X

Lumens per wattOpen carbon arc4 to 8Enclosed carbon arc7Enclosed flame-arc (yellow or white)15 to 25Luminous arc10 to 25

Another lamp differing widely in appearance from the preceding arcs may be described here because it is known as the mercury-arc. In this lamp mercury is confined in a transparent tube and an arc is started by making and breaking a mercury connection between the two electrodes. The arc may be maintained of a length of several feet. Perhaps the first mercury-arc was produced in 1860 by Way, who permitted a fine jet of mercury to fall from a reservoir into a vessel, the reservoir and receiver being connected to the poles of a battery. The electric current scattered the jet and between the drops arcs were formed. He exhibited this novel light-source on the mast of a yacht and it received great attention. Later, various investigators experimented on the production of a mercury-arc and the first successful ones were made in the form of an inverted U-tube with the ends filled with mercury and the remainder of the tube exhausted.

Cooper Hewitt was a successful pioneer in the production of practicable mercury-arcs. He made them chiefly in the form of straight tubes of glass up to several feet in length, with enlarged ends to facilitate cooling. The tubes are inclined so that the mercury vapor which condenses will run back into the enlarged end, where a pool of mercury forms the negative electrode. The arc may be started by tilting the tube so that a mercury thread runs down the side and connects with the positive electrode of iron. The heat of the arc volatilizes the mercury so that an arc of considerable length is maintained. The tilting is done by electromagnets. Starting has also been accomplished by means of a heating coil and also by an electric spark. The lamps are stabilized by resistance and inductance coils.

One of the defects of the light emitted by the incandescent vapor of mercury is its paucity of spectral colors. Its visible spectrum consists chiefly of violet, blue, green, and yellow rays. It emits virtually no red rays, and, therefore, red objects appear devoid of red. The human face appears ghastly under this light and it distorts colors in general. However, it possesses the advantages of high efficiency, of reasonably low brightness, of high actinic value, and of revealing detail clearly. Various attempts have been made to improve the color of the light by adding red rays. Reflectors of a fluorescent red dye have been used with some success, but such a method reduces the luminous efficiency of the lamp considerably. The dye fluoresces red under the illumination of ultra-violet, violet, and blue rays; that is, it has the property of converting radiation of these wave-lengths into radiant energy of longer wave-lengths. By the use of electric incandescent filament lamps in conjunction with mercury-arcs, a fairly satisfactory light is obtained. Many experiments have been made by adding other substances to the mercury, such as zinc, with the hope that the spectrum of the other substance would compensate the defects in the mercury spectrum. However no success has been reached in this direction.

By the use of a quartz tube which can withstand a much higher temperature than glass, the current density can be greatly increased. Thus a small quartz tube of incandescent mercury vapor will emit as much light as a long glass tube. The quartz mercury-arc produces a light which is almost white, but the actual spectrum is very different from that of white sunlight. Although some red rays are emitted by the quartz arc, its spectrum is essentially the same as that of the glass-tube arc. Quartz transmits ultra-violet radiation, which is harmful to the eyes, and inasmuch as the mercury vapor emits such rays, a glass globe should be used to enclose the quartz tube when the lamp is used for ordinary lighting purposes.

It is fortunate that such radically different kinds of light-sources are available, for in the complex activities of the present time all are in demand. The quartz mercury-arc finds many isolated uses, owing to its wealth of ultra-violet radiation. It is valuable as a source of ultra-violet for exciting phosphorescence, for examining the transmission of glasses for this radiation, for sterilizing water, for medical purposes, and for photography.

Prior to 1800 electricity was chiefly a plaything for men of scientific tendencies and it was not until Volta invented the electric pile or battery that certain scientific men gave their entire attention to the study of electricity. Volta was not merely an inventor, for he was one of the greatest scientists of his period, endowed with an imagination which marked him as a genius in creative work. By contributing the electric battery, he added the greatest impetus to research in electrical science that it has ever received. As has already been shown, there began a period of enthusiastic research in the general field of heating effects of electric current. The electric arc was born in the cradle of this enthusiasm, and in the heating of metals by electricity the future incandescent lamp had its beginning.

Between the years 1841 and 1848 several inventors attempted to make light-sources by heating metals. These crude lamps were operated by means of Grove and Bunsen electric cells, but no practicable incandescent filament lamps were brought out until the development of the electric dynamo supplied an adequate source of electric current. As electrical science progressed through the continued efforts of scientific men, it finally became evident that an adequate supply ofelectric current could be obtained by mechanical means; that is, by rotating conductors in such a manner that current would be generated within them as they cut through a magnetic field. Even the pioneer inventors of electric lamps made great contributions to electrical practice by developing the dynamo. Brush developed a satisfactory dynamo coincidental with his invention of the arc-lamp, and in a similar manner, Edison made a great contribution to electrical practice in devising means of generating and distributing electricity for the purpose of serving his filament lamp.

