Riemann.

60.The aim of Riemann's dissertation, as we saw in ChapterI., was to define space as a species of manifold,i.e.as a particular kind of collection of magnitudes. It was thus assumed, to begin with, that spatial figures could be regarded as magnitudes, and the axioms which emerged, accordingly, determined only the particular place of these among the many algebraically possible varieties of magnitudes. The resulting formulation of the axioms—while, from the mathematical standpoint of metrical Geometry, it was almost wholly laudable—must, from the standpoint of philosophy, be regarded, in my opinion, as apetitio principii. For when we have arrived at regarding spatial figures as magnitudes, we have already traversed the most difficult part of the ground. The axioms of metrical Geometry—and it is metrical Geometry, exclusively, which is considered in Riemann's Essay—will appear, in ChapterIII., to be divisible into two classes. Of these, the first class—which contains the axioms common to Euclid and Metageometry, the only axioms seriously discussed by Riemann—are not the results of measurement, nor of any conception of magnitude, but are conditions to be fulfilled before measurement becomes possible. The second class only—those which express the difference between Euclidean and non-Euclideanspaces—can be deduced as results of measurement or of conceptions of magnitude. As regards the first class, on the contrary, we shall see that the relativity of position—by which space is distinguished from all other known manifolds, except time—leads logically to the necessity of three of the most distinctive axioms of Geometry, and yet this relativity cannot be called a deduction from conceptions of magnitude. In analytical Geometry, owing to the fact that coordinate systems start from points, and hence build up lines and surfaces, it is easy to suppose that points can be given independently of lines and of each other, and thus the relativity of position is lost sight of. The error thus suggested by mathematics was probably reinforced by Herbart's theory of space, which, by its serial character, as we have seen, appeared to him to facilitate a construction out of successive points, and to which Riemann acknowledges his indebtedness both in his Dissertation and elsewhere. The same error reappears in Helmholtz, in whom it is probably due wholly to the methods of analytical Geometry. It is a striking fact that, throughout the writings of these two men, there is not, so far as I know, one allusion to the relativity of position, that property of space from which, as our next chapter will shew, the richest quarry of consequences can be extracted. This is not a result of any conception of magnitude, but follows from the nature of our space-intuition; yet no one, surely, could call it empirical, since it is bound up in the very possibility of locating thingsthereas opposed tohere.

61.Indeed we can see, from a purely logical consideration of the judgment of quantity, that Riemann's manner of approaching the problem can never, by legitimate methods, attain to a philosophically sound formulation of the axioms. For quantity is a result of comparison of two qualitatively similar objects, and the judgment of quantity neglects altogether the qualitative aspect of the objects compared. Hence a knowledge of the essential properties of space can never be obtained from judgments of quantity, which neglect these properties, while they yet presuppose them. As well might one hope to learn the nature of man from a census. Moreover, the judgment of quantity is the result of comparison, and therefore presupposesthe possibility of comparison. To know whether, or by what means, comparison is possible, we must know the qualities of the things compared and of the medium in which comparison is effected; while to know thatquantitativecomparison is possible, we must know that there is a qualitative identity between the things compared, which again involves a previous qualitative knowledge. When spatial figures have once been reduced to quantity, their quality has already been neglected, as known and similar to the quality of other figures. To hope, therefore, for the qualities of space, from a comparison of its expression as pure quantity with other pure quantities, is an error natural to an analytical geometer, but an error, none the less, from which there is no return to the qualitative basis of spatial quantity.

