A TYPICAL METAL MULTIPLE-WICK OPEN-FLAME OIL-LAMPA TYPICAL METAL MULTIPLE-WICK OPEN-FLAME OIL-LAMP
A TYPICAL METAL MULTIPLE-WICK OPEN-FLAME OIL-LAMP
Very beautiful oil-lamps of brass, bronze, and pewter evolved in such countries as Egypt. Many of these were designed for and used in religious ceremonies. The oil-lamps of China, Scotland, and other countries in later centuries were improved by the addition of apan beneath the oil-receptacle, to catch drippings from the wick or oil which might run over during the filling. The Chinese lamps were sometimes made of bamboo, but the Scottish lamps were made of metal. A flat metal lamp, called a crusie, was one of the chief products of blacksmiths and was common in Scotland until the middle of the nineteenth century. This type of lamp was used by many nations and has been found in the catacombs of Rome. The crusie was usually suspended by an iron hook and the flow of oil to the wick could be regulated by tilting. The wick in the Scottish lamps consisted of the pith of rushes, cloth, or twisted threads. These early oil-lamps were almost always shallow vessels into which a short wick was dipped, and it was not until the latter part of the eighteenth century that other forms came into general use. The change in form was due chiefly to the introduction of scientific knowledge when mineral oil was introduced. As early as 1781 the burning of naptha obtained by distilling coal at low temperatures was first discussed, but no general applications were made until a later period. This was the beginning of many marked improvements in oil-lamps, and was in reality the birth of the modern science of light-production.
A GROUP OF OIL-LAMPS OF TWO CENTURIES AGOA GROUP OF OIL-LAMPS OF TWO CENTURIES AGO
A GROUP OF OIL-LAMPS OF TWO CENTURIES AGO
As the activities of man became more complex he met from his growing store of knowledge the increasing requirements of lighting. In consequence, many ingenious devices for lighting were evolved. For example, in England in the seventeenth century man was already burrowing into the earth for coal and of course encountered coal-gases. These inflammable gases were first known for the direful effects which they so oftenproduced rather than for their useful qualities. Although they were known to miners long before they received scientific attention, the earliest account of them in the Transactions of the Royal Society was presented in the year 1667. A description of early gas-lighting has been reserved for a later chapter, but the foregoing is noted at this point to introduce a novel early method of lighting in coal-mines where inflammable gases were encountered. In discussing this coal-gas another early writer stated that "it will not take fire except by flame" and that "sparks do not affect it." One of the early solutions of the problem of artificial lighting under such conditions is summarized as follows:
Before the invention of Sir Humphrey Davy's Safety Lamp, this property of the gas gave rise to a variety of contrivances for affording the miners sufficient light to pursue their operations; and one of the most useful of these inventions was a mill for producing light by sparks elicited by the collision of flint and steel.
Before the invention of Sir Humphrey Davy's Safety Lamp, this property of the gas gave rise to a variety of contrivances for affording the miners sufficient light to pursue their operations; and one of the most useful of these inventions was a mill for producing light by sparks elicited by the collision of flint and steel.
Such a stream of sparks may appear a very crude and unsatisfactory solution as judged by present standards, but it was at least an ingenious application of the facilities available at that time. Various other devices were resorted to in the coal-mines before the introduction of a safety lamp.
In discussing the candle it is necessary again to go back to an early period, for it slowly evolved in the course of many centuries. It is the natural descendant of the rushlight, the grease-lamp, and various primitive devices. Until the advent of the more scientificage of artificial lighting, the candle stood preëminent among early light-sources. It did not emit appreciable smoke or odor and it was conveniently portable and less fragile than the oil-lamp. Candles have been used throughout the Christian era and some authorities are inclined to attribute their origin to the Phœnicians. It is known that the Romans used them, especially the wax-candles, in religious ceremonies. The Phœnicians introduced them into Byzantium, but they disappeared under the Turkish rule and did not come into use again until the twelfth century.
The wax-candle was very much more expensive than the tallow-candle until the fifteenth century, when its relative cost was somewhat reduced, bringing it within the means of a greater proportion of the people. Nevertheless it has long been used, chiefly by the wealthy; the departing guest of the early Victorian inn would be likely to find an item on his bill such as this: "For a gentleman who called himself a gentleman, wax-lights, 5/." Poor men used tallow dips or went to bed in the dark. It is interesting to note the importance of the candle in the household budget of early times in various sayings. For example, "The game is not worth the candle," implies that the cost of candle-light was not ignored. In these days little attention is given to the cost of artificial light under similar conditions. If a person "burns a candle at both ends" he is wasteful and oblivious to the consequences of extravagance whether in material goods or in human energy.
With the rise of the Christian church, candles came to be used in religious ceremonies and many of thesymbolisms, meanings, and customs survive to the present time. Some of the finest art of past centuries is found in the old candlesticks. Many of these antiques, which ofttimes were gifts to the church, have been preserved to posterity by the church. The influence of these lighting accessories is often noted in modern lighting-fixtures, but unfortunately early art often suffers from adaptation to the requirements of modern light-sources, or the eyesight suffers from a senseless devotion to art which results in the use of modern light-sources, unshaded and glaring, in places where it was unnecessary to shade the feeble candle.
The oldest materials employed for making candles are beeswax and tallow. The beeswax was bleached before use. The tallow was melted and strained and then cotton or flax fibers were dipped into it repeatedly, until the desired thickness was obtained. In early centuries the pith of rushes was used for wicks. Tallow is now used only as a source of stearine. Spermaceti, a fatty substance obtained from the sperm-whale, was introduced into candle-making in about 1750 and great numbers of men searched the sea to fill the growing demands. Paraffin wax, a mixture of solid hydrocarbons obtained from petroleum, came into use in 1854 and stearine is now used with it. The latter increases the rigidity and decreases the brittleness of the candle. Some of the modern candles are made of a mixture of stearine and the hard fat extracted from cocoanut-oil. Modern candles vary in composition, but all are the product of much experience and of the application of scientific knowledge. The wicks are now made chiefly of cotton yarn, braided or plaited bymachinery and chemically treated to aid in complete combustion when the candle is burned. Their structure is the result of long experience and they are now made so that they bend and dip into the molten fuel and are wholly consumed. This eliminates the necessity of trimming.
Candles have been made in various ways, including dipping, pouring, drawing, and molding. Wax-candles are made by pouring, because wax cannot be molded satisfactorily. Drawing is somewhat similar to dipping, except that the process is more or less continuous and is carried out by machinery. Molding, as the term implies, involves the use of molds, of the size and shape desired.
The candlestick evolved from the most primitive wooden objects to elaborately designed and decorated works of art. The primitive candlestick was crude and was no more than a holder of some kind for keeping the candle upright. Later a form of cup was attached to the stem of the holder, to catch the dripping wax or fat. The latter improvement has persisted throughout the centuries. The modern candle is by no means an unsatisfactory light-source. Those who have had experience with it in the outskirts of civilization will testify that it possesses several desirable characteristics. Supplies of candles are transported without difficulty; the lighted candle is easily carried about; and the light in a quiescent atmosphere is quite satisfactory, if common sense is used in shading and placing the candle. Although in a sense a primitive light-source, it is a blessing in many cases and, incidentally, it is extensively used to-day in industries, in religiousceremonies, as a decorative element at banquets, and in the outposts of civilization.
This account of the evolution of light-sources has crossed the threshold of what may be termed modern scientific light-production in the case of the candle and the oil-lamp. There is a period of a century or more during which scientific progress was slow, but those years paved the way for the extraordinary developments of the last few decades.