DIRECT CURRENT ARCDIRECT CURRENT ARCMost of the light being emitted by the positive (upper) electrode

DIRECT CURRENT ARCMost of the light being emitted by the positive (upper) electrode

FLAME ARCFLAME ARCMost of the light being emitted by the flame

FLAME ARCMost of the light being emitted by the flame

Edison in 1878 attacked the problem of producing light from a wire or filament heated electrically. He used platinum wire in his first experiments, but its volatility and low melting-point (3200°F.) limited the success of the lamps. Carbon with its extremely high melting-point had long attracted attention and in 1879 Edison produced a carbon filament by carbonizing a strip of paper. He sealed this in a vessel of glass from which the air was exhausted and the electric current was led to the filament through platinum wires sealed in the glass. Platinum was used because its expansion and contraction is about the same as glass. Incidentally, many improvements were made in incandescent lamps and thirty years passed before a material was found to replace the platinum leading-in wires. The cost of platinum steadily increased and finally in the present century a substitute was made by the use of two metals whose combined expansion was the same as that of platinum or glass. In 1879 and 1880 Edison had succeeded in overcoming the manydifficulties sufficiently to give to the world a practicable incandescent filament lamp. About this time Swan and Stearn in England had also produced a successful lamp.

ON THE TESTING-RACKS OF THE MANUFACTURER OF INCANDESCENT FILAMENT LAMPSON THE TESTING-RACKS OF THE MANUFACTURER OF INCANDESCENT FILAMENT LAMPSThousands of lamps are burned out for the sake of making improvements. The electrical energy used is equivalent to that consumed by a city of 30,000 inhabitants

ON THE TESTING-RACKS OF THE MANUFACTURER OF INCANDESCENT FILAMENT LAMPSThousands of lamps are burned out for the sake of making improvements. The electrical energy used is equivalent to that consumed by a city of 30,000 inhabitants

In Edison's early experiments with filaments he used platinum wire coated with carbon but without much success. He also made thin rods of a mixture of finely divided metals such as platinum and iridium mixed with such oxides as magnesia, zirconia, and lime. He even coiled platinum wire around a piece of one of these oxides, with the aim of obtaining light from the wire and from the heated oxide. However, these experiments served little purpose besides indicating that the filament was best if it consisted solely of carbon and that it should be contained in an evacuated vessel.

One of the chief difficulties was to make the carbon filaments. Some of the pioneers, such as Sawyer and Mann, attempted to cut these from a piece of carbon. However, Edison and also Swan turned their attention to forming them by carbonizing a fiber of organic matter. Filaments cut from paper and threads of cotton and silk were carbonized for this purpose. Edison scoured the earth for better materials. He tried a fibrous grass from South America and various kinds of bamboo from other parts of the world. Thin filaments of split bamboo eventually proved the best material up to that time. He made many lamps containing filaments of this material, and even until 1910 bamboo was used to some extent in certain lamps.

Of these early days, Edison said:

It occurred to me that perhaps a filament of carbon could bemade to stand in sealed glass vessels, or bulbs, which we were using, exhausted to a high vacuum. Separate lamps were made in this way independent of the air-pump, and, in October, 1879, we made lamps of paper carbon, and with carbons of common sewing thread, placed in a receiver or bulb made entirely of glass, with the leading-in wires sealed in by fusion. The whole thing was exhausted by the Sprengel pump to nearly one-millionth of an atmosphere. The filaments of carbon, although naturally quite fragile owing to their length and small mass, had a smaller radiating surface and higher resistance than we had dared hope. We had virtually reached the position and condition where the carbons were stable. In other words, the incandescent lamp as we still know it to-day [1904], in essentially all its particulars unchanged, had been born.

It occurred to me that perhaps a filament of carbon could bemade to stand in sealed glass vessels, or bulbs, which we were using, exhausted to a high vacuum. Separate lamps were made in this way independent of the air-pump, and, in October, 1879, we made lamps of paper carbon, and with carbons of common sewing thread, placed in a receiver or bulb made entirely of glass, with the leading-in wires sealed in by fusion. The whole thing was exhausted by the Sprengel pump to nearly one-millionth of an atmosphere. The filaments of carbon, although naturally quite fragile owing to their length and small mass, had a smaller radiating surface and higher resistance than we had dared hope. We had virtually reached the position and condition where the carbons were stable. In other words, the incandescent lamp as we still know it to-day [1904], in essentially all its particulars unchanged, had been born.

