VIIITHE MODEL AEROPLANE

The automobile experiment naturally suggested the aeroplane, and after much reading of magazines and animated discussions as to the relative advantages of biplanes, monoplanes, gliders, etc., the boys decided to try their skill on a biplane of their own design, a combination of the features and proportions of the Curtiss and Wright machines.

The automobile was child's play compared with the problems confronting the young aviators in designing and working out a flying machine, and, as in the former case, the question of motive power was the most difficult. We might add it has not yet been satisfactorily solved.

Fig. 48shows the general appearance of the boys' model, which was eighteen inches long from front to back, and the planes, made of light card-board, were 14 inches long and 31⁄2inches wide. The frame, braces, rudder, and tilting plane were made of1⁄8-inch basswood, put together with1⁄2-inch brads clinched wherever the points came through.

The parts composing the frame were made first, and all small details, such as rudder, propeller, tilting plane, etc., cut out later.

The separate parts are shown in the drawing. Four straight pieces likeawere required to support the tilting plane in front, and two pieces eachbandcfor the rudder in the rear. Two piecesa, one ofbandcwere fastened together by means of two uprightsd, forming one complete side of the machine. This was completed, and the second side made identical with it.

These two sides were then fastened parallel with each other, rigidly, by means of the two rudder postse eand the cross piecesf f, by brads. The rudder posts bound the two sides rigidly at the rear, the cross pieces at the centre, and at the forward end the tilting plane was held in position by the brads, which also acted as pivots.

This made a remarkably light and yet strong framework. The card-board planes were not placed in position until everything else was finished, as they could be attached easily and quickly, but were very much in the way when experiments were being made on the propelling apparatus.

Of course there had to be a propeller, and the problem of making it required some practice.

Ralph introduced the subject by showing Harry how to make an old-fashioned toy, shown in the detail drawing, of two pieces, one the propeller, the other a balancing stick.

The propeller was made of a piece of3⁄8-inch basswood, 4 inches long and1⁄2inch wide. A3⁄16-inch hole was first drilled at the exact centre. The two ends were then whittled down to the shape shown atk. The balancing stick was next whittled down until one end fitted tightly into the hole drilled in the propeller, and the rest of the stick then rounded until it was of uniform diameter. This stick was glued into the hole, and allowed to dry.

There was plenty of work to do while the glue was hardening, as the cross piecesg ghad to be fastened to the frame to prepare for the installation of the power plant.

When the glue was dry, Ralph took the balancing stick between the palms of his hands, drew his right hand toward him with a quick motion, at the same time releasing the stick. To Harry's amazement, the whole thing flew up and struck the ceiling, and for a few minutes aeroplanes were forgottenwhile the two played with this interesting but ancient toy.

Fig. 48. The toy biplane

Fig. 48. The toy biplane

Ralph explained that the propeller was simply part of a screw thread, and had actually worked its way through the air just as a screw works its way into a piece of wood. Its lifting power had been shown by the way it carried the balancing stick with it up to the ceiling.

"Now," he continued, "when we place a propeller horizontal it will worm its way forward through the air in the same way and carry the aeroplane with it, for the simple reason that it is so placed in the frame it can't get out. As the free space it has to revolve in is only 3 inches, we shall have to cut the blades down to about 23⁄4inches to give it clearance."

They whittled out a shaft 11⁄2inches long and fastened the two notched piecesh hto it after placing the propeller in position between the two cross piecesg gwhich had been previously drilled with1⁄4-inch holes to act as bearings.

New rubber bands were then passed over the notches, stretched out to the front and rear of the frame, and tied to cross pieces.

By winding up the propeller, these bands were twisted tightly, and when the propeller wasreleased, the bands unwound, causing it to revolve rapidly.

The rudder was now pivoted in position by brads, and the two planes fastened by the same method.

The power derived from the bands was not sufficient to propel the aeroplane fast enough to support it in the air, so it was necessary to experiment with strong thread until the centre of gravity was found. It proved to be near the centre of the planes. Small holes were made with an awl at this point, the thread passed through them and tied. By suspending the aeroplane from a chandelier it took up a horizontal position.