Inasmuch as the symbolisms and ceremonial uses of light originated in the childhood of the human race and were nourished throughout the age of mythology, the early light-sources are associated more with this phase of artificial light than modern ones. For this reason it appears appropriate to present this discussion before entering into the later stages of the development and utilization of artificial light. Furthermore, many of the traditions of lighting at the present time are survivors of the early ages. Lighting-fixtures show the influence of this byway of lighting, and in those cases where the ceremonial use of light has survived to the present time, modern light-sources cannot be employed wisely in replacing more primitive ones without consideration of the origin and existence of the customs. In fact, candles are likely to be used for hundreds of years to come, owing to the sentiment connected with them and to the established customs founded upon centuries of traditional use.
Doubtless, the sun as a source of heat and light and of the blessings which these bring to earth, is responsible largely for the divine significance bestowed upon light. Darkness very deservingly acquired many uncomplimentary attributes, for danger lurked behind its veil and it was the suitable abode of evil spirits. Itharbored all that was the antithesis of goodness, happiness, and security. Light naturally became sacred, life-giving, and symbolic of divine presence. Fire was to primitive beings the most impressive phenomenon over which they had any control, and it was sufficiently mysterious in its operation to warrant a connection with the supernatural. Thus it was very natural that these earlier beings worshiped it as representing divine presence. The sun, as Ra, was one of the chief gods of the ancient Egyptians; and the Assyrians, the Babylonians, the ancient Greeks, and many other early peoples gave a high place to this deity. Among simpler races the sun was often the sole object of worship, and those peoples who worship Light as the god of all, in a sense are not far afield. Fire-worshipers generally considered fire as the purest representation of heavenly fire, the origin of everything that lives.
Light was considered such a blessing that lamps were buried with the dead in order that spirits should be able to have it in the next world. This custom has prevailed widely but the fact that the lamps were unlighted indicates that only the material aspect was considered. It is interesting to note that the lamps and other light-sources in pagan temples and religious processions were not symbolical but were offerings to the gods. In later centuries a deeper symbolical meaning became attached to light and burning lamps were placed upon the tombs of important personages. The burying of lamps with the dead appears to have originated in Asia. The Phœnicians and Romans apparently continued the custom, but no traces of it have been found in Greece and Egypt.
Fire and light have been closely associated in various religious creeds and their ceremonies. The Hindu festival in honor of the goddess of prosperity is attended by the burning of many lamps in the temples and homes. The Jewish synagogues have their eternal lamps and in their rituals fire and light have played prominent rôles. The devout Brahman maintains a fire on the hearth and worships it as omniscient and divine. He expects a brand from this to be used to light his funeral pyre, whose fire and light will make his spirit fit to enter his heavenly abode. He keeps a fire burning on the altar, worships Agni, the god of fire, and makes fire sacrifices on various occasions such as betrothals and marriages. To the Mohammedans lighted lamps symbolize holy places, and the Kaaba at Mecca, which contains a black stone supposed to have been brought from heaven, is illuminated by thousands of lamps. Many of the uses to which light was put in ancient times indicate its rarity and sacred nature. Doubtless, the increasing use of artificial light at festivals and celebrations of the present time is partly the result of lingering customs of bygone centuries and partly due to a recognition of an innate appeal or attribute of light. Certainly nothing is more generally appropriate in representing joy and prosperity.
Throughout all countries ancient races had woven natural light and fire into their rites and customs, so it became a natural step to utilize artificial light and fire in the same manner. It would be tedious and monotonous to survey the vast field of ancient worship of light, for the underlying ideas are generally similar. The mythology of the Greeks is illustrative of the importance attached to fire and light by the cultivated peoples of ancient times. The myth of Prometheus emphasizes the fact that in those remote periods fire and light were regarded as of prime importance. According to this myth, fire and light were contained in heaven and great cunning and daring were necessary in order to obtain it. Prometheus stole this heavenly fire, for which act he was chained to the mountain and made to suffer. The Greeks mark this event as the beginning of human civilization. All arts are traced to Prometheus, and all earthly woe likewise. As past history is surveyed it appears natural to think of scientific men who have become martyrs to the quest of hidden secrets. They have made great sacrifices for the future benefit of civilization and not a few of them have endured persecution even in recent times. The Greeks recognized that a new era began with the acquisition of artificial light. Its divine nature was recognized and it became a phenomenon for worship and a means for representing divine presence. The origin of fire and light made them holy. The fire on the altar took its place in religious rites and there evolved many ceremonial uses of lamps, candles, and fire.
The Greeks and Romans burned sacred lamps in the temples and utilized light and fire in many ceremonies. The torch-race, in which young men ran with lighted torches, the winner being the one who reached the goal first with his torch still alight, originated in a Grecian ceremony of lighting the sacred fire. There are many references in ancient Roman and Grecian literature to sacred lamps burning day and night in sanctuaries and before statues of gods and heroes. On birthdays and festivals the houses of the Romans were specially ornamented with burning lamps. The Vestal Virgins in Rome maintained the sacred fire which had been brought by fugitives from Troy. In ancient Rome when the fire in the Temple of Vesta became extinguished, it was rekindled by the rubbing of a piece of wood upon another until fire was obtained. This was carried into the temple by the Vestal Virgin and the sacred fire was rekindled. The fire produced in this manner, for some reason, was considered holy.
The early peoples displayed many lamps on feast-days and an example of extravagance in this respect is an occasion when King Constantine commanded that the entire city of Constantinople be illuminated by wax-candles on Christmas Eve. Candelabra, of the form of the branching tree, were commonly in use in the Roman temples.
The ceremonial use of light in the Christian church evolved both from adaptations of pagan customs and of the natural symbolisms of fire and light. However, these acquired a deeper meaning in Christianity than in early times because they were primarily visible representations or manifestations of the divine presence. The Bible contains many references to the importance and symbolisms of light and fire. According to the First Book of Moses, the achievement of the Creator immediately following the creation of "the heavens and the earth" was the creation of light. The word "light" is the forty-sixth word in Genesis. Christ is "the true light" and Christians are "children of light" in war against the evil "powers of darkness." WhenSt. Paul was converted "there shined about him a great light from heaven." The impressiveness and symbolism of fire and light are testified to in many biblical expressions. Christ stands "in the midst of seven candle-sticks" with "his eyes as a flame of fire." When the Holy Ghost appeared before the apostles "there appeared unto them cloven tongues of fire." When St. Paul was preaching the gospel of Christ at Alexandria "there were many lights" suggesting a festive illumination.
According to the Bible, the perpetual fire which came originally from heaven was to be kept burning on the altar. It was holy and those whose duty it was to keep it burning were guilty of a grave offense if they allowed it to be extinguished. If human hands were permitted to kindle it, punishment was meted out. The two sons of Aaron who "offered strange fire before the Lord" were devoured by "fire from the Lord." The seven-branched candlestick was lighted eternally and these burning light-sources were necessary accompaniments of worship.
The countless ceremonial uses of fire and light which had evolved in the past centuries were bound to influence the rites and customs of the Christian church. The festive illumination of pagan temples in honor of gods was carried over into the Christian era. The Christmas tree of to-day is incomplete without its many lights. Its illumination is a homage of light to the source of light. The celebration of Easter in the Church of the Holy Sepulchre in Jerusalem is a typical example of fire-worship retained from ancient times. At the climax of the services comes the descent of theHoly Fire. The central candelabra suddenly becomes ablaze and the worshipers, each of whom carries a wax taper, light their candles therefrom and rush through the streets. The fire is considered to be of divine origin and is a symbol of resurrection. The custom is similar in meaning to the light which in older times was maintained before gods.
During the first two or three centuries of the Christian era the ceremonial use of light does not appear to have been very extensive. Writings of the period contain statements which appear to ridicule this use to some extent. For example, one writer of the second century states that "On days of rejoicing ... we do not encroach upon daylight with lamps." Another, in the fourth century, refers with sarcasm to the "heathen practice" in this manner: "They kindle lights as though to one who is in darkness. Can he be thought sane who offers the light of lamps and candles to the Author and Giver of all light?"