After Edison's later success with bamboo, Swan invented a process of squirting filaments of nitrocellulose into a coagulating liquid, after which they are carbonized. Very fine uniform filaments can be made by this process and although improvements have been made from time to time, this method has been employed ever since its invention. In these later years cotton is dissolved in a suitable solvent such as a solution of zinc chloride and this material is forced through a small diamond die. This thread when hardened appears similar to cat-gut. It is cut into proper lengths and bent upon a form. It is then immersed in plumbago and heated to a high temperature in order to destroy the organic matter. A carbon filament is the result. From this point to the finished lamp many operations are performed, but a discussion of these would leadfar afield. The production of a high vacuum is one of the most important processes and manufacturers of incandescent lamps have mastered the art perhaps more thoroughly than any other manufacturers. At least, their experience in this field made it possible for them to produce quickly and on a large scale such devices as X-ray tubes during the recent war.

During the early years of incandescent lamps, improvements were made from time to time which increased the life and the luminous efficiency of the carbon filaments, but it was not until 1906 that any radical improvement was achieved. In that year in this country a process was devised whereby the carbon filament was made more compact. In fact, from its appearance it received the name "metallized filament." These carbon filaments are prepared in the same manner as the earlier ones but are finally "treated" by heating in an atmosphere of hydrocarbons such as coal-gas. The filament is heated by electric current and the heat breaks down the hydrocarbons, with the result that carbon is deposited upon the filament. This "treated" filament has a coating of hard carbon and its electrical resistance is greater than that of the untreated filament.

The luminous efficiency of a carbon filament is a function of its temperature and it increases very rapidly with increasing temperature. For this reason it is a constant aim to reach high filament temperatures. Of all the materials used in filaments up to the present time, carbon possesses the highest melting-point (perhaps as high as 7000°F.), but the carbon filament as operated in practice has a lower efficiency than anyother filament. This is because the highest temperature at which it can be operated and still have a reasonable life is much lower than that of metallic filaments. The incandescent carbon in the evacuated bulb sublimes or volatilizes and deposits upon the bulb. This decreases the size of the filament eventually to the breaking-point and the blackening of the bulb decreases the output of light. The treated filament was found to be a harder form of carbon that did not volatilize as rapidly as the untreated filament. It immediately became possible to operate it at a higher temperature with a resulting increase of luminous efficiency. This "graphitized" carbon filament lamp became known as the gem lamp in this country and many persons have wondered over the word "gem." The first two letters stand for "General Electric" and the last for "metallized." This lamp was welcomed with enthusiasm in its day, but the day for carbon filaments has passed. The advent of incandescent lamps of higher efficiency has made it uneconomical to use carbon lamps for general lighting purposes. Although the treated carbon filament was a great improvement, its reign was cut short by the appearance of metal filaments.

In 1803 a new element was discovered and named tantalum. It is a dark, lustrous, hard metal. Pure tantalum is harder than steel; it may be drawn into fine wire; and its melting-point is very high (about 5100°F.). It is seen to possess properties desirable for filaments, but for some reason it did not attract attention for a long time. A century elapsed after its discovery before von Bolton produced the first tantalum filament lamp. Owing to the low electrical resistance of tantalum, a filament in order to operate satisfactorily on a standard voltage must be long and thin. This necessitates storing away a considerable length of wire in the bulb without permitting the loops to come into contact with each other. After the filaments have been in operation for a few hundred hours they become brittle and faults develop. When examined under a microscope, parts of the filament operated on alternating current appear to be offset. The explanation of this defect goes deeply into crystalline structure. The tantalum filament was quickly followed by osmium and by tungsten in this country.

The osmium filament appeared in 1905 and its invention is due to Welsbach, who had produced the marvelous gas-mantle. Owing to its extreme brittleness, osmium was finely divided and made into a paste of organic material. The filaments were squirted through dies and, after being formed and dried, they were heated to a high temperature. The organic matter disappeared and the fine metallic particles were sintered. This made a very brittle lamp, but its high efficiency served to introduce it.

In 1870 when Scheele discovered a new element, known in this country as tungsten, no one realized that it was to revolutionize artificial lighting and to alter the course of some of the byways of civilization. This metal—which is known as "wolfram" in Germany, and to some extent in English-speaking countries—is one of the heaviest of elements, having a specific gravity of 19.1. It is 50 per cent. heavier than mercury and nearly twice as heavy as lead. It was early used inGerman silver to the extent of 1 or 2 per cent. to make platinoid, an alloy possessing a high resistance which varies only slightly as the temperature changes. This made an excellent material for electrical resistors. The melting-point of tungsten is about 5350°F., which makes it desirable for filaments, but it was very brittle as prepared in the early experiments. It unites very readily with oxygen and with carbon at high temperatures.

