XVIIMILLS AND WEATHER VANES

Fig. 93. The lumber rack

Fig. 93. The lumber rack

Four of the uprights were spaced three feet apart, and held in place at top and bottom by blocks nailedto the ceiling and floor. A carpenter would have simply "toe-nailed" them by driving nails at an angle through the ends of the uprights into the floor, but the boys were not yet skilled in carpenters' methods. An ideal lumber rack is made of galvanized iron pipe. It is indestructible, fire-proof, rather expensive, and the joints are regular pipe fitter's joints, elbows, tees, crosses, and floor plates.

This was beyond our boys' pocket-book, as it would have required the services of a pipe fitter.

One of the uprights laid out and partly cut is shown ata, the openings having been taken out with cross cut saw and chisel.

On one of the upper tiers the cross pieces were made eight inches longer than the others, and where they extended beyond the front of the rack pieces of pine 6 × 2 ×7⁄8inches were nailed to the ends, making a convenient hook for hanging hand screws, which are always in the way on the floor. It also made a very convenient shelf for storing narrow waste strips of lumber, which should not be destroyed, as one can never tell when they will be needed.

In the case of a rack made of iron pipe, the ends of these long cross pieces need be only ordinary pipe elbows.

The labour of building a lumber rack was much heavier than anything the boys had done before, but it brought the larger muscles into play, seemed like real carpenter work, and was an excellent preparation for the finer tool work to follow. A boy who has never carried out a piece of large worksuccessfully cannot realize the satisfaction of looking at a really good piece of construction and being able to say, "I made that all myself!"

Fig. 94. First wind vane

Fig. 94. First wind vane

Ralph suggested that one or two things more were needed to make their equipment ship-shape—one was a tool cabinet, and another was some arrangement for storing small pieces of stock; but as both of these required considerable tool practice, they were recorded in a notebook as among the things to be done later on.

It was agreed that the shop needed a vane to show the direction of the wind, and the boys' designfor this is shown at Fig. 94. It included a weather vane and windmill.

The whole combination required five pieces of wood. The two short pieces, 7 inches long by 1 inch square, were first dressed to size, cut out and halved together as shown. They were then taken apart and cut to the lines shown, with a knife, making propeller blades similar to those made for the aeroplane. When both were finished, they were again put together, and a hole drilled through the centre a trifle larger than a flat-head wire nail 21⁄2inches long. This nail is to hold the mill to the horizontal piece. The nail is to be tight in this horizontal piece, but the windmill must revolve freely about the nail. It is for this reason that the hole in the mill must be slightly larger than the diameter of the nail.

The horizontal piece is bevelled on one end with the knife and has a1⁄4-inch slot sawed out at the other. The slot is to receive the wind vane. The vane was sawed out of1⁄4-inch wood, fitted into the slot and nailed with brads.

When all these parts were assembled, it was necessary to find the centre of gravity of the whole combination, as it is important that it be perfectly balanced.

To find the correct point, a light string was slipped under the horizontal piece and moved back and forth until the vane hung horizontally. The spot where the string touched the wood was marked with a pencil and a1⁄4-inch hole drilled at this point for the pivot. A corresponding hole was drilled 3 inches deep into the bevelled end of the standard.

A piece of1⁄4-inch maple dowel was used as a pivot, the upper end being sand-papered until the vane swung freely. The boys found that by placing a metal washer between the vane and its standard, much of the friction was removed. A wire nail driven into the standard through a hole drilled in the horizontal piece would have answered the same purpose as the dowel. When the centre of gravity is not found for the pivot, the vane is apt to tilt forward or backward and not only look badly, but bring considerable friction on one end, so that it will not revolve freely with the wind.

The subject of windmills and weather vanes opened up a field that seemed inexhaustible, and for a while there was a perfect furore of designing and experimenting. As usual, Harry wanted to try great schemes that Ralph knew were impracticable, and it required all his diplomacy to keep the boy down to earth, on something simple and within his power to do successfully.

One of his earliest attempts was a scheme to make a windmill on the principle of a water-wheel, placed horizontally to catch the wind.