That candles were lighted in cemeteries is evidenced by an edict which forbade their use during the day. Lamps of the early centuries of the Christian era have been found in the catacombs of Rome which are thought to have been ceremonial lamps, for they were not buried with the dead. They were found only in niches in the walls. During these same centuries elaborate candelabra containing hundreds of candles were kept burning before the tombs of saints. Notwithstanding the doubt that exists as to the extent of ceremonial lighting in the early centuries of the Christian era, it is certain that by the beginning of the fifth century the ceremonial use of light in the Christian church hadbecome very extensive and firmly established. That this is true and that there were still some objections is indicated by many controversies. Some thought that lamps before tombs were ensigns of idolatry and others felt that no harm was done if religious people thus tried to honor martyrs and saints. Some early writings convey the idea that the ritualistic use of lights in the church arose from the retention of lights necessary at nocturnal services after the hours of worship had been changed to daytime.
Passing beyond the early controversial period, the ceremonial use of light is everywhere in evidence at ordinary church services. On special occasions such as funerals, baptisms, and marriages, elaborate altar-lighting was customary. The gorgeous candelabra and the eternal lamp are noted in many writings. Early in the fifth century the pope ordered that candles be blessed and provided rituals for this ceremony. Shortly after this the Feast of Purification of the Virgin was inaugurated and it became known as Candlemas because on this day the candles for the entire year were blessed. However, it appears that the blessing of candles was not carried out in all churches. Altar lights were not generally used until the thirteenth century. They were originally the seven candles carried by church officials and placed near the altar.
The custom of placing lighted lamps before the tombs of martyrs was gradually extended to the placing of such lamps before various objects of a sacred or divine relation. Finally certain light-sources themselves became objects of worship and were surrounded by other lamps, and the symbolisms of light grew apace.A bishop in the sixth century heralded the triple offering to God represented by the burning wax-candle. He pointed out that the rush-wick developed from pure water; that the wax was the product of virgin bees; and that the flame was sent from heaven. Each of these, he was certain, was an offering acceptable to God. Wax-candles became associated chiefly with religious ceremonies. The wax later became symbolic of the Blessed Virgin and of the body of Christ. The wick was symbolical of Christ's soul, the flame represented his divine character, and the burning candle thus became symbolical of his death. The lamp, lantern, and taper are frequently symbols of piety, heavenly wisdom, or spiritual light. Fire and flames are emblems of zeal and fervor or of the sufferings of martyrdom and the flaming heart symbolizes fervent piety and spiritual or divine love.
By the time the Middle Ages were reached the ceremonial uses of light became very complex, but for the Roman Catholic Church they may be divided into three general groups: (1) They were symbolical of God's presence or of the effect of his presence; of Christ or of "the children of light"; or of joy and content at festivals. (2) They may be offered in fulfillment of a religious vow; that is, as an act of worship. (3) They may possess certain divine power because of their being blessed by the church, and therefore may be helpful to soul and body. The three conceptions are indicated in the prayers offered at the blessing of the candles on Candlemas as follows: (1) "O holy Lord ... who ... by thy command didst cause this liquid to come by the labor of bees to the perfection of wax, ...we beseech thee ... to bless and sanctify these candles for the use of men, and the health of bodies and souls...." (2) "...these candles, which we thy servants desire to carry lighted to magnify thy name; that by offering them to thee, being worthily inflamed with the holy fire of thy most sweet charity, we may deserve...." (3) "O Lord Jesus Christ, the true light, ... mercifully grant, that as these lights enkindled with visible fire dispel nocturnal darkness, so our hearts illuminated by visible fire," etc.
In general, the ceremonial uses of lights in this church were originated as a forceful representation of Christ and of salvation. On the eve of Easter a new fire, emblematic of the arisen Christ, is kindled, and all candles throughout the year are lighted from this. During the service of Holy Week thirteen lighted candles are placed before the altar and as the penitential songs are sung they are extinguished one by one. When but one remains burning it is carried behind the altar, thus symbolizing the last days of Christ on earth. It is said that this ceremony has been traced to the eighth century. On Easter Eve, after the new fire is lighted and blessed, certain ceremonies of light symbolize the resurrection of Christ. From this new fire three candles are lighted and from these the Paschal Candle. The origin of the latter is uncertain, but it symbolizes a victorious Christ. From it all the ceremonial lights of the church are lighted and they thereby are emblematic of the presence of the light of Christ.
Many interesting ceremonial uses may be traced out, but space permits a glimpse of only a few. At baptismal services the paschal candle is dipped into thewater so that the latter will be effective as a regenerative element. The baptized child is reborn as a child of light. Lighted candles are placed in the hands of the baptized persons or of their god-parents. Those about to take vows carry lights before the church official and the same idea is attached to the custom of carrying or of holding lights on other occasions such as weddings and first communion. Lights are placed around the bodies of the dead and are carried at the funeral. They not only protect the dead from the powers of darkness but they symbolize the dead as still living in the light of Christ. The use of lighted candles around bodies of the dead still survives to some extent among Protestants, but their significance has been lost sight of. Even in the eighteenth century funerals in England were accompanied by lighted tapers, but the carrying of lights in other processions appears to have ceased with the Reformation. In some parts of Scotland it is still the custom to place two lighted candles on a table beside a corpse on the day of the funeral.
With the importance of light in the ritual of the church it is not surprising that the extinction of lights is a part of the ceremony of excommunication. Such a ceremony is described in an early writing thus: "Twelve priests should stand about the bishop, holding in their hands lighted torches, which at the conclusion of the anathema or excommunication they should cast down and trample under foot." When the excommunicant is reinstated, a lighted candle is placed in his hands as a symbol of reconciliation. These and manyother ceremonial uses of light have been and are practised, but they are not always mandatory. Furthermore, the customs have varied from time to time, but the few which have been touched upon illustrate the impressive part that light has played in religious services.
During the Reformation the ceremonial use of lights was greatly altered and was abolished in the Protestant churches as a relic of superstition and papal authority. In the Lutheran churches ceremonial lights were largely retained, in the Church of England they have been subjected to many changes largely through the edicts of the rulers. In the latter church many controversies were waged over ceremonial lights and their use has been among the indictments of a number of officials of the church in impeachment cases before the House of Commons. Many uses of light in religious ceremonies were revived in cathedrals after the Restoration and they became wide-spread in England in the nineteenth century. As late as 1889 the Archbishop of Canterbury ruled that certain ceremonial candles were lawful according to the Prayer-Book of Edward VI, but the whole question was left open and unsettled.
These byways of artificial light are complex and fascinating because their study leads into many channels and far into the obscurity of the childhood of the human race. A glimpse of them is important in a survey of the influence of artificial light upon the progress of civilization because in these usages the innate and acquired impressiveness of light is encountered. Although many ceremonial uses of light remain, it is doubtful if their significance and especially their origin are appreciated by most persons. Nevertheless, no more interesting phase of artificial light is encountered than this, which reaches to the foundation of civilization.
It will be noted that the light-sources throughout the early ages were flames, the result of burning material. This principle of light-production has persisted until the present time, but in the latter part of the nineteenth century certain departures revolutionized artificial lighting. However, it is not the intention to enter the modern period in this chapter except in following the progress of the oil-lamp through its period of scientific development. The oil-lamp and the candle were the mainstays of artificial lighting throughout many centuries. The fats and waxes which these light-sources burned were many but in the later centuries they were chiefly tallow, sperm-oil, spermaceti, lard-oil, olive-oil, colza-oil, bees-wax and vegetable waxes. Those fuels which are not liquid are melted to liquid form by the heat of the flame before they are actually consumed. The candle is of the latter type and despite its present lowly place and its primitive character, it is really an ingenious device. Its fuel remains conveniently solid so that it is readily shipped and stored; there is nothing to spill or to break beyond easy repair; but when it is lighted the heat of its flame melts the solid fuel and thus it becomes an "oil-lamp." Animal and vegetable oils were mainly used until the middle of the nineteenth century, when petroleum was produced in sufficient quantities to introduce mineral oils. This marked the beginning of an era of developments in oil-lamps, but these were generally the natural offspring of early developments by Ami Argand.