Then the forward tilting plane was elevated slightly and the propeller wound up. On being released the aeroplane slowly and majestically sailed through the air in a great circle, limited by the length of the suspending thread.

The boys never tired of this toy and all it lacked was the ability to fly in the open air, which would require a more powerful motor. This would more than double the weight of the machine, and therefore call for larger planes to support it. There you have the great problem of the aviator.

Ralph wisely suggested that as they had not yet reached the stage of designing gasolene motors they had better leave the aeroplane as it was, or it would be necessary to abandon their woodwork, which neither of them had any intention of doing.

A very satisfactory monoplane can be made from the plans shown inFig. 49.

The material for the frame should be quarter-inch white pine or spruce. The six long strips are 30 inches in length, and for fastening, holes should be drilled and the connection made by passing fine soft wire through them and binding fast.

The top frame, formed of four of these long strips, should be made first, with particular attention to the measurements, so that both sides shall be exactly the same size and weight.

At the rear end the two long strips may be wired together temporarily. The propeller shown in the drawing can be made at any time from a piece of white pine7⁄8inch thick and 12 inches long by 13⁄4inches wide. It is a good piece of whittling work.

Fig. 49

Fig. 49

Fig. 49 (a). The toy monoplane.

Fig. 49 (a). The toy monoplane.

The3⁄8-inch hole for the shaft should be bored first, and the propeller blades reduced to athickness of1⁄8inch at the centre of the blade, and1⁄16inch or less at the edges.

The shaft needs to be strong, and should be made of a piece of3⁄8-inch dowel rod. Make a saw cut with back saw in the end, which is to be fastened in the propeller.

When ready to assemble, push this end into the3⁄8-inch hole in the propeller, drive in a soft pine wedge with a little glue, and a rigid fastening will result.

The groove in the rear end of the shaft is to take the thrust of the propeller, and hold it in the machine. This groove may be readily cut out with the knife, and smoothed with sand-paper. Two bearings are necessary to hold the shaft in alignment. The forward one is a strip of pine1⁄4by3⁄4, with a3⁄8-inch hole bored at the centre. This hole should be sand-papered until the shaft turns in it freely. The rear bearing is a strip5⁄8by3⁄8inch, laid out as shown ata. The quarter-inch hole must be bored first. Next, drill two small holes with a fine drill on either side of the hole for the wires which are to hold the two pieces together. Next saw on the pencil line shown, removing the small piecex. Test the bearing by placing the small grooved section of the shaft in the quarter-inchhole to see if it turns freely. When this has been accomplished, the propeller and its bearings are ready for the monoplane.

Looking at the front view, the two uprights are 9 ×3⁄4×1⁄4inches. At the top ends they are rabbeted as shown, and wired to the top frame. At the bottom they are wired to the long strips which form the long sides of the bottom frame.

Before putting these uprights on, a1⁄4-inch hole should be drilled 11⁄2inches from the bottom of each. These are to receive the1⁄4-inch dowel rod which acts as the axle for the spools. This rod should be 10 inches or more in length, so that brads or wire may be passed through the ends outside the uprights to keep the axle in place.

The small spool which acts as a pulley must be perfectly free to turn on this rod, and be kept in place by two brads driven through drilled holes on either side of it.

The front and lower parts of the frame are now ready to be assembled.

The four long strips constituting the body of the frame are all wired together at the back, temporarily. To finish the forward part, saw out a strip3⁄8×1⁄4inch, and form on each end a rounded bearing, as in the automobile, for two wheels 13⁄4inches in diameter. Saw the wheels out of3⁄16-inch basswood, drill a hole at each centre, place on thebearing, and fasten in place with a flat-head wire nail and a small washer next to the wheel. Sand-paper the wheels smooth, and see that they turn freely. Tack the strip, or wire it to the uprights, as low down as possible.