Ralph knew that it would not work, but after arguing for some time, he decided to let the youngster learn by experience. While Harry was working at his project, Ralph sketched out and made a vane which he considered an improvement on the first one. It is shown inFig. 95; and it was made without a mill and composed of four pieces. The horizontal piece had an arrow head at the forward end. At the rear end, two pieces of1⁄4-inch pine were fastenedwith two small bolts. From the point where they were bolted they curved outward as shown in the top view, and were held in that position by two small strips nailed on with brads, one on the upper and one on the lower side. The centre of gravity was found as before, and the vane pivoted to its standard.

Fig. 95. Second wind vane

Fig. 95. Second wind vane

In the meantime, Harry had found out to his own satisfaction that his water-wheel windmill would not work.

"What have you curved those ends out for?" he exclaimed on catching a sight of Ralph's vane.

"Why, to make it more sensitive to the slightest breeze. Those curves catch the wind quicker than flat surfaces; have you never noticed that on the weather bureau vanes they are always curved out like that?"

"No," said Harry. "By the way, do you know why my mill doesn't work?"

"I have told you about six times that a water-wheel receives the water on one side only, while your mill receives the same pressure on both sides of the centre. The two forces balance, so your mill can't very well turn. If you could cut off the wind from one side, it would go all right."

"Well, why can't I box in one side?"

"You can, but then you will have to shift it every time the wind changes. You could construct a combination mill and vane, and arrange it so that the box would be shifted by the vane, but honestly, I don't think it worth the trouble. It would be clumsy, top-heavy, and hard to balance. I have a scheme for a horizontal mill, but we will take it up later. In the meantime, let's make a happy jack windmill!"

"Happy jack?"

"That's what they call them, but we will try to be original and I propose an Indian with war clubs."

"Whew! That sounds interesting!"

Ralph's sketch of the Indian is shown inFig. 96. The figure was sawed out of1⁄2-inch pine, a3⁄8-inch hole bored for the arms, and a1⁄4-inch hole bored for the dowel pivot at the feet. The arms were made of a piece of dowel, six inches long, with3⁄16-inch holesbored near the ends to receive the "clubs." These were whittled out of pine, each club being a propeller blade. When fastened into the dowel they formed a complete two-bladed propeller, but this was not done until the dowel had been inserted through the Indian's shoulders, and a brad driven through on each side of the body to keep the arms in place.

Fig. 96. Happy jack

Fig. 96. Happy jack

Harry was so anxious to see it work that he came near spoiling it, and had to be restrained by the older boy, as in making these toys a well balanced figure is very important. When it was finally finished, and placed out in the wind, the antics of the Indian made Harry laugh till the tears ran down his cheeks.

"That's the finest thing we ever made," he said. Ralph smiled. It seemed that he had heard something like that several times before.

An athlete was suggested, and a bold figure with outstretched arms was sketched, as shown inFig. 97.

The Indian clubs he is supposed to be swinging were propeller blades, and to give them more uniform motion than in the case of the Indian, the hands were drilled and a piece of1⁄4-inch dowel inserted. At each end of the dowel was fastened a blade which had beendrilled to fit. Brads were driven through the dowel on each side of the hand to keep the clubs swinging freely.

Fig. 97. An athletic happy jack

Fig. 97. An athletic happy jack

The body and arms were cut from a piece of1⁄2-inch pine and halved together across the chest, and after the joint was made the form of the body and the arms whittled out with a knife. The two parts were then fastened together with brads.

It was important that this figure face the wind, so into the space between the ankles was fitted the small end of a wind vane and the figure securely fastened to it with brads.The centre of gravity was then found and the whole combination pivoted on a generous piece of1⁄4-inch dowel.

Fig. 98. The anemometer

Fig. 98. The anemometer

This athletic weather vane is painted in bright colours, the clubs being gilded to make them realistic Indian clubs.

"What was that scheme of yours for a horizontal windmill?" asked Harry after he had watched the athletic club swinger until he was satisfied.

"Why, to make one on the principle of the anemometer," replied Ralph.