Before man discovered that nature had stored a tremendous supply of mineral oil in the earth he was obliged to hunt broadcast for fats and waxes to supply him with artificial light. He also was obliged to endure unpleasant odors from the crude fuels and in early experiments with fats and waxes the odor was carefully noted as an important factor. Tallow was a by-product of the kitchen or of the butcher. Stearine, a constituent of tallow, is a compound of glyceryl and stearic acid. It is obtained by breaking up chemically the glycerides of animal fats and separating the fatty acids from glycerin. Fats are glycerides; that is, combinations of oleic, palmetic, and stearic acids. Inasmuch as the former is liquid at ordinary temperatures and the others are solid, it follows that the consistency or solidity of fats depend upon the relative proportions of the three constituents. The sperm-whale, which lives in the warmer parts of all the oceans, has been hunted relentlessly for fuels for artificial lighting. In its head cavities sperm-oil in liquid form is found with the white waxy substance known as spermaceti. Colza-oil is yielded by rape-seed and olive-oil is extracted from ripe olives. The waxes are combinations of allied acids with bases somewhat related to glycerin but of complex composition. Fats and waxes are more or less related, but to distinguish them carefully would lead far afield into the complexities of organic chemistry. All these animal and vegetable products which were used as fuels for light-sources are rich in carbon, which accounts for the light-value of their flames. The brightness of such a flame is due to incandescent carbon particles, but this phase of light-production is discussed in another chapter. These oils, fats, and waxes are composed by weight of about 75 to 80 per cent. carbon; 10 to 15 per cent. hydrogen; and 5 to 10 per cent. oxygen.
Until the middle of the eighteenth century the oil-lamps were shallow vessels filled with animal or vegetable oil and from these reservoirs short wicks projected. The flame was feeble and smoky and the odors were sometimes very repugnant. Viewing such light-sources from the present age in which light is plentiful, convenient, and free from the great disadvantages of these early oil-lamps, it is difficult to imagine the possibility of the present civilization emerging from that period without being accompanied by progress in light-production. The improvements made in the eighteenth century paved the way for greater progress in the following century. This is the case throughout the ages, but there are special reasons for the tremendous impetus which light-production has experienced in the past half-century. These are the acquirement of scientific knowledge from systematic research and the application of this knowledge by organized development.
The first and most notable improvement in the oil-lamp was made by Argand in 1784. Our nation was just organizing after its successful struggle for independence at the time when the production of light as a science was born. Argand produced the tubular wickand contributed the greatest improvement by being the first to perform the apparently simple act of placing a glass chimney upon the lamp. His burner consisted of two concentric metal tubes between which the wick was located. The inner tube was open, so that air could reach the inner surface of the wick as well as the outer surface. The lamp chimney not only protected the flame from drafts but also improved combustion by increasing the supply of air. It rested upon a perforated flange below the burner. If the glass chimney of a modern kerosene lamp be lifted, it will be noted that the flame flickers and smokes and that it becomes steady and smokeless when the chimney is replaced. The advantages of such a chimney are obvious now, but Argand for his achievements is entitled to a place among the great men who have borne the torch of civilization. He took the first step toward adequate artificial light and opened a new era in lighting.
The various improvements of the oil-lamp achieved by Argand combined to effect complete combustion, with the result that a steady, smokeless lamp of considerable luminous intensity was for the first time available. Many developments followed, among which was a combination of reservoir and gravity feed which maintained the oil at a constant level. In later lamps, upon the adoption of mineral oil, this was found unnecessary, perhaps owing to the construction of the wick and to the physical characteristics of the oil which favored capillary action in the wick. However, the height of the oil in the reservoir of modern oil-lamps makes some difference in the amount of light emitted.
The Carcel lamp, which appeared in 1800, consistedof a double piston operated by clockwork. This forced the oil through a tube to the burner. Franchot invented the moderator lamp in 1836, which, because of its simplicity and efficiency soon superseded many other lamps designed for burning animal and vegetable oils. The chief feature of the moderator lamp is a spiral spring which forces the oil upward through a vertical tube to the burner. These are still used to some extent in France, but owing to the fact that "mechanical" lamps eventually were very generally replaced by more simple ones, it does not appear necessary to describe these complex mechanisms in detail.
When coal is distilled at moderate temperatures, volatile liquids are obtained. These hydrocarbons, being inflammable, naturally attracted attention when first known, and in 1781 their use as fuel for lamps was suggested. However, it was not until 1820 that the light oils obtained by distilling coal-tar, a by-product of the coal-gas industry which was then in its early stage of development, were burned to some extent in the Holliday lamp. In this lamp the oil is contained in a reservoir from the bottom of which a fine metal tube carries the oil down to a rose-burner. The oil is heated by the flame and the vaporized mineral oil which escapes through small orifices is burned. This type of lamp has undergone many physical changes, but its principle survives to the present time in the gasolene and kerosene burners hanging on a pole by the side of the street-peddler's stand.
Although petroleum products were not used to any appreciable extent for illuminating-purposes until after the middle of the nineteenth century, mineral oil ismentioned by Herodotus and other early writers. In 1847 petroleum was discovered in a coal-mine in England, but the supply failed in a short time. However, the discoverer, James Young, had found that this oil was valuable as a lubricant and upon the failure of this source he began experiments in distilling oil from shale found in coal deposits. These were destined to form the corner-stone of the oil industry in Scotland. In 1850 he began producing petroleum in this manner, but it was not seriously considered for illuminating-purposes. However, in Germany about this time lamps were developed for burning the lighter distillates and these were introduced into several countries. But the price of these lighter oils was so great that little progress was made until, in 1859, Col. E. L. Drake discovered oil in Pennsylvania. By studying the geological formations and concluding that oil should be obtained by boring, Drake gave to the world a means of obtaining petroleum, and in quantities which were destined to reduce the price of mineral oil to a level undreamed of theretofore. To his imagination, which saw vast reservoirs of oil in the depths of the earth, the world owes a great debt. Lamps were imported from Germany to all parts of the civilized world and the kerosene lamp became the prevailing light-source. Hundreds of American patents were allowed for oil-lamps and their improvements in the next decade.
LAMPS OF A CENTURY OR TWO AGOLAMPS OF A CENTURY OR TWO AGO
LAMPS OF A CENTURY OR TWO AGO
The crude petroleum, of course, is not fit for illuminating purposes, but it contains components which are satisfactory. The various components are sorted out by fractional distillation and the oil for burning in lamps is selected according to its volatility, viscosity,stability, etc. It must not be so volatile as to have a dangerously low flashing-point, nor so stable as to hinder its burning well. In this fractional distillation a vast variety of products are now obtained. Gasolene is among the lighter products, with a density of about 0.65; kerosene has a density of about 0.80; the lubricating-oils from 0.85 to 0.95; and there are many solids such as vaseline and paraffin which are widely used for many purposes. This process of refining oils is now the source of paraffin for making candles, in which it is usually mixed with substances like stearin in order to raise its melting-point.
ELABORATE FIXTURES OF THE AGE OF CANDLESELABORATE FIXTURES OF THE AGE OF CANDLES
ELABORATE FIXTURES OF THE AGE OF CANDLES
Crude petroleum possesses a very repugnant odor; it varies in color from yellow to black; and its specific gravity ranges from about 0.80 to 1.00, but commonly is between 0.80 and 0.90. Its chemical constitution is chiefly of carbon and hydrogen, in the approximate ratio of about six to one respectively. It is a mixture of paraffin hydrocarbons having the general formula of CnH2n+2and the individual members of this series vary from CH4(methane) to C15H32(pentadecane), although the solid hydrocarbons are still more complex. Petroleum is found in many countries and the United States is particularly blessed with great stores of it.