62.We must entirely dissent, therefore, from the disjunction which underlies Riemann's philosophy of space. Either the axioms must be consequences of general conceptions of magnitude, he thinks, or else they can only be proved by experience (p. 255). Whatevercanbe derived from general conceptions of magnitude, we may retort, cannot be anà prioriadjective of space: for all the necessary adjectives of space are presupposed in any judgment of spatial quantity, and cannot, therefore, be consequences of such a judgment. Riemann's disjunction, accordingly, since one of its alternatives is obviously impossible, really begs the question. In formulating the axioms of metrical Geometry, our question should be: What axioms,i.e.what adjectives of space, must be presupposed, in order that quantitative comparison of the parts of space may be possible at all? And only when we have determined these conditions, which areà priorinecessary to any quantitative science of space, does the second question arise: what inferences can we draw, as to space, from the observed results of this quantitative science,i.e.of this measurement of spatial figures? The conditions of measurement themselves, though not results of any conception of magnitude, will beà priori, if it can be shown that, without them, experience of externality would be impossible.

After this initial protest against Riemann's general philosophical position, let us proceed to examine, in detail, his use of the notion of a manifold.

63.In the first place there is, if I am not mistaken, considerable obscurity in the definition of a manifold, of which an almost verbal rendering was given in ChapterI.What is meant, to begin with, by a general conception capable of various determinations? Does not this property belong to all conceptions? It affords, certainly, a basis for counting, but if continuous quantity is to arise, we must, surely, have some less discrete formulation. It might afford a basis, for example, for the distinction of points in projective Geometry, but projective Geometry has nothing to do with quantity. Something more fluid and flexible than a conception, one would think, is necessary as the basis of continua. Then, again, what is meant by a quantum of a manifold? In space, the answer is obvious: what is meant is a piece of volume. But how about Riemann's other continuous manifold, colour? Does a quantum of colour mean a single line in the spectrum, or a band of finite thickness? In either case, what are the magnitudes to be compared? And how is superposition necessary, or even possible? A colour is fixed by its position in the spectrum: two lines in the same spectrum cannot be superposed, and two lines in different spectra need not be—their positions in their respective spectra suffice, or even, roughly, their immediate sense-quality. The fact is, Riemann had space in his mind from the start, and many of the properties, which he enunciates as belonging to all manifolds, belong, as a matter of fact, only to space. It is far from clear what the magnitudes are which the various determinations make possible. Do these magnitudes measure the elements of the manifold, or the relations between elements? This is surely a very fundamental point, but it is one which Riemann never touches on. In the former case, the superposition which he speaks of becomes unnecessary, since the magnitude is inherent in the element considered. We do not require superposition to measure quantities corresponding to different tones or colours; these can be discovered by analysis of single tones or colours. With space, on the other hand, if we seek for elements, we can find none except points, and no analysis of a point will find magnitudes inherent in it—such magnitudes are a fiction of coordinate Geometry. The magnitudes which space deals with, as we shall see in ChapterIII.,are relations between points, and it is for this reason that superposition is essential to space-measurement. There is no inherent quality in a single point, as there is in a single colour, by which it can be quantitatively distinguished from another. Thus the conception of a manifold, as defined by Riemann, either does not include colours, or does not involve superposition as the only means of measurement. From this dilemma there is no escape.