"How do you spell it?"

"Never mind the spelling, it's like this," and Ralph rapidly sketched outFig. 98.

"This is the wind gauge of the weather bureau," he explained, "and I figure we can use ordinary tin cups for the buckets. You go down to the hardware store and buy four small round bottomed tin cups while I start the woodwork."

Having secured the cups for five cents each, they cut the handles with a pair of tinners' "snips." The cut was made next to the cup at the lowest point and the handle straightened out even with the top of the cup.

Two pieces of pine, 16 inches long,7⁄8-inch wide, and5⁄8-inch thick, were halved together at the centre, where a1⁄4-inch hole was bored straight through the joint.

A block of wood cut to the shapeawas fitted over the joint, and fastened to the four arms with 1-inch brads. The1⁄4-inch hole was now continued almost through this cap to give a long bearing for the pivot—a ten-penny wire nail with the head filed off. Two3⁄16-inch holes were drilled through the handle of each cup and corresponding holes through the wooden arms. The cups were made fast by passing3⁄16-inch bolts through cup handles and arms and tightening the nuts.

This made a very strong and rigid construction and on testing it by holding the pivot in the hand out in the breeze the instrument revolved rapidly.

Altogether it was one of the most substantial and satisfactory things that they had made, but Ralph was not yet satisfied.

"We might as well have a Coney Island of our own as not," he said. "You whittle out four propellers, 4 inches long and1⁄2inch across, and I'll show you something," he said.

While Harry was doing this, Ralph sawed out four wooden dirigibles shown atb, 8 inches long, 3 inches across at the widest part, and1⁄4inch thick.

A hole was drilled through the centre of each propeller and another in the flat stern of each air-ship. The pivots for the propellers were flat-head wire nails small enough for the blades to revolve freely, but driven securely into the air-ships.

These were now fastened at the ends of the arms of the anemometer by attaching two strips of basswood to each ship by wires. The strips were to hold the ships in the proper position facing in the direction of motion, which was always the same, no matter in which direction the wind was blowing.

The upper ends of these strips were broughttogether, and securely fastened under one of the bolts by wires.

As the anemometer revolved, centrifugal force sent the air-ships out as far as the basswood strips would allow.

Fig. 99. The Zeppelin wind vane

Fig. 99. The Zeppelin wind vane

It was a very interesting fair weather toy, but the first gale, while having no effect on the anemometer other than to make it spin around at terrific speed, nearly wrecked the ships by slamming them against the standard. So the boys always took the ships off at night, and put them on again when they wanted to give an exhibition.

The propellers were gilded and the ships painted in bright colours.

A very simple vane may be made to represent a Zeppelin air-ship (Fig. 99) by cutting out a piece of white pine 2 feet long and 21⁄2inches wide with the ends pointed to the shape of a Gothic arch. The hole for the pivot should be bored 2 inches deep and be placed well forward of the centre. To make the vane balance, the rear portion from the pivot to the stern should be planed thin and rounded with the spokeshave.

Fig. 100. A six-bladed mill

Fig. 100. A six-bladed mill

At the stern should be a small two-bladed propeller, pivoted on a flat-head wire nail. If the stern is still too heavy, the balance can be restored by driving into the forward point a round-headed screw, or by attaching another small propeller. In fact, ifthe hole in this propeller is made large enough, the screw can be used as the pivot; in any event, the vane must be balanced by adding some kind of weight at the bow.

These typical forms of wind vanes will suggest others and the young woodworker should try to be original, to design new forms, ships, submarines, air-ships, etc.

One form which the boys made was especially substantial and reliable. A six-bladed mill was constructed as follows:

First: a piece of7⁄8-inch pine was cut to the form of a hexagon 2 inches across the points.

Second: a1⁄4-inch hole was bored in the centre of each of the six edges and a3⁄16-inch hole through the centre of the hexagon. (Fig. 100.)

Third: six blades were formed from1⁄2-inch pine 8 inches long, 2 inches wide, tapering down to 1 inch at one end.

Fourth: in the small end a1⁄4-inch hole was bored at the centre, about an inch deep.