The ordinary lamp consisting of a wick which draws up the mineral oil and feeds it to a flame is efficient and fairly free from danger. It requires care and may cause disaster if it is upset, but it has been blamed unjustly in many accidents. A disadvantage of the kerosene lamp over electric lighting, for example, is the relatively greater possibility of accidents through thecarelessness of the user. This point is brought out in statistics of fire-insurance companies, which show that the fires caused by kerosene lamps are much more numerous than those from other methods of lighting. If in a modern lamp of proper construction a close-fitting wick is used and the lamp is extinguished by turning down and blowing across the chimney, there is little danger in its use excepting accidental breakage or overturning.
In oil-lamps at the present time mineral oils are used which possess flashing-points above 75°F. The highly volatile components of petroleum are dangerous because they form very explosive mixtures with air at ordinary temperatures. A mineral oil like kerosene, to be used with safety in lamps, should not be too volatile. It is preferable that an inflammable vapor should not be given off at temperatures under 120°F. The oil must be of such physical characteristics as to be drawn up to the burner by capillarity from the reservoir which is situated below. It is volatilized by the heat of the flame into a mixture of hydrogen and hydrocarbon gases and these are consumed under the heat of the process of consumption by the oxygen in the air. The resulting products of this combustion, if it is complete, are carbon dioxide and water-vapor. For each candle-power of light per hour about 0.24 cubic foot of carbon dioxide and 0.18 cubic foot of water-vapor are formed by a modern oil-lamp. That an open flame devours something from the air is easily demonstrated by enclosing it in an air-tight space. The flame gradually becomes feeble and smoky and finally goes out. It will be noted that a burning lamp will vitiatethe atmosphere of a closed room by consuming the oxygen and returning in its place carbon dioxide. This is similar to the vitiation of the atmosphere by breathing persons and tests indicate that for each two candle-power emitted by a kerosene flame the vitiation is equal to that produced by one adult person. Inasmuch as oil-lamps are ordinarily of 10 to 20 candle-power, it is seen that one lamp will consume as much oxygen as several persons.
In order that oil-lamps may produce a brilliant light free from smoke, combustion must be complete. The correct quantity of oil must be fed to the burner and it must be properly vaporized by heat. If insufficient oil is fed, the intensity of the light is diminished and if too much is available at the burner, smoke and other products of incomplete combustion will be emitted. The wick is an important factor, for, through capillarity, it feeds oil forcefully to the burner against the action of gravity. This action of a wick is commonly looked upon with indifference but in reality it is caused by an interesting and really wonderful phenomenon. Wicks are usually made of high-grade cotton fiber loosely spun into coarse threads and these are woven into a loose plait. The wick must be dry before being inserted into the burner; and it is desirable that it be considerably longer than is necessary merely to reach the bottom of the reservoir. A flame burning in the open will smoke because insufficient oxygen is brought in contact with it. The injurious products of this incomplete combustion are carbon monoxide and oil vapors, which are a menace to health.
To supply the necessary amount of oxygen (air) tothe flame, a forced draft is produced. Chimneys are simple means of accomplishing this, and this is their function whether on oil-lamps or factories. Other means of forced draft have been used, such as small fans or compressed air. In the railway locomotive the short smoke-stack is insufficient for supplying large quantities of air to the fire-box so the exhausted steam is allowed to escape into the stack. With each noisy puff of smoke a quantity of air is forcibly drawn into the fire-box through the burning fuel. In the modern oil-lamp the rush of air due to the "pull" of the chimney is broken and the air is diffused by the wire gauze or holes at the base of the burner. These metal parts, being hot, also serve to warm the oil before it reaches the burning end of the wick, thus serving to aid vaporization and combustion.
The consumption of oil per candle-power per hour varies considerably with the kind of lamp and with the character of the oil. The average consumption of oil-lamps burning a mineral oil of about 0.80 specific gravity and a rather high flashing-point is about 50 to 60 grams of oil per candle-power per hour for well-designed flame-lamps. Kerosene weighs about 6.6 pounds per gallon; therefore, about 800 candle-power hours per gallon are obtained from modern lamps employing wicks. Kerosene lamps are usually of 10 to 20 candle-power, although they are made up to 100 candle-power. These luminous intensities refer to the maximum horizontal candle-power. The best practice now deals with the total light output, which is expressed in lumens, and on this basis a consumption of one gallon of kerosene per hour would yield about 8000 lumens.
Oil-lamps have been devised in which the oil is burned as a spray ejected by air-pressure. These burn with a large flame; however, a serious feature is the escape of considerable oil which is not burned. These lamps are used in industrial lighting, especially outdoors, and possess the advantage of consuming low-grade oils. They produce about 700 to 800 candle-power hours per gallon of oil. Lamps of this type of the larger sizes burn with vertical flames two or three feet high. The oil is heated as it approaches the nozzle and is fairly well vaporized on emerging into the air. The names of Lucigen, Wells, Doty, and others are associated with this type of lamp or torch, which is a step in the direction of air-gas lighting.
During the latter part of the nineteenth century numerous developments were made which paralleled the progress in gas-lighting. Experiments were conducted which bordered closely upon the next epochal event in light-production—the appearance of the gas mantle. One of these was the use of platinum gauze by Kitson. He produced an apparatus similar to the oil-spray lamp, on a small and more delicate scale. The hot blue flame was not very luminous and he attempted to obtain light by heating a mantle of fine platinum gauze. Although these mantles emitted a brilliant light for a few hours, their light-emissivity was destroyed by carbonization. After the appearance of the Welsbach mantle, Kitson's lamp and others met with success by utilizing it. From this point, attention was centered upon the new wonder, which is discussed in a later chapter after certain scientific principles in light-production have been discussed.
The kerosene or mineral-oil lamp was a boon to lighting in the nineteenth century and even to-day it is a blessing in many homes, especially in villages, in the country, and in the remote districts of civilization. Its extensive use at the present time is shown by the fact that about eight million lamp-chimneys are now being manufactured yearly in this country. It is convenient and safe when carelessness is avoided, and is fairly free from odor. Its vitiation of the atmosphere may be counteracted by proper ventilation and there remains only the disadvantage of keeping it in order and of accidental breakage and overturning. The kerosene lantern is widely used to-day, but the danger due to accident is ever-present. The consequences of such accidents are often serious and are exemplified in the terrible conflagration in Chicago in 1871, when Mrs. O'Leary's cow kicked over a lantern and started a fire which burned the city. Modern developments in lighting are gradually encroaching upon the territory in which the oil-lamp has reigned supreme for many years. Acetylene plants were introduced to a considerable extent some time ago and to-day the self-contained home-lighting electric plant is being installed in large numbers in the country homes of the land.
Owing to the fact that the smoky, flickering oil-lamp persisted throughout the centuries and until the magic touch of Argand in the latter part of the eighteenth century transformed it into a commendable light-source, the reader is prepared to suppose that gas-lighting is of recent origin. Apparently William Murdock in England was the first to install pipes for the conveyance of gas for lighting purposes. In an article in the "Philosophical Transactions of the Royal Society of London" dated February 25, 1808, in which he gives an account of the first industrial gas-lighting, he states:
It is now nearly sixteen years, since, in a course of experiments I was making at Redruth in Cornwall, upon the quantities and qualities of the gases produced by distillation from different mineral and vegetable substances, I was induced by some observation I had previously made upon the burning of coal, to try the combustible property of the gases produced from it....