64.But if "measurementconsistsin a superposition of the magnitudes compared" (p. 256), does it not follow immediately that measurement is logically possibleonlywhere such superposition leaves the magnitudes unchanged? And therefore that measurement, as above defined, involves, as anà prioricondition, that magnitudes are unchanged by motion? This consequence is not drawn by Riemann; indeed he proceeds immediately (pp. 256–7) to consider what he calls a general portion of the doctrine of magnitude (Grössenlehre), independent of measurement. But how is any doctrine of magnitude possible, in which the magnitudes cannot be measured? The reason of the confusion is, that Riemann's definition of measurement is applicable to no single manifold except space, since it depends on the noteworthy property that what we measure in Geometry is not points, but relations between points, and the latter, though not the former, may of course be unaltered by motion. Let us try, in illustration, to apply Riemann's definition of measurement to colours. We must remember that motion, in dealing with the colour manifold, means—not motion in space but—motion in the colour manifold itself. Now since every point of the colour manifold is completely determined by three magnitudes, which are given in fact, and cannot be arbitrarily chosen, it is plain that measurement by superposition—involving, as it does, motion, and therefore change in these determining magnitudes—is totally out of the question. The superposition of one colour on another, as a means of measurement, is sheer nonsense. And yet measurement is possible in the colour-manifold, by means of Helmholtz's law of mixture (Mischungsgesetz); but the measurement is of every separate element, not of the relations between elements, and is thus radically different from space-measurement[81]. The elements are not, like points in space, qualitativelyalike, and distinguished by the mere fact of their mutual externality. What we have, in colours, is three fundamental qualitatively distinct elements, out of certain proportions of which we can build up all the other elements of the manifold—each of the resulting elements having the same combination of qualitative diversity and similarity as the three original elements. But in space, what could we make of such a procedure? Given three points, how are we to combine them in certain proportions? The phrase is meaningless. If some one makes the obvious retort, that we have to combine lines, not points, my rejoinder is equally obvious. To begin with, lines are not elements. Metaphysically, space hasnoelements, being, as the sequel will show, mere relations between non-spatial elements. Mathematically, this fact exhibits itself in the self-contradictory notion of the point, or zero magnitude in space, as the limit in our vain search for spatial elements. But even if we allow the line to pass as the spatial element, what does the combination of three lines in definite proportions give us? It gives us, simply, the coordinates of apoint. Here again we see a great difference between the colour and space-manifolds. In colours, the combination of magnitudes gives a new magnitude of the same kind; in space, it defines, not a magnitude at all, but a would-be element of a different kind from the defining magnitudes. In the tone-manifold, we should find still different conditions. Here, no one of the measuring magnitudes can vanish without the tone vanishing too, and all three are so bound up together, in the single resulting sensation, that none can exist without a finite quantity of the others. They are all qualitatively different, both from each other, and from any possible tone, being constituents of it, as mass and velocity are constituents of momentum. All these different conditions require to be examined, before a manifold can be completely defined; and until we have conducted such an examination in detail, we cannot pronounce as to theà priorior empirical nature of the laws of the manifold. As regards space, I have attempted such an examination in the third and fourth chapters of this Essay.

65.I do not wish to deny, however, the great value of the conception of space as a manifold. On the contrary, this conception seems to have become essential to any treatment of the question. I only wish to urge that the purely algebraical treatment of any manifold, important as it may be in deducing fresh consequences from known premisses, tends rather to conceal than to make clear the basis of the premisses themselves, and is therefore misleading in a philosophical investigation. For mathematics, where quantity reigns supreme, Riemann's conception has proved itself abundantly fruitful; for philosophy, on the contrary, where quantity appears rather as a cloak to conceal the qualities it abstracts from, the conception seems to me more productive of error and confusion than of sound doctrine.

We are thus brought back to the point from which we started, namely, the falsity of Riemann's initial disjunction, and the consequent fallacy in his proof of the empirical nature of the axioms. His philosophy is chiefly vitiated, to my mind, by this fallacy, and by the uncritical assumption that a metrical coordinate system can be set up independently of any axioms as to space-measurement[82]. Riemann has failed to observe, what I have endeavoured to prove in the next chapter, that, unless space had a strictly constant measure of curvature, Geometry would become impossible; also that the absence of constant measure of curvature involves absolute position, which is an absurdity. Hence he is led to the conclusion that all geometrical axioms are empirical, and may not hold in the infinitesimal, where observation is impossible. Thus he says (p. 267): "Now the empirical conceptions, on which spatial measurements are based, the conceptions of the rigid body and the light-ray, appear to lose their validity in the infinitesimal: it is therefore quite conceivable that the relations of spatial magnitudes in the infinitesimal do not correspond to the presuppositions of Geometry, and this would, in fact, have to be assumed, as soon as it would enable us to explain the phenomena more simply." From this conclusion I must entirely dissent. In very large spaces, there might be a departure from Euclid; for they depend upon the axiom ofparallels, which is not contained in the axiom of Free Mobility; but in the infinitesimal, departures from Euclid could only be due to the absence of Free Mobility, which, as I hope my third chapter will show, is once for all impossible.


Back to IndexNext