Fifth: the blades were tapered in thickness from1⁄2-inch at the small end to3⁄16-inch at the wide end, the tapering being done on one side only, that away from the wind, the side facing the wind being perfectly flat.

Sixth: dowel pins were glued securely into the holes in the hexagonal block and into the blades, the latter being turned on the dowels at an angle of about 30 degrees—1⁄3a right angle—from the front face.

Seventh: after the glue had hardened over night, the whole mill was painted, special attention being given to covering the joint where the glue held, to prevent the rain from loosening it.

Eighth: two pieces of1⁄4-inch white wood were cut out to the form shown atb. These were fastened to the square piececby two small bolts.

The wide ends of the vanes were spread and fastened by two small strips of white wood, by brads as shown.

Ninth: last came the locating of the centre of gravity, after the mill had been attached by a ten-penny flat-head wire nail. The pivot was made of a similar nail into the standard, as on previous wind vanes.

The boys now took up the systematic study of tools, as Ralph suggested that they had spent time enough on toys and curiosities.

A cutting tool must be constructed with reference to the material it is to cut. In the machine shop, we find the angle of the cutting edge large—often 80 degrees—while a razor has a cutting edge of about 5 degrees. All cutting tools are wedges, whether saws, chisels, planes, axes, or knives, and the angle depends on the hardness of the material in which it is to work. The action of the tool may be a chisel action, a knife action, or both. In the rip saw, the teeth are really a series of chisel edges cut in one piece of steel, while in a cross cut saw we have a knife action for cutting the fibres, followed by a chisel action for removing the wood.

The side view of a rip saw is shown ata(Fig. 101), the end view atb.

The chisel-like edges are bent outward to right and left alternately. This is called the "set" of theteeth and its purpose is to make the cut wider than the body of the saw, to prevent friction. As the saw teeth pass through the wood, the fibres spring back against the saw blade or body, and the friction makes the work almost impossible without "set" to the teeth. All woodworking saws must be set, and special tools called "saw sets" are sold for the purpose of bending out the teeth.

Fig. 101. Teeth of rip saw

Fig. 101. Teeth of rip saw

The rip or slitting saw should only be used for cutting with the grain. When used across the grain, the action is exactly like that of a narrow chisel, and it will tear the fibres instead of cutting them.

The teeth of a cross cut saw are shown inFig. 102. Atais the side view, and atbthe end view. The teeth are set and filed to a knife edge. This gives two parallel lines of knife-like teeth which cut the fibres in two parallel lines, while the body of the tooth cuts out the wood in the form of sawdust. All woodworking saws belong to one of these two classes, and the cutting angles of the teeth are shown inFig. 103.

Fig. 102. Teeth of cross cut saw

Fig. 102. Teeth of cross cut saw

Photograph by Helen W. CookeLearning to Use the Cross Cut Saw.

Photograph by Helen W. Cooke

Learning to Use the Cross Cut Saw.

Fig. 103

Fig. 103

We are very apt to regard the saw not only as a very commonplace article, but as a fixed quantity which has always been the same and always will be. As a matter of fact, the saw has gone through a process of evolution the same as the electric motor, automobile, and aeroplane. New methods of its manufacture are constantly being invented and improvements made in its construction. Some of the steps in the process of making a hand saw are: rolling the steel plate of which the body is made, hardening, tempering, hammering or smithing, grinding, polishing, filing, setting, etching, handling, and blocking.

Fig. 104. Two methods of handling

Fig. 104. Two methods of handling

The handling refers to the placing of the wooden handle and some idea of what it means is illustrated inFig. 104, showing two methods of attaching the apple wood handle.

Some idea of what thegrinding means is shown by the tapers, or difference in the thickness of the steel, as shown atFig. 105, the thickness in one thousandths of an inch being given at the different points. It will be noticed that not only does the blade decrease in width from the handle out to the end of the saw, but the thickness decreases from the teeth to the top and also from the handle out to the end. This represents ideal saw construction, and it is found only in the good makes.