The first tungsten lamps appeared on the market in 1906, but these contained fragile filaments made by the squirting process. When the squirted filament of tungsten powder and organic matter was heated in an atmosphere of steam and hydrogen to remove the binding material, a brittle filament of tungsten was obtained. The first lamps were costly and fragile. After years of organized research tungsten is now drawn into the finest wires, possessing a tensile strength perhaps greater than any other material. Filaments are now made into many shapes and the greatest strides in artificial lighting have been due to scientific research on a huge scale.

The achievements which combined to perfect the tungsten lamp to the point where it has become the mainstay of electric lighting are not attached to names in the Hall of Fame. Organization of scientific research in the industrial laboratories is such that often many persons contribute to the development of an improvement. Furthermore, time is usually required for a full perspective of applications of scientific knowledge. In the early days organized research was not practised and the great developments of those dayswere the works of individuals. To-day, even in pure science, some of the greatest contributions are made by industrial laboratories; but sometimes these do not become known to the public for many years. The whole scheme of scientific development has changed materially. For example, the story of the development of ductile tungsten, which has revolutionized lighting, is complex and more or less shrouded in secrecy at the present time. Many men have contributed toward this accomplishment and the public at the present time knows little more than the fact that tungsten filaments, which were brittle yesterday, are now made of ductile tungsten wire drawn into the finest filaments.

The earlier tungsten filaments were made by three rival processes. By the first, a deposit of tungsten was "flashed" on a fine carbon filament, the latter being eliminated finally by heating in an atmosphere of hydrogen and water-vapor. By the second, colloidal tungsten was produced by operating an arc between tungsten electrodes under water. The finely divided tungsten was gathered, partially dried, and squirted through dies to form filaments. These were then sintered. The third was the "paste" process already described. These methods produced fragile filaments, but their luminous efficiency was higher than that of previous ones. However, in this country ductile tungsten was soon on its way. An ingot of tungsten is subjected to vigorous swaging until it takes the form of a rod. This is finally drawn into wire.

Much of this development work was done by the laboratories of the General Electric Company and they were destined to contribute another great improvement. The blackening of the lamp bulbs was due to the evaporation of tungsten from the filament. All filaments up to this time had been confined in evacuated bulbs and the low pressure facilitates evaporation, as is well known. It had long been known that an inert gas in the bulb would reduce the evaporation and remedy other defects; however, under these conditions, there would be a considerable loss of energy through conduction of heat by the gases. In the vacuum lamp nearly all the electrical energy is converted into radiant energy, which is emitted by the filament and any dissipation of heat is an energy loss. A high vacuum was one of the chief aims up to this time, but a radical departure was pending.

If an ordinary tungsten-lamp bulb be filled with an inert gas such as nitrogen, the filament may be operated at a very much higher temperature without any more deterioration than takes place in a vacuum at a lower temperature. This gives a more efficientlightbut a less efficientlamp. The greater output of light is compensated by losses by conduction of heat through the gas. In other words, a great deal more energy is required by the filament in order to remain at a given temperature in a gas than in a vacuum. However, elaborate studies of the dependence of heat-losses upon the size and shape of the filament and of the physics of conduction from a solid to a gas, established the foundation for the gas-filled tungsten lamp. The knowledge gained in these investigations indicated that a thicker filament lost a relatively less percentage of energy by conduction than a thin one for equal amounts of emitted light. However, a practical filament must have sufficient resistance to be used safely on lighting circuits already established and, therefore, the large diameter and high resistance were obtained by making a helical coil of a fine wire. In fact, the gas-filled tungsten lamp may be thought of as an ordinary lamp with its long filament made into a short helical coil and the bulb filled with nitrogen or argon gas.

This development was not accidental and from a scientific point of view it is not spectacular. It did not mark a new discovery in the same sense as the discovery of X-rays. However, it is an excellent example of the great rewards which come to systematic, thorough study of rather commonplace physical laws in respect to a given condition. Such achievements are being duplicated in various lines in the laboratories of the industries. Scientific research is no longer monopolized by educational institutions. The most elaborate and best-equipped laboratories are to be found in the industries sometimes surrounded by the smoke and noise and vigorous activity which indicate that achievements of the laboratory are on their way to mankind. The smoke-laden industrial district, pulsating with life, is the proud exhibit of the present civilization. It is the creation of those who discover, organize, and apply scientific facts. But how many appreciate the debt that mankind owes not only to the individual who dedicates his life to science but to the far-sighted manufacturer who risks his money in organized quest of new benefits for mankind? A glimpse into a vast organization of research, which, for example, has been mainly responsible for the progressof the incandescent lamp would alter the attitude of many persons toward science and toward the large industrial companies.

The progress in the development of electric incandescent lamps is shown in the following table, where the dates and values are more or less approximate. It should be understood that from 1880 to the present time there has been a steady progress, which occasionally has been greatly augmented by sudden steps.