The rear end of the monoplane is a nice little problem. Cut out a block of pine from 1 inch to 11⁄8inches square. In the side facing the front place a screw eye for fastening the spring or rubber bands.

The rudder is shown in the drawing. Drill two holes, as shown, and drive in brads or flat-head wire nails, as large as the hole, so that the rudder may be turned by hand, but not free enough to turn with the wind.

Next drill a hole clear through the block for the axle of the tilting planes.

It is not necessary that the axle be at the exact centre of the cube. It should extend quite through both planes as well as the cube, and be bent around the edges, so as to make them rigid. They should be snug enough to turn by hand, but not loose enough for the wind to shift.

The four sides of the frame are now whittled down to fit the block, and wired to it.

Last comes the question of motive power.

This isthegreat problem. The writer is opposed to encouraging boys to believe that these toy aeroplanes can be made to fly great distances. The propeller would have to be made to revolve at high speed for several minutes in order to accomplish this, and the tension of rubber bands is not equal to it. The machines can be made to fly short distances only. The problem of aviation is now a question of motors, and the smallest gasolene motor, with its tank, etc., requires a fairly large aeroplane to lift it. No doubt, the problem will be solved within a short time, but it has not been done at the time of writing.

For this size of toy monoplane several large rubber bands may be tied together, fastened at the screw eye on one end and to a piece of strong linen kite cord at the other.

Pass this cord forward under the spool and up to the propeller shaft.

Drill a small hole in the shaft, draw the cord taut, and fasten it through this hole.

While the model has no planes as yet, it is wise to get the propeller working before putting them on,as the space for working is freer. Wind up the propeller until the bands have been stretched to their limit, then let go. It may be necessary to place wheels at the rear, the same as in front. On a smooth floor, the machine should be drawn forward several feet by the action of the propeller.

It is entirely practicable, on a plane of this size, to use the works of an ordinary alarm clock in place of rubber bands.

Remove the outer casing of an old clock; loosen the four brass nuts that hold the frame together, and take out all the wheels, except the axle on which the mainspring is fastened. Put the frame together again with the four nuts.

The axle for the mainspring extends outside of the frame, and is threaded to receive the handle for winding. Take this handle off. Drill a hole in the end of the propeller shaft, slightly smaller than the mainspring axle, and screw the latter into the propeller shaft.

You now have the clock-works on the end of your shaft, and it is necessary to fasten a strip of pine1⁄2in. by1⁄4in. to the upper sticks of the frame in order to wire the works fast, as they must not be allowed to turn. By turning the propeller you wind up the clock, and as soon as you release it, asthere is no escapement now to regulate the spring, it tries to unwind at once, and the propeller starts at terrific speed. Look out for your hands, as the propeller blades have no conscience.

This action, although strenuous, is short lived, but much more powerful than rubber bands. The spring of an ordinary alarm clock is powerful enough to drive a wooden two-bladed propeller 12 inches in diameter with blades two inches wide at the outside. It will draw a monoplane of this size along the floor several feet.

Having finally decided the question of power, it remains to attach the planes.

The remaining long strip is wired to the top pieces, 12 inches from the front, and the plane, made of silk, oiled paper, or very thin card-board, attached.

In many toy aeroplanes the bands of rubber are not stretched, but twisted. The shaft in this case is a wire which, after being fastened to the propeller, passes through a glass bead and then the frame, ending in a hook to which the rubber bands are attached. There must be a perfectly clear space from front to back of the frame. The glass bead between the propeller and frame is to relieve the friction.

Making and experimenting with aeroplanes calls for much patience and often ends in disappointment—the lot of inventors generally. This is no reason why work should stop, as all progress is made by attempting the supposedly impossible, but it will be restful after a while to turn to the ancient and gentle art of kite making.

Incidentally, something may be learned about the effect of wind on plane surfaces that will prove helpful in aeroplane work.

The aeroplane kite shown inFig. 50is simple and effective. It may be given the appearance of a Blériot monoplane by modifying some of its features, as shown atb, the planes having a slight upward slant. The arrangement of the frames is clearly shown in the drawing. Spruce or white pine may be used, as lightness is an essential.