Fig. 105. Thickness of saw blade

Fig. 105. Thickness of saw blade

Fig. 106. The back saw

Fig. 106. The back saw

The back saw, being strengthened by a heavy piece of steel along the top, is made of thinner material, and the tapers are not necessary, for the back piece gives rigidity. It removes less wood, but is limited in its action by the back. It is used chiefly by pattern makers, and for finer bench work, such as cabinet making, but should be part of every boy's outfit.

The compass-saw shown atFig. 107is used forgeneral purposes, but is not so necessary as the back saw. It is useful for cutting out small openings, though it is not as valuable for this purpose as the turning saw.

Fig. 107. The compass saw

Fig. 107. The compass saw

One end of the turning saw can be released from the frame by removing a pin, passed through a small hole. This is fastened in the frame again and made to follow a curved line like a fret or coping saw.

Fig. 108. The turning saw

Fig. 108. The turning saw

The number of teeth to the inch varies, and saws are rated as four-point, five-point, etc., according to the number of points or spaces to the inch. Forvery hard woods, a saw with small teeth,i. e., with more points than ordinary to the inch, should be used; but a boy who possesses one saw of each kind—a rip, a cross cut, a back saw, and a turning saw—has all that will be required for ordinary woodwork.

Fig. 109. Using the rip saw and trestles

Fig. 109. Using the rip saw and trestles

In working with the board on trestles, the saw should be held at an angle of about 45 degrees to the surface. When sawing a board held in the bench vise, this is not so easily done, but the cut should at least be started with the tool in the correct position. (Fig. 109).

The hack saw is used for cutting metal, and while not essential for woodwork, is often valuable for cutting pieces of pipe, rivets, bolts, screws, and nails and should be added to the outfit when the finances will allow. (Fig. 110).

Fig. 110. The hack saw for cutting metal

Fig. 110. The hack saw for cutting metal

In fact, there is no such thing as a set of tools. Good tools only should be bought, and the outfit at first should be simple; new ones can be added from time to time, as they are needed. In this way one learns the possibilities of his kit much better than by starting with an elaborate collection.

A boy buying his tool outfit is often bewildered by the array in the hardware store. He is further confused by the advice of the salesman, and his own little store of money.

In selecting planes, only three are really necessary for ordinary work, and this number may even be reduced to two.

Wooden planes are still the favourite tools of some woodworkers, but iron planes have largely superseded them. A 15-inch iron jack plane, a 9-inch smoothing plane, and a block plane make a very good combination for a beginning.

Special planes can be added later, as the finances will allow.

The iron plane with its various parts is shown inFig. 111. These refer to either the jack or the smooth plane.

In the block plane there is no cap iron, the cutter or plane iron being placed with the bevelled side up. There is frequently found on this tool anadjustment for changing the amount of opening in the mouth for hard or soft woods.

The plane iron and cap are fastened together with a set screw, and the cap is removed when it is being ground or sharpened on an oilstone.

Fig. 111. The smoothing plane

Fig. 111. The smoothing plane

This set screw, which is loosened with a screw-driver, or the edge of the clamp used as a screw-driver, also allows the distance from the cutting edge to the cap to be changed for soft or hard woods. These two irons are fastened into the throat of the plane by the clamp.

Fig. 111b. The smoothing plane

Fig. 111b. The smoothing plane

The lever (1) is for straightening the plane iron, and the screwsis for adjusting the depth of the cut.

The difference between the jack and smooth planes, aside from the size, is in the shape of the"cutter" or "bit." In the jack plane, the bit is ground with a slightly curved cutting edge. This enables the tool to remove coarse shavings, but leaves a slightly corrugated surface which must be smoothed with the smoothing plane.

The jack plane also tends to straighten the work, owing to its greater length. The greater the length, the more does it straighten. The old-fashioned jointers were made several feet long for this very purpose.

If a boy can afford only one plane, it should be a jack plane, but the cutter should be ground straight to act as a smooth plane.

The block plane can be dispensed with better than any of the others, because the smooth plane can be used on a shooting board for truing up end grain, the original purpose of the block plane.