Approximate Values

DateFilamentTemperatureLumens per watt1880Carbon3300°F.3.01906Carbon (graphitized)34004.51905Tantalum35506.51905Osmium36007.51906Tungsten (vacuum)37008.01914Tungsten (gas-filled)up to 5300°F.10 to 25

Throughout the development of incandescent filament lamps many ingenious experiments were made which resulted usually in light-sources of scientific interest but not of practical value. One of the latest is the tungsten arc in an inert gas. By means of a heating coil, a small arc is started between two electrodes consisting of tungsten, but this as yet has not been shown to be practicable.

Another type of filament lamp was developed by Nernst in 1897. It was an ingenious application of the peculiar properties of rare-earth oxides. His first lamp consisted essentially of a slender rod of magnesia. This substance does not conduct electricity atordinary temperatures, but when heated to incandescence it becomes conducting. Upon sufficient heating of this filament by external means while a proper voltage is impressed upon it, the electric current passes through it and thereafter this current will maintain its temperature. Thus such a filament becomes a conductor and will continue to glow brilliantly by virtue of the electrical energy which it converts into heat. Later lamps consisted of "glowers" about one inch long made from a mixture of zirconia and yttria, and finally a mixture of ceria, thoria, and zirconia was used. The glower is heated initially by a coil of platinum wire located near it but not in contact with it. Owing to the fact that this glower decreases rapidly in resistance as its temperature is increased, it is necessary to place in series with it a substance which increases in resistance with increasing current. This is called a "ballasting resistance" and is usually an iron wire in a glass bulb containing hydrogen. The heater is cut out by an electromagnet when the glower goes into operation. This lamp is a marvel of ingenuity and when at its zenith it was installed to a considerable extent. Its light is considerably whiter than that of the carbon filament lamps. However, its doom was sounded when metallic filament lamps appeared.

An interesting filament was developed by Parker and Clark by using as a core a small filament of carbon. This flashed in an atmosphere containing a vapor of a compound of silicon, became coated with silicon. This filament was of high specific resistance and appeared to have promise. It has not been introduced commercially and doubtless it cannot compete with the latest tungsten lamps.

Electric incandescent lamps are the present mainstay of electric illumination and, it might be stated, of progress in lighting. Wonderful achievements have been accomplished in other modes of lighting and the foregoing statement is not meant to depreciate those achievements. However, the incandescent filament lamp has many inherent advantages. The light-source is enclosed in an air-tight bulb which makes for a safe, convenient lamp. The filament is capable of subdivision, with the result that such lamps vary from the minutest spark of the smallest miniature lamp to the enormous output of the largest gas-filled tungsten lamp. The outputs of these are respectively a fraction of a lumen and twenty-five thousand lumens; that is, the luminous intensity varies from an equivalent of a small fraction of a standard candle to a single light-source emitting light equivalent to two thousand standard candles.

Statistics are cold facts and are usually uninteresting in a volume of this character, but they tell a story in a concise manner. The development of the modern incandescent lamp has increased the intensity of light available with a great decrease in cost, and this progressive development is shown easily by tables. For example, since the advent of the tungsten lamp the average candle-power and luminous efficiency of all the lamps sold in this country has steadily increased, while the average wattages of the lamps have remained virtually stationary.

Average Candle-Power, Watts, and Efficiency of All the Lamps Sold in This Country

YearCandle-powerWattsLumensper watt190718.0533.33190819.0533.52190921.0523.96191023.0514.42191125.0514.82191226.0495.20191329.4476.13191438.2487.80191542.2478.74191645.8499.60191748.75210.56

It will be noted that the luminous intensity of incandescent filament lamps has steadily increased since the carbon lamp was superseded, and that in a period of ten years of organized research behind the tungsten lamp the luminous efficiency (lumens per watt) has trebled. In other words, everything else remaining unchanged, the cost of light in ten years was reduced to one third. But the reduction in cost has been more than this, as will be shown later. During the same span of years the percentage of carbon filament lamps of the total filament lamps sold decreased from 100 per cent. in 1907 to 13 per cent. in 1917. At the same time the percentage of tungsten (Mazda) lamps increased from virtually zero in 1907 to about 87 per cent. in 1917. The tantalum lamp had no opportunity to become established, because the tungsten lamp followed its appearance very closely. In 1910 thesales of the former reached their highest mark, which was only 3.5 per cent. of all the lamps sold in the United States. From a lowly beginning the number of incandescent filament lamps sold for use in this country has grown rapidly, reaching nearly two hundred million in 1919.