The method of fastening the sticks is important. It is not wise to halve them, as their strength will be reduced below the safety point, and nails arelikely to split them. Bind them securely with strong linen kite cord or fine soft wire.

Kiteais open to criticism on account of the single stick connecting front and back. The second form is better, and the two long sticks may be correspondingly lighter without reducing the ultimate strength of the frame. The method of joining three sticks, as at the forward end, is shown in detail inFig. 50. Wherever a butt joint occurs, join the two pieces by means of small strips of tin cut to size with a pair of tinsmith snips. Drill holes through tin and sticks, pass fine soft wire through the hole, and twist tightly with a pair of pliers.

The planes or sails may be of light, strong paper, or some light fabric, such as lawn or cheap silk. The fabric should be cut to size, allowing two inches each way for the hem. Pieces of cord are fastened to the hem, and tied to the ends of the sticks through small holes drilled for the purpose, or tied to notches cut with the knife.

The advantage of this method is that the sails, or planes, may be drawn tightly or removed without loss of time. In this way a number of fabrics can be used for experimental purposes. Paper, on the other hand, must be lapped over sticks and wires, and glued.

Propellers may be fastened to front, rear, or both, to create the appearance of a real aeroplane.

The restraining action of the cord holding one of these kites up against the wind brings into action the same force that supports the glider or aeroplane, and the sails, especially fabrics, assume the curve of a boat sail, when close-hauled and sailing into the wind.

The forms that are possible are infinite, and limited only by the imagination of the designer.

It is well to begin with one of the standard types, and leave experimental forms until some experience has been gained.

The Americanized Malay, Eddy, or parakite is shown inFig. 50. The two sticks are of equal length, bound together with twine or soft wire. Distancec eshould be from 14 to 18 per cent. of the total lengthc d. The vertical stick remains straight, but cross sticka bis bent back like a bow, the distancee fbeing 10 per cent. of the total length of either stick, and maintained by a string fromatob. The four pointsa c b dare joined by a cord drawn taut, to make sure that the sticks are at right angles.

Fig. 50.

Fig. 50.

The material should be cut as shown, the amount lapped being uniform all around. This is important,as a slight difference in weight between the two sides would result in erratic flying. For Eddy kites up to three feet in height a light-weight wrapping paper will answer very well. Larger sizes require nainsook, lawn, or China silk. Like all the kites described here, this is a tailless one, and the method of fastening the bridle is shown. Make a small hole in the covering, pass a cord through, and tie it to cross the stick at its centre. Fasten the other end about half an inch from lower end of upright, and make a loop atofor attaching the line.

The kite line should be the light and strong linen twine made especially for this purpose, and sold by toy and sporting goods dealers. A ball containing 600 yards of cord, strong enough to hold any three-foot kite, will cost about fifty cents.

For larger sizes, it pays to make a reel, to save time drawing in and to avoid bad tangles. A simple form of reel is shown inFig. 51.

The frame has a generous-sized hole bored as shown ath. Cut a small branch in the form shown,i, and use this as a stake. Drive it into the ground throughh, and use it as a pivot to shift the reel as the wind changes. With this arrangement the kite cannot drag the reel, and it is possible to leavethe apparatus with the kite in the air. The writer was driven to using this device after seeing his reel go tearing across the fields until stopped by a four-foot fence. The pull exerted at the reel by a train of three or four kites is sometimes sufficient to give a boy all he can do to hold it. The height to which a kite will go is illustrated by the diagram.Sis the starting point, ands tthe direction of the string at the start, when but little cord has been played out. The position of the kite at various times is indicated by lettersa b c d e, the actual path being shown by dotted line. The solid, curved lines fromsto these points show the position of the cord as it is played out. This is a mathematical curve resulting from the weight of cord and kite, wind pressure on cord, and lifting power of the plane.

It will be seen that the kite finally moves along horizontally, no matter how much cord is played out. This occurs when the lifting power equals the force of gravity and wind pressure. In other words, the kite can do no more without an increase of wind.

