin broken patches of color, much as artillery was painted in camouflage. At the factory such covers were spread out on the ground and painted with floor brushes dipped into water color.

All machinery at Dijon, with the exception of two lathes, two drill presses, and a shearing machine, was designed and built at the plant itself. The work of providing camouflage cover required enormous quantities of burlap to be cut up into strips. The English camouflage shops used stationary knives and a machine operated by a crank. American Engineers at Dijon designed a power-driven cutting machine with a large number of circular, whirling knife blades. The invention of this machine increases the production of burlap strips 900 per cent with the same force. The engineers at the plant also designed paint tanks and special machinery that would mix 4,000 gallons of color in a day.

There were about 1,000 French women employed in this plant. The executives paid great attention to their welfare. A special nursery, the "Creche," was built for their children. American Red Cross nurses cared for the babies during the time their mothers were at work. Many of the women employed were refugees driven from once comfortable homes. Their children fattened up with the good food provided by the army mess, and the mothers were correspondingly happy. Entertainments were frequently provided for the operators of the factories. The artists at the shop worked during their leisure moments and eventually produced the scenery and equipment for a genuine Yankee circus, animals and all, the menagerie, however, being made principally of papier-mâché with human operatives inside the beasts. The first performance of the circus was given on Thanksgiving Day, 1918, and the audience was so delighted that it demanded a repetition. After three encores of this sort it was suggested that performances be given in Dijon, a city of upward of 50,000 population, with admittance charged. This advice was followed, and the circus made such a hit that the Engineers were able to turn over to the French orphan fund a considerable sum of money.

The foregoing account gives in a broad way an idea of the scope of activities and the achievements of the Engineers during the 19 months of actual warfare in France. To furnish the organization of technical troops and specialists which made all this possible, the original Engineer Arm of the United States Army was increased to 131.5 times its prewar strength, and the proportion of Engineer troops relative to the total forces was increased from 1.6 per cent to 10.8 per cent. To accomplish this, a heavy demand was made upon the technical professions and upon the industries of thiscountry. In filling this demand most necessary assistance was given by the engineer societies and the engineering journals, whose patriotic work demands the highest praise.

In situations requiring special knowledge almost always there could be found some specialist capable of adapting himself and his work to the military needs. Engineer officers for the combatant regiments were younger members of the technical professions, who were sent to the training camps provided for the purpose and there given the essentials of strictly military knowledge. This training was later supplemented by courses in Engineer and line schools located in France. The training officers of the regiments were supplied from the Corps of Engineers, these men having both the military and technical knowledge fitting them for the command. The diversity of education and experience necessary in all branches of the Engineer service may be understood by a consideration of the duties of the different units sent to France during the war—specialist units, in addition to the strictly combatant divisional regiments, who also numbered among their commissioned and enlisted personnel many technical specialists of high attainment.

We had, for instance, seven railway construction regiments, two railway construction battalions, one regiment and five battalions for railway maintenance of way, two battalions for maintenance of railway equipment, four regiments and one battalion to operate our main military railways in France, three regiments to operate the light railways in France and their repair shops, two regiments for operating the regular railway shops, two regiments and six battalions for constructing buildings and other general construction work, two regiments for storing and transporting Engineer supplies, a forestry regiment, a light railway construction regiment, a regiment for building roads, a water supply regiment, a mining regiment, a quarrying regiment, a technical regiment for handling surveying, sound ranging, and location of enemy positions by means of special apparatus, three survey and printing battalions, two railway transportation battalions, an electrical and mechanical regiment, several companies to operate cranes, a camouflage service, five inland waterway companies, five ponton trains, a ponton park, a railway transportation and stores battalion, and a searchlight regiment.

Utilizing and applying the new knowledge and scientific achievements of recent years, drawing upon the fund of experience acquired by the Regular Army in its theoretical studies and past wars, making available the vast amount of technical skill which has assisted this Nation to its present commercial and industrial status, the Engineers of the United States Army worked and fought, planned, and accomplished in France a work which in magnitude exceeds any similarundertaking recorded in American history. From base port to first waves of an assault upon the enemy's position, Engineer troops have been constantly in action first to last and have "carried on" always with the high ideals of the profession and with the motto of the Corps of Engineers, "Essayons," before them.


Back to IndexNext