In viewing the development of artificial light and its manifold effects upon the activities of mankind, it is natural to look into the future. Jules Verne possessed the advantage of being able to write into fiction what his riotous imagination dictated, and so much of what he pictured has come true that his success tempts one to do likewise in prophesying the future of lighting. Surely a forecast based alone upon the past achievements and the present indications will fall short of the actual realizations of the future! If the imagination is permitted to view the future without restrictions, many apparently far-fetched schemes may be devised. It may be possible to turn to nature's supply of daylight and to place some of it in storage for night use. One millionth part of daylight released as desired at night would illuminate sufficiently all of man's nocturnal activities. The fictionist need not heed the scientist's inquiry as to how this daylight would be bottled. Instead of giving time to such inquiries he would pass on to another scheme, whereby earth would be belted with optical devices so that day could never leave. When the sun was shining in China its light would be gathered on a large scale and sent eastward and westward in these great optical "pipe-lines" to the regions of darkness, thus banishing night forever. The writer of fiction need not bother with a consideration of the economic situation which would demand such efforts. This line of conjecture is interesting, for it may suggest possibilities toward which the present trend of artificial lighting does not point; however, the author is constrained to treat the future of light-production on a somewhat more conservative basis.

At the present time the light-source of chief interest in electric lighting is the incandescent filament lamp; but its luminous efficiency is limited, as has been shown in a previous chapter. When light is emitted by virtue of its temperature much invisible radiant energy accompanies the visible energy. The highest luminous efficiency attainable by pure temperature radiation will be reached when the temperature of a normal radiator reaches the vicinity of 10,000°F. to 11,000°F. The melting-points of metals are much lower than this. The tungsten filament in the most efficient lamps employing it is operating near its melting-point at the present time. Carbon is a most attractive element in respect to melting-point, for it melts at a temperature between 6000°F. and 7000°F. Even this is far below the most efficient temperature for the production of light by means of pure temperature radiation. There are possibilities of higher efficiency being obtained by operating arcs or filaments under pressure; however, it appears that highly efficient light of the future will result from a radical departure.

Scientists are becoming more and more intimate with the structure of matter. They are learning secretsevery year which apparently are leading to a fundamental knowledge of the subject. When these mysteries are solved, who can say that man will not be able to create elements to suit his needs, or at least to alter the properties of the elements already available? If he could so alter the mechanism of radiation that a hot metal would radiate no invisible energy, he would have made a tremendous stride even in the production of light by virtue of high temperature. This property of selective radiation is possessed by some elements to a slight degree, but if treatment could enhance this property, luminous efficiency would be greatly increased. Certainly the principle of selectivity is a byway of possibilities.

A careful study of commonplace factors may result in a great step in light-production without the creation of new elements or compounds, just as such a procedure doubled the luminous efficiency of the tungsten filament when the gas-filled lamp appeared. There are a few elements still missing, according to the Periodic Law which has been so valuable in chemistry. When these turn up, they may be found to possess valuable properties for light-production; but this is a discouraging byway.

It is natural to inquire whether or not any mode of light-production now in use has a limiting luminous efficiency approaching the ultimate limit which is imposed by the visibility of radiation. The eye is able to convert radiant energy of different wave-lengths into certain fixed proportions of light. For example, radiant energy of such a wave-length as to excite the sensation of yellow-green is the most efficient and onewatt of this energy is capable of being converted by the visual apparatus into about 625 lumens of light. Is this efficiency of conversion of the visual apparatus everlastingly fixed? For the answer it is necessary to turn to the physiologist, and doubtless he would suggest the curbing of the imagination. But is it unthinkable that the visual processes will always be beyond the control of man? However, to turn again to the physics of light-production, there are still several processes of producing light which are appealing.

Many years ago Geissler, Crookes, and other scientists studied the spectra of gases excited to incandescence by the electric discharge in so-called vacuum tubes. The gases are placed in transparent glass or quartz tubes at rather low pressures and a high voltage is impressed upon the ends of these tubes. When the pressure is sufficiently low, the gases will glow and emit light. Twenty-eight years ago, D. McFarlan Moore developed the nitrogen tube, which was actually installed in various places. But there is such a loss of energy near the cathode that short "vacuum" tubes of this character are very inefficient producers of light. Efficiency is greatly increased by lengthening the tubes, so Moore used tubes of great length and a rather high voltage. As a tube of this sort is used, the gas gradually disappears and it must be replenished. In order to replenish the gas, Moore devised a valve for feeding gas automatically. An advantage of this mode of light-production is that the color or quality of the light may be varied by varying the gas used. Nitrogen yields a pinkish light; neon an orange light; and carbon dioxide a white light. Moore's carbon-dioxidetube is an excellent substitute for daylight and has been used for the discrimination of colors where this is an important factor. However, for this purpose devices utilizing color-screens which alter the light from the tungsten lamp to a daylight quality are being used extensively.