To make it go higher, we must raise pointsby tandem flying, attaching another kite and cord to the first one, as shown atx.

Three or four Eddy kites may be flown in this way, the lines of equal or unequal length joined at a common point to the main line; and, strange as it may seem, if they are well balanced kites they will not interfere with each other. In fact, there seems to be an electrical repulsion among the lines, so that they spread out like a broom.

This is one of the most interesting discoveries in kite flying, though badly upset in actual practice, when one member of the team becomes erratic and proceeds to make a braid of the four cords by diving under and over the others to bring about a general demoralization. For this reason, it is wise to test each kite separately, first, to discover any possible tendency to freakishness.

A weird experience may be enjoyed by leaving the tandem out after dark. Run the main line down by slipping it under your arm, and walk out until you reach the junction of the four lines, where a light-weight lantern can be attached. Let go, and see the lantern apparently drawn up into the air by noiseless, invisible hands.

Flags and other devices may be attached as indicated in the drawing; a light stick ata bwill keep the flag from blowing up into a heap, and loopsataandcare tied in the main line to avoid sliding.

The cellular kite is made in several forms. The rectangular box variety is perhaps the most common, and with the bridle attached is shown inFig. 51. The standard dimensions are: lengtha b79 inches, widtha c78 inches, depth of cellc d32 inches, and width of cloth coveringc e25 inches. A very convenient size is obtainedby dividing approximately by two, making length and width 40 inches each, and depth 16 inches.

Fig. 51. Kite details

Fig. 51. Kite details

Mr. H. H. Clayton, of the Blue Hill Observatory, has patented one form of this kite known as the "Blue Hill Naval Box Kite," so the amateur must confine his use of it to experimenting. Other forms of cells which have been used are shown at 2 3 4 5. These all possess the advantage—that each plane is a lifting surface, whereas in the rectangular form the vertical planes have only a rudder action, tending to hold the kite parallel with the wind.

When launching a box kite, the assistant stands in front of and under it, while with the Malay he stands behind it and lets go at a given word. About a hundred yards of line should be run out before launching, and only a few steps backward by the boy at the string should be necessary. Running is only required when the line out is insufficient.

Fig. 52. The tetrahedral kite

Fig. 52. The tetrahedral kite

The tetrahedral form invented by Dr. Graham Bell is unique and interesting. Based on the geometrical figure, it has a remarkable strength of frame, and possesses a surprising lifting power. The principal difficulty in the construction is infastening the sticks, as three of them meet at every point. The frame consists of six pieces of equal length. Drill a1⁄32-inch hole in each end of all the pieces, about1⁄4inch from the end. Place the pieces on the floor as shown at 1. Pass a piece of soft iron or brass wire through the three holes ataand bind lightly. Do the same at anglesbandc. Now raise loose endsd e funtil they meet over the centre, as at 2. Join with wire andtighten all the joints with a pair of pliers. (Fig. 52.)

Each face of the frame is an equilateral triangle, and the covering is to be on only two sides, as shown at 3. The shape of the piece to be cut is shown at 4. This forms a single cell, and the large sizes are broken up into many small tetrahedral cells. The line may be tied atcord.

The designing of fancy figure kites is a fascinating occupation, but unless certain fixed principles are kept in mind may end in much experimenting and many disappointments. The question of steadiness or stability seems to be summed up in the mathematical expression—"dihedral angle."

A kite having a stiff, flat surface presented to the wind will often cut up queer antics, while the same frame covered with a more flexible covering will fly beautifully. The reason is that the flexible covering will be bowed back by the wind, forming an approximate "dihedral angle."

In the triangular box and tetrahedral kites this bowing back is not so necessary, because the dihedral angle is provided in the construction.

In these kites, when a sudden gust of wind presses harder on one side than on the other, the first sideis pressed back, reducing the resistance, and the other side is brought forward until both sides receive equal pressure, or the kite is in equilibrium, facing the wind; and the shifting of the breeze is constantly provided for. The bowing back of the covering of an Eddy kite takes care of sudden changes in the same way. Double Malay kites or two tetrahedral kites, fastened together, tandem fashion, will be found stable, especially if the rear one be slightly smaller than the forward one. (Fig. 53.)