The latter plane has no cap, as it works on the ends of the wood fibres with a shearing or paring action. This is helped by holding the tool at an angle with the wood, a position not advisable with the other two tools.

By the Courtesy of the Metropolitan Museum of ArtTools of the Seventeenth Century.Showing how little progress has been made in tool construction. In this collection is a jointer plane, a smooth plane, rabbit plane, straight edge, dividers or compasses, a bench vise, hand vise, wrench, hacksaw and combination tool.

By the Courtesy of the Metropolitan Museum of Art

Tools of the Seventeenth Century.

Tools of the Seventeenth Century.

Showing how little progress has been made in tool construction. In this collection is a jointer plane, a smooth plane, rabbit plane, straight edge, dividers or compasses, a bench vise, hand vise, wrench, hacksaw and combination tool.

The proper position for planing is with the right side to the bench, the plane held flat on the work. Each stroke should, wherever possible, be the full length of the board, unless onepart is higher than the rest of the surface. This may be ascertained by using the edge of the plane as a straight edge. High spots should be marked with a pencil, and then planed off, till the full length strokes can be made, and the edge planed straight and true. In surface planing, if the surface be warped, the amount of wind may be determined by placing two "winding" sticks—two straight pieces of the same size at the two ends—and sighting with the eye along their top edges. To take out wind, it may be necessary to plane diagonally across the grain from corner to corner. This defect is common in lumber not properly piled or seasoned, and is more noticeable in such woods as gum or chestnut.

The sharpening of plane irons is a very important part of one's knowledge of tool work, and of course applies to chisels, gouges, and all cutting tools.

Remember that the cutting edge or bevel is a wedge, the angle of a plane-iron bevel being from 25 to 35 degrees, the smaller angle for soft wood, the larger for hard. This angle is not measured by the woodworker often, but is a matter of experience. If the young mechanic will keep his tools ground to the same angle as he finds them at the time of purchase, he will not go far astray.

Fig. 112. The cutting angle

Fig. 112. The cutting angle

This angle should be a clean-cut one, however.Fig. 112shows some correct and some incorrect ways of grinding. Atais shown the right way,bis not an angle at all, andcis a waste of time and material. Atdis shown the worst fault of all—a "back bevel." This occurs when the tool is carelessly turned over and ground on both sides, which renders it useless until all the steel in front of the dotted line has been removed; in other words, until the tool is reground.

This mistake is sometimes made in using the oilstone, by rubbing the tool on both sides instead of on one only. All the grinding and sharpening must be done on the bevelled side. As the plane iron is only a thin chisel, the sharpening of the latter tool is performed as in the case of the plane iron, and the same care should be taken to keep the bevel clean cut.

A good grindstone is a shop necessity, and, one might add, a household necessity, because every household uses knives, and the dull knife is an altogether too common nuisance.

Our boys hung up another sign at this stage, and it read, "Keep your tools sharp." This ought to go without saying, but it is a fact that many people make failures of their work and become disgusted with it because they do not keep their tools in order. The satisfaction of using fine, sharp tools cannot be explained; it must be experienced.

Like other things about the shop, there are many kinds of grindstones on the market. The old-fashioned stone with a wooden frame (Fig. 113) worked by hand or a treadle may be good—it depends on the stone—and the new one with a small stone, iron, or pressed steel frame is handy. The last stone is provided with a bicycle seat, and is worked by both feet, so that the hands are free to hold the tool. This stone has ball bearings, is noiseless, and occupies less space than the other.

A stone that is soft and gritty, rather than one that is hard like a piece of granite, should be selected.

In holding the tool against the stone, some common sense is necessary. The harder one presses, the quicker the grinding, but if there is not plenty of water on the stone, the tool may be "burned." When a black place appears, you have destroyed the temper, showing that there has been too much pressure, or too little water, or both.

Fig. 113. Two types of grindstone

Fig. 113. Two types of grindstone

The tool may be moved back and forth across the stone to keep its face true, but never up and down. This up and down motion is careless and gives the defective edge shown atb(Fig. 112)—very bad grinding.