The vacuum-tube method of producing light has an advantage in the selection of a gas among a large number of possibilities, and some of the color effects of the future may be obtained by means of it. Claude has lately worked on light-production by vacuum tubes and has combined the neon tube with the mercury-vapor tube. The spectrum of neon to a large extent compensates for the absence of red light in the mercury spectrum, with a result that the mixture produces a more satisfactory light than that of either tube. However, this mode of light-production has not proved practicable in its present state of development. Fundamentally the limitations are those of the inherent spectral characteristics of gases. Doubtless the possibilities of the mechanisms of the tubes and of combining various gases have not been exhausted. Furthermore, if man ever becomes capable of controlling to some extent the structure of elements and of compounds, this method of light-production is perhaps more promising than others of the present day.

There is another attractive method of producing light and it has not escaped the writer of fiction. H. G. Wells, with his rare skill and with the license so often envied by the writer of facts, has drawn upon the characteristics of fluorescence and phosphorescence. In his story "The First Men in the Moon," theinhabitants of the moon illuminate their caverns by utilizing this phenomenon. A fluorescent liquid was prepared in large quantities. It emitted a brilliant phosphorescent glow and when it splashed on the feet of the earth-men it felt cold, but it glowed for a long time. This is a possibility of the future and many have had visions of such lighting. If the ceiling of a coal-mine was lined with glowing fireflies or with phosphorescent material excited in some manner, it would be possible to see fairly well with the dark-adapted eyes.

This leads to the class of phenomena included under the general term "luminescence." The definition of this term is not thoroughly agreed upon, but light produced in this manner does not depend upon temperature in the sense that a glowing tungsten filament emits light because it is sufficiently hot. A phosphorus match rubbed in the moist palm of the hand is seen to glow, although it is at an ordinary temperature. This may be termed "chemi-luminescence." Sidot blende, Balmain's paint, and many other compounds, when illuminated with ordinary light, and especially with ultra-violet and violet rays, will continue to glow for a long time. Despite their brightness they will be cold to the touch. This phenomenon would be termed "photo-luminescence," although it is better known as "phosphorescence." It should be noted that the latter term was carelessly originated, for phosphorus has nothing to do with it. The glow of the Geissler tube or electrically excited gas at low pressure would be an example of "electro-luminescence." The luminosity of various salts in the Bunsen-flame is due to so-called luminescence and there are many other examples of light-production which are included in the same general class. Inasmuch as light is emitted from comparatively cold bodies in these cases, it is popularly known as "cold" light.

There are many instances of light being emitted without being accompanied by appreciable amounts of invisible radiant energy and it is natural to hope for practical possibilities in this direction. As yet little is known regarding the efficiency of light-production by phosphorescence. The luminous efficiency of the radiant energy emitted by phosphorescent substances has been studied, but it seems strange that among the vast works on phosphorescent phenomena, scarcely any mention is made of the efficiency of producing light in this manner. For example, assume that phosphorescent zinc sulphide is excited by the light from a mercury-arc. All the energy falling upon it is not capable of exciting phosphorescence, as may be readily shown. Assuming that a known amount of radiant energy of a certain wave-length has been permitted to fall upon the phosphorescent material, then in the dark the latter may be seen to glow for a long time. An interesting point to investigate is the relation of the output to input; that is, the ratio of the total emitted light to the total exciting energy. This is a neglected aspect in the study of light-production by this means.

The firefly has been praised far and wide as the ideal light-source. It is an efficient radiator of light, for its light is "cold"; that is, it does not appear to be accompanied by invisible radiant energy. But little is said about its efficiency as a light-producer. Who knowshow much fuel its lighting-plant consumes? The chemistry of light-production by living organisms is being unraveled and this part of the phenomenon will likely be laid bare before long. For an equal amount of energy radiated, the firefly emits a great many times more light than the most efficient lamp in use at the present time, but before the firefly is pronounced ideal, the efficiency of its light-producing process must be known.

There are many ways of exciting phosphorescence and fluorescence, the latter being merely an unenduring phosphorescence, which ceases when the exciting energy is cut off. Ultra-violet, violet, and blue rays are generally the most effective radiant energy for excitation purposes. X-rays and the high-frequency discharge are also powerful excitants. As already stated, virtually nothing is known of the efficiency of this mode of light-production or of the mechanism within the substance, but on the whole it is a remarkable phenomenon.

Radium is also a possibility in light-production and in fact has been practically employed for this purpose for several years. It or one of its compounds is mixed with a phosphorescent substance such as zinc sulphide and the latter glows continuously. Inasmuch as the life of some of the radium products is very long, such a method of illuminating watch-dials, scales of instruments, etc., is very practicable where they are to be read by eyes adapted to darkness and consequently highly sensitive to light. Whether or not radium will be manufactured by the ton in the future can only conjectured.