Fig. 53. Double kites

Fig. 53. Double kites

Geometrical forms like the hexagon, six-pointed star, and even the circle are used, but these generally require a tail.

A butterfly design may be used, provided the body is designed as a keel and the two wings are tilted backward to provide the required angle.In some of the Chinese kites, in the form of insects, the wings have split bamboo frames, flexible enough to bend backward and provide the necessary stability. A flexible lower end on the frame also has a good balancing effect.

"Making moving toys is a form of dissipation," said Ralph. "It is very fascinating and interesting, but the making of many toys will never make one an expert woodworker. The accuracy and skill required can be developed only by actual constructive work. I suggest that we take up a form of decoration which can be done with the knife.

"There are two ways of making an article in wood pleasing to the eye. One is by varying the outline, as we did in our match scratchers, and the other is by some kind of surface ornamentation. There are many ways of decorating surfaces—carving, pyrography, staining, polishing, etc., and very often several of these methods are combined.

"As we have started to learn the possibilities of knife work, I propose to teach you a form of carving which can be done with the knife alone. Very elaborate work is done with the regular carving tools. This requires a great deal of time and skill,but with the knife alone a wonderful variety of beautiful work can be done even by small boys.

"It is very important to approach it properly, so I am going to give you a few simple exercises and the elaborate designs will come along naturally.

"The work is not new, and evidently grew out of the still older art of notching. Primitive peoples probably saw in it a way to improve the appearance of their various wooden implements. Not only could the edges be notched, but the cutting could be done on flat surfaces as well."

Fig. 54. First cuts in carving

Fig. 54. First cuts in carving

Fig. 54atashows one of the earliest designs. It is simply a border of triangular cuts, and while this may be done with the whittling knife,Fig. 55shows two knives which are better fitted to do accurate work.

Fig. 55. Two good types of knife for carving

Fig. 55. Two good types of knife for carving

The positions for carving are shown inFig. 56. Hold the knife in an upright position, with the cutting edge away from you, and the point on the apex of the triangle. Press the knife down and then away from you along one of the sides of the triangle. Place it in position again, and repeat the motion along the other side of the triangle, always directly on the line. This brings the deep part of the cut at the apex of the triangle, and it remains to take out the triangular chip. This can be done in either of the two ways shown inFig. 56, by cutting away from you or toward you. It is well to practise both ways, as in complicated designs the direction of the grain makes it necessary to cut sometimes in one direction, sometimes in another.

The rest of this border is a repetition of the same stroke, and the more elaborate designs are simply different arrangements of triangular cuts.

In Fig 54,bshows two rows of these same shaped cuts, one row inverted, to produce a diamond-shaped border;cshows a border in which the drawing is similar tob, but vertical triangles are cut instead of horizontal ones, as this gives a cut across the grain of the wood instead of parallel to it, and is a trifle harder.

Fig. 56. Positions for holding carving knife

Fig. 56. Positions for holding carving knife

Our boys practised on these simple borders for awhile, using knifeaand1⁄4-inch basswood. The work proved fully as fascinating to Harry asthe making of toys, and it was decided that from that time onward the outlines of their woodwork should be simpler, and the decoration should be in the form of chip carving.

Fig. 57. A simple picture frame with carving

Fig. 57. A simple picture frame with carving

While Harry was practising on these simple borders Ralph made the basswood photograph frame shown inFig. 57, and drew the carving design, as shown, with an H pencil.

To carve this was simply to repeat borderb.This was so satisfactory that Ralph decided to try his pupil on finer work, and the design shown inFig. 58was tried. In each case Harry found that he was making triangular cuts, and removing triangular chips, just as in the first border, only the triangles were in different positions. Ralph suggested that they begin to decorate some of the things they had already made, and the little basswood box shown inFig. 33was brought out, and the design shown inFig. 59drawn and carved upon it.