It is now nearly sixteen years, since, in a course of experiments I was making at Redruth in Cornwall, upon the quantities and qualities of the gases produced by distillation from different mineral and vegetable substances, I was induced by some observation I had previously made upon the burning of coal, to try the combustible property of the gases produced from it....
Inasmuch as he is credited with having lighted his home by means of piped gas, this experimental installation may be considered to have been made in 1792. In his first trial he burned the gas at the open ends of the pipes; but finding this wasteful, he closed the ends andin each bored three small holes from which the gas-flames diverged. It is said that he once used his wife's thimble in an emergency to close the end of the pipe; and, the thimble being much worn and consequently containing a number of small holes, tiny gas-jets emerged from the holes. This incident is said to have led to the use of small holes in his burners. He also lighted a street lamp and had bladders filled with gas "to carry at night, with which, and his little steam carriage running on the road, he used to astonish the people." Apparently unknown to Murdock, previous observations had been made as to the inflammability of gas from coal. Long before this Dr. Clayton described some observations on coal-gas, which he called "the spirit of coals." He filled bladders with this gas and kept them for some time. Upon his pricking one of them with a pin and applying a candle, the gas burned at the hole. Thus Clayton had a portable gas-light. He was led to experiment with distillation of coal from some experiences with gas from a natural coal bed, and he thus describes his initial laboratory experiment:
I got some coal, and distilled it in a retort in an open fire. At first there came over only phlegm, afterwards a blackoil, and then likewise, aspiritarose which I could no ways condense; but it forced my lute and broke my glasses. Once when it had forced my lute, coming close thereto, in order to try to repair it, I observed that the spirit which issued outcaught fireat theflameof thecandle, and continued burning with violence as itissued outin astream, which I blew out, and lighted again alternately several times.
I got some coal, and distilled it in a retort in an open fire. At first there came over only phlegm, afterwards a blackoil, and then likewise, aspiritarose which I could no ways condense; but it forced my lute and broke my glasses. Once when it had forced my lute, coming close thereto, in order to try to repair it, I observed that the spirit which issued outcaught fireat theflameof thecandle, and continued burning with violence as itissued outin astream, which I blew out, and lighted again alternately several times.
He then turned his attention to saving some of thegas and hit upon the use of bladders. He was surprised at the amount of gas which was obtained from a small amount of coal; for, as he stated, "the spirit continued to rise for several hours, and filled the bladders almost as fast as a man could have blown them with his mouth; and yet the quantity of coals distilled was inconsiderable."
Although this account appeared in the Transactions of the Royal Society in 1739, there is strong evidence that Dr. Clayton had written it many years before, at least prior to 1691.
But before entering further into the early history of gas-lighting, it is interesting to inquire into the knowledge possessed in the seventeenth century pertaining to natural and artificial gas. Doubtless there are isolated instances throughout history of encounters with natural gas. Surely observant persons of bygone ages have noted a small flame emanating from the end of a stick whose other end was burning in a bonfire or in the fireplace. This is a gas-plant on a small scale; for the gas is formed at the burning end of the wooden stick and is conducted through its hollow center to the cold end, where it will burn if lighted. If a piece of paper be rolled into the form of a tube and inclined somewhat from a horizontal position, inflammable gas will emanate from the upper end if the lower end is burning. By applying a match near the upper end, we can ignite this jet of gas. However, it is certain that little was known of gas for illuminating purposes before the eighteenth century.
The literature of an ancient nation is often referred to as revealing the civilization of the period. Surelythe scientific literature which deals with concrete facts is an exact indicator of the technical knowledge of a period! That little was known of natural gas and doubtless of artificial gas in the seventeenth century is shown by a brief report entitled "A Well and Earth in Lancashire taking Fire at a Candle," by Tho. Shirley in the Transactions of the Royal Society in 1667. Much of the quaint charm of the original is lost by inability to present the text in its original form, but it is reproduced as closely as practicable. The report was as follows:
About the latter End ofFeb.1659, returning from a Journey to my House in Wigan, I was entertained with the Relation of an odd Spring situated in one Mr.Hawkley'sGround (if I mistake not) about a Mile from the Town, in that Road which leads toWarringtonandChester: The People of this Town did confidently affirm, That the Water of this Spring did burn like Oil.When we came to the said Spring (being 5 or 6 in Company together) and applied a lighted Candle to the Surface of the Water; there was 'tis true, a large Flame suddenly produced, which burnt the Foot of a Tree, growing on the Top of a neighbouring Bank, the Water of which Spring filled a Ditch that was there, and covered the Burning-place; I applied the lighted Candle to divers Parts of the Water contained in the said Ditch, and found, as I expected, that upon the Touch of the Candle and the Water the Flame was extinct.Again, having taken up a Dish full of water at the flaming Place, and held the lighted Candle to it, it went out. Yet I observed that the Water, at the Burning-place, did boil, and heave, like Water in a Pot upon theFire, tho' by putting my Hand into it, I could not perceive it so much as warm.This Boiling I conceived to proceed from the Eruption of some bituminous or sulphureous Fumes; considering this Place was not above 30 or 40 Yards distant from the Mouth of a Coal-Pit there: And indeedWigan,Ashton, and the whole Country, for many Miles compass, is underlaid with Coal. Then, applying my Hand to the Surface of the Burning-place of the Water, I found a strong Breath, as it were a Wind, to bear against my Hand.When the Water was drained away, I applied the Candle to the Surface of the dry Earth, at the same Point where the Water burned before; the Fumes took fire, and burned very bright and vigorous. The Cone of the Flame ascended a Foot and a half from the Superficies of the Earth; and the Basis of it was of the Compass of a Man's Hat about the Brims. I then caused a Bucket full of Water to be pour'd on the Fire, by which it was presently quenched. I did not perceive the Flame to be discoloured like that of sulphurous Bodies, nor to have any manifest Scent with it. The Fumes, when they broke out of the Earth, and press'd against my Hand, were not, to my best Remembrance, at all hot.
About the latter End ofFeb.1659, returning from a Journey to my House in Wigan, I was entertained with the Relation of an odd Spring situated in one Mr.Hawkley'sGround (if I mistake not) about a Mile from the Town, in that Road which leads toWarringtonandChester: The People of this Town did confidently affirm, That the Water of this Spring did burn like Oil.
When we came to the said Spring (being 5 or 6 in Company together) and applied a lighted Candle to the Surface of the Water; there was 'tis true, a large Flame suddenly produced, which burnt the Foot of a Tree, growing on the Top of a neighbouring Bank, the Water of which Spring filled a Ditch that was there, and covered the Burning-place; I applied the lighted Candle to divers Parts of the Water contained in the said Ditch, and found, as I expected, that upon the Touch of the Candle and the Water the Flame was extinct.
Again, having taken up a Dish full of water at the flaming Place, and held the lighted Candle to it, it went out. Yet I observed that the Water, at the Burning-place, did boil, and heave, like Water in a Pot upon theFire, tho' by putting my Hand into it, I could not perceive it so much as warm.
This Boiling I conceived to proceed from the Eruption of some bituminous or sulphureous Fumes; considering this Place was not above 30 or 40 Yards distant from the Mouth of a Coal-Pit there: And indeedWigan,Ashton, and the whole Country, for many Miles compass, is underlaid with Coal. Then, applying my Hand to the Surface of the Burning-place of the Water, I found a strong Breath, as it were a Wind, to bear against my Hand.
When the Water was drained away, I applied the Candle to the Surface of the dry Earth, at the same Point where the Water burned before; the Fumes took fire, and burned very bright and vigorous. The Cone of the Flame ascended a Foot and a half from the Superficies of the Earth; and the Basis of it was of the Compass of a Man's Hat about the Brims. I then caused a Bucket full of Water to be pour'd on the Fire, by which it was presently quenched. I did not perceive the Flame to be discoloured like that of sulphurous Bodies, nor to have any manifest Scent with it. The Fumes, when they broke out of the Earth, and press'd against my Hand, were not, to my best Remembrance, at all hot.