It is an easy matter to test your grinding by occasionally placing the blade of a try square on the bevel. If it is not straight, your grinding needs more care. Too much stress cannot be laid on the importance of this subject of grinding. It is the key-note of success. If you are careless in this particular, your work at the bench cannot be a success. "A good workman is known by his tools."

Fig. 114. The oilstone

Fig. 114. The oilstone

A teacher of drawing once said, "I don't care to see your drawing; all I want is to see your pencil. I can tell just what kind of work you are doing by observing the care you give your pencil."

This is peculiarly true of the worker with tools. Find a man very particular about them, and you may be sure he is a careful workman.

After grinding comes sharpening. This is done by rubbing the bevelled side back and forth a fewtimes on an oilstone, lubricated with a few drops of sperm or light machine oil.

Fig. 115. The action of the cap iron

Fig. 115. The action of the cap iron

The stone should be wiped off, afterward, and should never be saturated with the oil. If this is allowed to happen, the surface becomes gummed (Fig. 114) and loses its cutting edge. This rubbing will sometimes turn over a thin wire edge, which is removed by laying the tool with the flat side on the oilstone and drawing it toward you. The wire edge can be further removed if necessary by stropping on a piece of leather.

Before replacing the cutter in the plane, the cap iron is fastened on the flat side about1⁄16-inch from the cutting edge; but this distance may be varied for different woods.

The object of the cap iron is to prevent a splitting action by bending the shaving forward, as shown inFig. 115. Atais shown the effect when there is no cap, and atbthe splinter bent over giving a shaving.

Having prepared Harry for the serious work to come by his explanation of the plane and its operation, Ralph prepared to start his pupil on the most important and difficult problem in shopwork—squaring up stock.

"Anybody," he said "can hack away at a piece of wood with tools, and get some kind of result, but if this work is worth doing at all, it is worth doing well, and to be able to square up stock is perhaps the most important operation you will ever do. It is like mathematics, the answer is either right or wrong. When you finish, the stock is either square or not square.

"To square up stock means to reduce it to three definite dimensions, length, breadth, and thickness, with all adjoining edges or surfaces at right angles. It sounds easy.

"Suppose we want a piece 12 inches × 2 inches ×7⁄8inch. First, saw out your stock about 121⁄4inches × 21⁄4inches × 1 inch. This allows somethingeach way for the tools to remove in the process—for sawdust and shavings. It is considerably more than necessary, but on the first trial you waste more than later, when you have become skilled in this work.

"Second. Dress down one of the flat faces with the jack plane; follow with the smoothing plane and test, with straight edge, with the grain, across it, and diagonally across corners. When this face is finished it constitutes the foundation of the process, and is called the 'working face.'

"Third. Make a pencil mark on the working face near one of the edges. This is called a witness mark, and it indicates that the edge it touches is to be the next face dressed.

"Fourth. Dress down the edge, making it square with the working face, and testing its whole length with the try square. This is the 'joint edge' (Fig. 116).

"Fifth. Set the marking gauge, as shown inFig. 117, holding it in the left hand and the rule in the right, to two inches, the width of the finished piece. The reason for this is that the scale on the gauge stick is sometimes inaccurate.

"With the gauge block against the joint edge, gauge a line the entire length of the working face. In doing this, the gauge may be used in either hand, andin fact it is well to practise so as to be able to use either at will. The tool should always be pushed from you, and at the same time tilted from you, until the steel point makes only a fine line. If it is held upright, the point will try to follow the grain, which is very seldom parallel with the edge.

Fig. 116. Steps in the process of squaring up stock

Fig. 116. Steps in the process of squaring up stock

"You have now laid out on the working face your first dimension—the width.

"Sixth. Plane down the edge opposite to the joint edge, almost to the gauge line just drawn. Remember that the tendency is always to take off too much,and when a piece is too small there is no way of making it larger, but if it is left a little too large, it is a simple matter to take off one more shaving. In other words, always be on the safe side, and take off too little rather than too much. Test this edge to see that it is square with working face before reaching the gauge line. Get into the habit of marking all high spots with a pencil, and planing out the marks.


Back to IndexNext