Fig. 58. A more elaborate picture frame

Fig. 58. A more elaborate picture frame

There followed a number of "backs," whichRalph explained could be used as thermometer backs, match scratchers, calendars, key racks, and in other ways. In each case, the design was drawn carefully on paper, and thence transferred to the surface of the wood with the same care that it had been done on paper. The designing required considerable thought.

Figs. 59 and 60. Designs for box covers

Figs. 59 and 60. Designs for box covers

Where a border continued around four sides, thecorner became the most difficult and interesting part of the design, and was worked out first. (Fig. 61.)

Fig. 61. Straight line designs for thermometer backs

Fig. 61. Straight line designs for thermometer backs

Very soon the boys found that it was necessary to draw only half the design on paper, and in many cases a corner or quarter sufficed.

The next step was to initiate Harry into the mysteries of curved cutting, a departure from triangular cutting.

He was informed that the cuts were still three-sided, one or two of the sides being but slightly curved.

Fig. 62. Curved cuts.

Fig. 62. Curved cuts.

Fig. 62, used as an enrichment of a "back" in3⁄8-inch gum wood, was Harry's first effort in curved chip carving. The edges of the blank piece were bevelled with a plane and Ralph showed his pupil how to do this by holding the blank against a bench hook. The long sides were bevelled first, the ends last, to avoid breaking off the corners.

Fig. 63. Key rack

Fig. 63. Key rack

The key rack (Fig. 63) gave an opportunity to use centre pieces inside a border, diamonds of the flat surface being left uncarved for the placing of the screw hooks.

A pencil box for school followed, the various pieces being shown inFig. 64. The two sides and ends were made in one strip 11⁄4inches wide, and afterward cut to length. To secure this strip of uniform width, the shooting board shown in Fig. 65 was used, the plane being laid on its side, giving the1⁄4-inch piece of gum wood a perfectly square edge.

Fig. 64. The pencil box

Fig. 64. The pencil box

Ralph was having his own troubles as a teacher about this time, for he wanted to reserve Harry's education in the use of bench tools until later on, when he should have exhausted the possibilities of the knife; but this method of using the plane was necessary if Harry was to produce blank forms fit for decoration.

The six pieces being squared up, a1⁄4-inch marginwas left on all sides of the pieces to be carved—the top, front, and two ends.

This1⁄4-inch space was for the brads.

Fig. 65. Use of shooting board

Fig. 65. Use of shooting board

The assembling was not done until the carving had been finished, and it consisted of fastening the long sides to the ends with5⁄8-inch brads, with a little glue on the end grain of the end pieces. The bottom was put on with brads, and the top hinged to the back by two small nickel-plated hinges. A little hook and eye from the hardware store were put at the front to hold the cover on, and two small cleats were glued to the under side of the cover to keep it from warping.

The time spent on this pencil box was several hours, but the result was a box the like of which could not be bought.

Fig. 66. Carving designs for pencil box

Fig. 66. Carving designs for pencil box

Pencil boxes became the rage with our boys, and although they made several of the same size, in each case the design was different. (Fig. 66.)

Among the many useful articles which can be made with the knife in thin wood, with carving as enrichment, are the numerous desk accessories, such as envelope holders, letter racks, stamp and pen boxes, pen trays, blotting pads, etc. The boys, after exhausting the subject of pencil boxes for school use, took up the design and construction of letter racks. These, they decided, should be in two compartments for answered and unanswered letters. This called for three uprights, or partitions, and a base. They decided to make them of about uniform dimensions, as shown in the blank form (Fig. 67). The problem of the outline was somewhat affected by the fact that the front was to be carved. This called for a simpler outline than would have been the case had they expected to leave the surface plain. Some of the designs they worked out are shown inFig. 68.

The form markedawas selected as a beginning, the three partitions cut out exactly alike, and thefront piece carved as shown in Fig. 69. The middle partition and back piece were left with plain surfaces.


Back to IndexNext