Turning again to Dr. Clayton's experiments, we see that he pointed out striking and valuable properties of coal-gas but apparently gave no attention to its useful purposes. Furthermore, his account appears to have attracted no particular notice at the time of its publication in 1739. Dr. Richard Watson in 1767 described the results of experiments which he had been making with the products arising from the distillation of coal. In his process he permitted the gas to ascend throughcurved tubes, and he particularly noted "its great inflammability as well as elasticity." He also observed that "it retained the former property after it had passed through a great quantity of water." His published account dealt with a variety of facts and computations pertaining to the quantities of coke, tar, etc., produced from different kinds of coal and was a scientific work of value, but apparently the usefulness of the property of inflammability of coal-gas did not occur to him.
It is usually the habit of the scientific explorer of nature to return from excursions into her unfrequented recesses with new knowledge, to place it upon exhibition, and to return for more. The inventor passes by and sees applications for some of these scientific trophies which are productive of momentous consequences to mankind. Sir Humphrey Davy described his primitive arc-lamp three quarters of a century before Brush developed an arc-lamp for practical purposes. Maxwell and Hertz respectively predicted and produced electromagnetic waves long before Marconi applied this knowledge and developed "wireless" telegraphy. In a similar manner scientific accounts of the production and properties of coal-gas antedated by many years the initial applications made by Murdock to illuminating purposes.
Up to the beginning of the nineteenth century the civilized world had only a faint glimpse of the illuminating property of gas, but practicable gas-lighting was destined soon to be an epochal event in the progress of lighting. The dawn of modern science was coincident with the dawn of a luminous era.
At Soho foundry in 1798 Murdock constructed an apparatus which enabled him to exhibit his lighting-plan on a larger scale and to experiment on purifying and burning the gas so as to eliminate odor and smoke. Soho was an unique institution described as a place
to which men of genius were invited and resorted from every civilized country, to exercise and to display their talents. The perfection of the manufacturing arts was the great and constant aim of its liberal and enlightened proprietors, Messrs. Boulton and Watt; and whoever resided there was surrounded by a circle of scientific, ingenious, and skilful men, at all times ready to carry into effect the inventions of each other.
to which men of genius were invited and resorted from every civilized country, to exercise and to display their talents. The perfection of the manufacturing arts was the great and constant aim of its liberal and enlightened proprietors, Messrs. Boulton and Watt; and whoever resided there was surrounded by a circle of scientific, ingenious, and skilful men, at all times ready to carry into effect the inventions of each other.
The Treaty of Amiens, which gave to England the peace she was sorely in need of, afforded Murdock an opportunity in 1802 favorable for making a public display of gas-lighting. The illumination of the Soho works on this occasion is described as "one of extraordinary splendour." The fronts of the extensive range of buildings were ornamented with a large number of devices which displayed the variety of forms of gas-lights. At that time this was a luminous spectacle of great novelty and the populace came from far and wide "to gaze at, and to admire, this wonderful display of the combined effects of science and art."
Naturally, Murdock had many difficulties to overcome in these early days, but he possessed skill and perseverance. His first retorts for distilling coal were similar to the common glass retort of the chemist. Next he tried cast-iron cylinders placed perpendicularly in a common furnace, and in each were put about fifteen pounds of coal. In 1804 he constructed themwith doors at each end, for feeding coal and extracting coke respectively, but these were found inconvenient. In his first lighting installation in the factory of Phillips and Lee in 1805 he used a large retort of the form of a bucket with a cover on it. Inside he installed a loose cage of grating to hold the coal. When carbonization was complete the coke could be removed as a whole by extracting this cage. This retort had a capacity of fifteen hundred pounds of coal. He labored with mechanical details, varied the size and shape of the retorts, and experimented with different temperatures, with the result that he laid a solid foundation for coal-gas lighting. For his achievements he is entitled to an honorable place among the torch-bearers of civilization.
The epochal feature of the development of gas-lighting is that here was a possibility for the first time of providing lighting as a public utility. In the early years of the nineteenth century the foundation was laid for the great public-utility organizations of the present time. Furthermore, gas-lighting was an improvement over candles and oil-lamps from the standpoints of convenience, safety, and cost. The latter points are emphasized by Murdock in his paper presented before the Royal Society in 1808, in which he describes the first industrial installation of gas-lighting. He used two types of burners, the Argand and the cockspur. The former resembled the Argand lamp in some respects and the latter was a three-flame burner suggesting a fleur-de-lis. In this installation there were 271 Argand burners and 636 cockspurs. Each of the former "gave a light equal to that of four candles; andeach of the latter, a light equal to two and a quarter of the same candles; making therefore the total of the gas light a little more than 2500 candles." The candle to which he refers was a mold candle "of six in the pound" and its light was considered a standard of luminous intensity when it was consuming tallow at the rate of 0.4 oz. (175 grains) per hour. Thus the candle became very early a standard light-source and has persisted as such (with certain variations in the specifications) until the present time. However, during recent years other standard light-sources have been devised.
According to Murdock, the yearly cost of gas-lighting in this initial case was 600 pounds sterling after allowing generously for interest on capital invested and depreciation of the apparatus. The cost of furnishing the same amount of light by means of candles he computed to be 2000 pounds sterling. This comparison was on the basis of an average of two hours of artificial lighting per day. On the basis of three hours of artificial lighting per day, the relative cost of gas-and candle-lighting was about one to five. Murdock was characteristically modest in discussing his achievements and his following statement should be read with the conditions of the year 1808 in mind:
The peculiar softness and clearness of this light with its almost unvarying intensity, have brought it into great favour with the work people. And its being free from the inconvenience and danger, resulting from sparks and frequent snuffing of candles, is a circumstance of material importance, as tending to diminish the hazard of fire, to which cotton mills are known to be exposed.
The peculiar softness and clearness of this light with its almost unvarying intensity, have brought it into great favour with the work people. And its being free from the inconvenience and danger, resulting from sparks and frequent snuffing of candles, is a circumstance of material importance, as tending to diminish the hazard of fire, to which cotton mills are known to be exposed.
Although this installation in the mill of Phillips and Lee is the first one described by Murdock, in reality it is not the first industrial gas-lighting installation. During the development of gas apparatus at the Soho works and after his luminous display in 1802, he gradually extended gas-lighting to all the principal shops. However, this in a sense was experimental work. Others were applying their knowledge and ingenuity to the problem of making gas-lighting practicable, but Murdock has been aptly termed "the father of gas-lighting." Among the pioneers was Le Bon in France, Becher in Munich, and Winzler or Winsor, a German who was attracted to the possibilities of gas-lighting by an exhibition which Le Bon gave in Paris in 1802. Winsor learned that Le Bon had been granted a patent in Paris in 1799 for making an illuminating gas from wood and tried to obtain the rights for Germany. Being unsuccessful in this, he set about to learn the secrets of Le Bon's process, which he did, perhaps largely owing to an accumulation of information directly from the inventor during the negotiations. Winsor then turned to England as a fertile field for the exploitation of gas-lighting and after conducting experiments in London for some time he made plans to organize the National Heat and Light Co.
Winsor was primarily a promoter, with little or no technical knowledge; for in his claims and advertisements he disregarded facts with a facility possessed only by the ignorant. He boasted of his inventions and discoveries in the most hyperbolical language, which was bound to provoke a controversy. Nevertheless, he was clever and in 1803 he publicly exhibited hisplan of lighting by means of coal-gas at the Lyceum Theatre in London. He gave lectures accompanied by interesting and instructive experiments and in this manner attracted the public to his exhibition. All this time he was promoting his company, but his promoting instinct caused his representations to be extravagant and deceptive, which exposed him to the ridicule and suspicion of learned men. His attempt to obtain certain exclusive rights by Act of Parliament failed because of opposition of scientific men toward his claims and of the stand which Murdock justly made in self-protection. These years of controversy yield entertaining literature for those who choose to read it, but unfortunately space does not permit dwelling upon it. The investigations by committees of Parliament also afford amusing side-lights. Throughout all this Murdock appeared modest and conservative and had the support of reputable scientific men, but Winsor maintained extravagant claims.