Owing to the limitations imposed by physical laws of radiation and by the physiological processes of vision the highest luminous efficiency obtainable by heating solid materials is only about 15 per cent. of the luminous efficiency of the most luminous radiant energy. At present there are no materials available which may be operated at the temperature necessary to reach even this efficiency. Great progress in the future of light-production as indicated by present knowledge appears to lie in the production of light which is unaccompanied by invisible radiant energy. At present such phenomena as fluorescence, phosphorescence, the light of the firefly, chemi-luminescence, etc., are examples of this kind of light-production. Of course, if science ever obtains control over the constitution of matter, many difficulties will disappear; for then man will not be dependent upon the elements and compounds now available but will be able to modify them to suit his needs.

In this age of brilliantly lighted boulevards and "great white ways" flooded with light from shop-windows, electric signs, and street-lamps, it is difficult to visualize the gloom which shrouded the streets a century ago. As the belated pedestrian walks along the suburban highways in comparative safety under adequate artificial lighting, he will realize the great influence of artificial light upon civilization if he recalls that not more than two centuries ago in London

it was a common practice ... that a hundred or more in a company, young and old, would make nightly invasions upon houses of the wealthy to the intent to rob them and that when night was come no man durst adventure to walk in the streets.

it was a common practice ... that a hundred or more in a company, young and old, would make nightly invasions upon houses of the wealthy to the intent to rob them and that when night was come no man durst adventure to walk in the streets.

Inhabitants of the cities of the present time are inclined to think that crime is common on the streets at night, but what would it be without adequate artificial light? Two centuries ago in a city like London a smoking grease-lamp, a candle, or a basket of pine knots here and there afforded the only street-lighting, and these were extinguished by eleven o'clock. Lawlessness was hatched and hidden by darkness, and even the lantern or torch served more to mark the victim thanto protect him. It has been said in describing the conditions of the age of dark streets that everybody signed his will and was prepared for death before he left his home. By comparison with the present, one is again encouraged to believe that the world grows better. Doubtless, artificial light projected into the crannies has had something to do with this change.

Adequate street-lighting is really a product of the twentieth century, but throughout the nineteenth century progress was steadily made from the beginning of gas-lighting in 1807. In preceding centuries crude lighting was employed here and there but not generally by the public authorities. In the earliest centuries of written history little is said of street-lighting. In those days man was not so much inclined to improve upon nature, beyond protecting himself from the elements, and he lighted the streets more as a festive outburst than as an economic proposition. Nevertheless, in the early writings occasionally there are indications that in the centers of advanced civilization some efforts were made to light the streets.

The old Syrian city of Antioch, which in the fourth century of the Christian era contained about four hundred thousand inhabitants, appears to have had lighted streets. Libanius, who lived in the early years of that century, wrote:

The light of the sun is succeeded by other lights, which are far superior to the lamps lighted by Egyptians on the festival of Minerva of Sais. The night with us differs from the day only in the appearance of the light; with regard to labor and employment, everything goes on well.

The light of the sun is succeeded by other lights, which are far superior to the lamps lighted by Egyptians on the festival of Minerva of Sais. The night with us differs from the day only in the appearance of the light; with regard to labor and employment, everything goes on well.

Although apparently labor was not on a strike, the soldiers caused disturbances, for in another passage he tells of riotous soldiers who

cut with their swords the ropes from which were suspended the lamps that afforded light in the night-time, to show that the ornaments of the city ought to give way to them.

cut with their swords the ropes from which were suspended the lamps that afforded light in the night-time, to show that the ornaments of the city ought to give way to them.

Another writer in describing a dispute between two religious adherents of opposed creeds stated that they quarreled "till the streets were lighted" and the crowd of onlookers broke up, but not until they "spat in each other's face and retired." Thus it is seen that artificial light and civilization may advance, even though some human traits remain fundamentally unchanged.

Throughout the next thousand years there was little attempt to light the streets. Iron baskets of burning wood, primitive oil-lamps, and candles were used to some extent, but during all these centuries there was no attempt on the part of the government or of individuals to light the streets in an organized manner. In 1417 the Mayor of London ordained "lanthorns with lights to bee hanged out on the winter evenings betwixt Hallowtide and Candlemasse." This was during the festive season, so perhaps street-lighting was not the sole aim. Early in the sixteenth century, the streets of Paris being infested with robbers, the inhabitants were ordered to keep lights burning in the windows of all houses that fronted on the streets.

For about three centuries the citizens of London, and doubtless of Paris and of other cities, were reminded from time to time in official mandates "onpains and penalties to hang out their lanthorns at the appointed time." The watchman in long coat with halberd and lantern in hand supplemented these mandates as he made his rounds by,


Back to IndexNext