During one of these investigations Sir Humphrey Davy was examined by a committee from the House of Commons in 1809. He refuted Winsor's claims for a superior coke as a by-product and stated that the production of gas by the distillation of coal had been well known for thirty or forty years and the production of tar as long. He stated that it was the opinion of the Council of the Royal Society that Murdock was the first person to apply coal-gas to lighting in actual practice. As secretary of the Society, Sir Humphrey Davy stated that at the last session it had bestowed the Count Rumford medal upon Murdock for "his economical application of the gas light."
Winsor proceeded to float his company without awaiting the Act of Parliament and in 1807 lighted a street in Pall Mall. Through the opposition which he aroused, and owing to the just claims of priority on the part of Murdock, the bill to incorporate the National Heat and Light Co. with a capital of 200,000 pounds sterling was thrown out. However, he succeeded in 1812 in receiving a charter very much modified in form, for the Chartered Gas Light and Coke Co. which was the forerunner of the present London Gas Light and Coke Co.
The conditions imposed upon this company as presented in an early treatise on gas-lighting (by Accum in 1818) were as follows:
The power and authorities granted to this corporate body are very restricted and moderate. The individuals composing it have no exclusive privilege; their charter does not prevent other persons from entering into competition with them. Their operations are confined to the metropolis, where they are bound to furnish not only a stronger and better light to such streets and parishes as chuse to be lighted with gas, but also at a cheaper price than shall be paid for lighting the said streets with oil in the usual manner. The corporation is not permitted to traffic in machinery for manufacturing or conveying the gas into private houses, their capital or joint stock is limited to £200,000, and his Majesty has the power of declaring the gas-light charter void if the company fail to fulfil the terms of it.
The power and authorities granted to this corporate body are very restricted and moderate. The individuals composing it have no exclusive privilege; their charter does not prevent other persons from entering into competition with them. Their operations are confined to the metropolis, where they are bound to furnish not only a stronger and better light to such streets and parishes as chuse to be lighted with gas, but also at a cheaper price than shall be paid for lighting the said streets with oil in the usual manner. The corporation is not permitted to traffic in machinery for manufacturing or conveying the gas into private houses, their capital or joint stock is limited to £200,000, and his Majesty has the power of declaring the gas-light charter void if the company fail to fulfil the terms of it.
The progress of this early company was slow at first, but with the appointment of Samuel Clegg as engineer in 1813 an era of technical developments began. New stations were built and many improvements were introduced. By improving the methods of purifying the gas a great advance was made. The utility of gas-lighting grew apace as the prejudices disappeared, but for a long time the stock of the company sold at a price far below par. About this time the first gas explosion took place and the members of the Royal Society set a precedent which has lived and thrived: they appointed a committee to make an inquiry. But apparently the inquiry was of some value, for it led "to some useful alterations and new modifications in its apparatus and machinery."
Many improvements were being introduced during these years and one of them in 1816 increased the gaseous product from coal by distilling the tar which was obtained during the first distillation. In 1816 Clegg obtained a patent for a horizontal rotating retort; for an apparatus for purifying coal-gas with "cream of lime"; and for a rotative gas-meter.
Before progressing too far, we must mention the early work of William Henry. In 1804 he described publicly a method of producing coal-gas. Besides making experiments on production and utilization of coal-gas for lighting, he devoted his knowledge of chemistry to the analysis of the gas. He also made analytical studies of the relative value of wood, peat, oil, wax, and different kinds of coal for the distillation of gas. His chemical analyses showed to a considerable extent the properties of carbureted hydrogen upon which illuminating value depended. The results of his work were published in various English journals between 1805 and 1825 and they contributed much to the advancement of gas-lighting.
Although Clegg's original gas-meter was complicated and cumbersome, it proved to be a useful device. In fact, it appears to have been the most original and beneficial invention occasioned by early gas-lighting. Later Samuel Crosley greatly improved it, with the result that it was introduced to a considerable extent; but by no means was it universally adopted. Another improvement made by Clegg at this time was a device which maintained the pressure of gas approximately constant regardless of the pressure in the gasometer or tank. Clegg retired from the service of the gas company in 1817 after a record of accomplishments which glorifies his name in the annals of gas-lighting. Murdock is undoubtedly entitled to the distinction of having been the first person who applied gas-lighting to large private establishments, but Clegg overcame many difficulties and was the first to illuminate a whole town by this means.
In London in 1817 over 300,000 cubic feet of coal-gas was being manufactured daily, an amount sufficient to operate 76,500 Argand burners yielding 6 candle-power each. Gas-lighting was now exciting great interest and was firmly established. Westminster Bridge was lighted by gas in 1813, and the streets of Westminster during the following year. Gas-lighting became popular in London by 1816 and in the course of the next few years it was adopted by the chief cities and towns in the United Kingdom and on the Continent. It found its way into the houses rather slowly at first, owing to apprehension of the attendant dangers, to the lack of purification of the gas, and to the indifferent service.It was not until the latter half of the nineteenth century that it was generally used in residences.
The gas-burner first employed by Murdock received the name "cockspur" from the shape of the flame. This had an illuminating value equivalent to about one candle for each cubic foot of gas burned per hour. The next step was to flatten the welded end of the gas-pipe and to bore a series of holes in a line. From the shape of the flames this form of burner received the name "cockscomb." It was somewhat more efficient than the cockspur burner. The next obvious step was to slit the end of the pipe by means of a fine saw. From this slit the gas was burned as a sheet of flame called the "bats-wing." In 1820 Nielson made a burner which allowed two small jets to collide and thus form a flat flame. The efficiency of this "fish-tail" burner was somewhat higher than that of the earlier ones. Its flame was steadier because it was less influenced by drafts of air. In 1853 Frankland showed an Argand burner consisting of a metal ring containing a series of holes from which jets of gas issued. The glass chimney surrounded these, another chimney, extending somewhat lower, surrounded the whole, and a glass plate closed the bottom. The air to be fed to the gas-jets came downward between the two chimneys and was heated before it reached the burner. This increased the efficiency by reducing the amount of cooling at the burner by the air required for combustion. This improvement was in reality the forerunner of the regenerative lamps which were developed later.
In 1854 Bowditch brought out a regenerative lampand, owing to the excessive publicity which this lamp obtained, he is generally credited with the inception of the regenerative burner. This principle was adopted in several lamps which came into use later. They were all based upon the principle of heating both the gas and the air required for combustion prior to their reaching the burner. The burner is something like an inverted Argand arranged to produce a circular flame projecting downward with a central cusp. The air- and gas-passages are directly above the flame and are heated by it. In 1879 Friedrich Siemens brought out a lamp of this type which was adapted from a device originally designed for heating purposes, owing to the superior light which was produced. This was the best gas-lamp up to that time. Later, Wenham, Cromartie, and others patented lamps operating on this same principle.
Murdock early modified the Argand burner to meet the requirements of burning gas and by using the chimney obtained better combustion and a steadier flame than from the open burners. He and others recognized that the temperature of the flame had a considerable effect upon the amount of light emitted and non-conducting material such as steatite was substituted for the metal, which cooled the flame by conducting heat from it. These were the early steps which led finally to the regenerative burner.
The increasing efficiency of the various gas-burners is indicated by the following, which are approximately the candle-power based upon equal rates of consumption, namely, one cubic foot of gas per hour: