CHAPTER VIIAXMINSTER

CHAPTER VIIAXMINSTER

Axminstercarpets, though in point of time a comparatively recent development of the industry, may claim to be, in point of structure, the nearest related of all machine-made fabrics to the Oriental ancestor. The similarity lies in the fact that they are tufted; and the tuft, though inserted in the fabric mechanically, and bound down without being knotted, undoubtedly represents the knotted tuft of the original hand-made carpet. The essential feature of a tufted Axminster carpet is that the tufts are inserted row by row between the warp threads, either before or after being cut off, and are then bound down by the weft, and so woven into the ground of the texture. Each tuft is used on the surface, and forms part of the design; none of the tuft material is hidden away or wasted in the body of the fabric beyond what is needed for attachment to the binding weft.

The Axminster loom was introduced into England from the United States about 1878; and since that time the fabric has developed steadily, with an increasing popularity, which has only been rivalled in recent years by that of the Chenille Axminster. Bradbury, in commenting upon the similarity of Axminster in structure and appearance to the original hand-made carpet, says: “Generally speaking they are far superior to Eastern and hand-made productions, and where price is permitted to enter as a factor, they leave these primitive structures still further in the rear.” This may appear to some an extravagant appreciation; butthere can be no difference of opinion as regards the general merits of the fabric. It combines economy in the use of material, and in manufacture, with richness of texture and almost unlimited potentialities of design and colour effect.

As in other carpet fabrics, there are in Axminster plenty of varieties of qualities; but there are comparatively few differences in structure, such differences as exist being mainly matters of pitch, tuft, or method of tufting and binding. The original Axminster quality was called the Royal. This is about 5 per inch in the pitch, and 6 in the beat-up, with a tuft of about 7/8 in. This held the field until 1893, when a strong invasion of the British market by American Axminster, offered at a considerably lower price, caused the Axminster makers of this country to bestir themselves to meet this competition. They did so strenuously; and the result was the production of the quality known as the Imperial Axminster, which had an instant and a lasting success. This was made in a pitch of 7 to the inch, and a beat-up of about 6½, and was put on the market at a moderate price. For many years it held the position of being the critical quality of the whole trade; the standard by which the value of other qualities was measured, and, as has been intimated, it is only of recent years that its position has been challenged by the Chenille Axminster.

At the present time, it would probably be safe to estimate that three-quarters of Axminster manufacturers’ looms are being run on this quality.

The Imperial Axminster quality may, therefore, be taken as typical of the fabric; and a description of how it is made will cover most of the ground, while variations from the standard type can be indicated. The quality itself is made in slightly different ways by differentmakers, but a normal standard will have the usual double chain, preferably of 2-14 or other linen, but sometimes of cotton, a cotton stuffer, one end to each reed, and a jute weft of about 2 fold 7½ lb. count. The pitch is 189 or 190 in the 3-4 width. Fig. 7 gives a transverse section through the weft of the weave ordinarily employed. In this there are three warps employed, the two chain warps being wound on one beam, and the stuffer warp, which runs straight in the fabric, on another. There are three double shots of weft to each row of tufts. The two halves of the chain warp alternately bind two double shots above, the tuft binding shot and the intermediate, and one below. The effect of this structure is to form a flat back, and also, through the lateral pressure of the intermediate weft upon the tuft weft, under the same warp shed, to give the tuft a distinct inclination out of the vertical, adding thereby to the fabric a point of similarity to the hand-tufted carpet.

Fig. 7SECTION OF IMPERIAL AXMINSTER. 3-SHOTA, Chain; B, Tufts; C, Stuffer warp; D, Double weft

Fig. 7SECTION OF IMPERIAL AXMINSTER. 3-SHOTA, Chain; B, Tufts; C, Stuffer warp; D, Double weft

The diagram of another method of weaving this quality is given in Fig. 8.

Three warps are used here again, but as each undergoes a different rate of consumption, they are wound upon three separate beams. The stuffer, as before,runs straight; one chain binds the bottom and the intermediate shots, and the other the tuft shot. In this case, the tuft, equally supported on each side, tends to remain vertical, while the bottom weft, projecting below the tuft weft, gives the back a ribbed appearance.

Fig. 8SECTION OF AXMINSTER. 3-SHOTA, Chain; B, Tufts; C, Stuffer warp; D, Double weft

Fig. 8SECTION OF AXMINSTER. 3-SHOTA, Chain; B, Tufts; C, Stuffer warp; D, Double weft

Each of these two weaves has its merits. The former gives better cover with its sloping tuft, while the latter claims an increased resiliency and immunity from the shading in made-up carpets, so noticeable with the first-named weave.

Fig. 9 gives other but less usual structures. It may be noted that it is possible to employ jute for the tuft binding and intermediate weft shots, and at the same time a different yarn, preferably of woollen, for the bottom weft, which shows on the back. This serves to make the carpet heavier and more elastic to the tread.

Axminster may to some extent be compared with Tapestry and Chenille, in that it is essentially a two-process fabric; and the pile yarns are arranged so as to form the design before they are put into the loom. The actual method of preparation of the colours is, however, quite different from that employed in either of the other two fabrics.

Fig. 9.SECTIONS OF AXMINSTER WEAVES

Fig. 9.SECTIONS OF AXMINSTER WEAVES

The yarn is received from the dye-house in skeins, and is wound on to large bobbins with a 6 in. face. The yarn from these bobbins has then to be wound on to a series of wide spools, the number of which will be the number of the rows of tufts in one complete repeatof the design to be woven, while each spool contains as many ends of yarn as there are squares in the width of the design. This operation is called setting, or sometimes, reeding-in.

The 6 in. bobbins, in number equal to the pitch of the carpet, say, 189 or 190 for the 3-4 width of the typical quality mentioned above, are arranged on a creel frame fitted with horizontal pegs in order corresponding with the colours of the first row of the design. Alternatively, a horizontal frame or table is employed, fitted with vertical pegs for the bobbins. This has the advantage of being more compact and accessible, but the colours are not so easily distinguished. The ends of the yarn from each bobbin are led on to the wide spool, through an open sley, which is opposite to it and equal in width. These ends, suitably tensioned, are then wound on to the wide spool. For a design of average length of repeat, say 1 yd., one full spool will weave about 250 yds. When the spool is full, therefore, the yarns are cut, and fastened down; and as many more spools are filled with the same arrangement of colours as are needed to weave the required quantity. The operators then re-arrange the bobbins in the creel frame in accordance with the second row of the design paper, which is set up in some convenient place for reference, draw them in order through the sley on to the spool, wind a second set of spools, and so on; each spool being numbered with its rotation as soon as filled.

When the spools for the whole of the repeat are wound, whether one or more for each row of tufts, they are passed to women, whose task it is to thread the ends through a series of tin tubes, the number of which corresponds with the number of ends on each spool. The tubes are soldered to a piece of tin, of L-shapedsection, which is attached to the tufting carriage. Thespools with tubes attached are then placed in the carriages, and are ready to be set up in order in the loom for weaving.

Fig. 10TUFTING MECHANISMA, Wide spool; B, Pin; C, Finger; D, Tufting carriage; E, Tubes; soldered at F; G, Guide-bar; H, Transferring arm; I, Finger; K, Spring; L, Link of chain; M, Side view of tube; N, Angle attachment

Fig. 10TUFTING MECHANISMA, Wide spool; B, Pin; C, Finger; D, Tufting carriage; E, Tubes; soldered at F; G, Guide-bar; H, Transferring arm; I, Finger; K, Spring; L, Link of chain; M, Side view of tube; N, Angle attachment

The tufting carriages are then placed, in the correct rotation so as to form the pattern, upon a pair of endless chains, which are actuated by the driving mechanism of the loom in such a way as to have an intermittent motion so that, when each spool is in position to make its row of tufts, the chains remain at rest long enough for the spool to be removed from them, lowered for the tubes to enter the warp threads; for the tufts to be cut off, and the spool to be replaced on the chains.

Each spool with its set of tubes and carriage, therefore, is so set in the chains that it can be automatically detached at the right moment and brought into position to form its successive line of fur. The mechanism that effects these ingenious movements is too complicated to describe here. It is an object lesson as to what variable and intermittent motions can be produced by combinations of cams, bowls, levers, rods, etc., while it gives the Axminster loom the distinction of being probably the most ingenious of all carpet looms, subject perhaps to that remarkable piece of mechanism, the Jacquard, not being regarded as exclusively part of a carpet loom.

When the spool reaches the lowest point in the path of the double chain which carries it, a few inches above the fell of the cloth, it is nipped by an arm from each side, and conveyed downwards in such a way that the tubes with the ends of the tuft yarns projecting are made to enter the spaces between the upper shed of the chain warp with a slight sweeping movement from the front to the back. This has the result of trailing the ends of the yarn close to the fell of the cloth and the last row of tufts, and leaving a space below the uppershed of the chain, so that the weft-carrying needle is able to insert a double shot above the middle of the exposed lengths of tuft yarn.

The tufting tubes are now lifted out of the shed, and somewhat forward towards the fell of the carpet, so as to double the tuft round the binding shot. At the same time the sley comes forward, presses against the tuft yarns and the weft enclosed by them, and carries them up to the breast comb and the fell of the carpet. With the tuft yarns and the spool in position, another shot of weft is inserted, either with or without a change of the warp shed, as the case may be, to assist in holding fast the row of tufts in the carpet. The tufting carriage and tubes are then lifted high enough to draw off a sufficient length of yarn to form the next row of tufts in the following repeat. The tufts are then cut by the meeting of two broad knives, which come together at the level of the surface of the carpet with a scissor-cutting motion. The spool and carriage are then replaced in the chains, moved one step forward; and the succeeding spool is brought into position.

It may be desirable to mention a different method of inserting the tuft yarn. In this case the spool is detached from the chain and made to descend almost straight, turning about 60° out of the vertical towards the back of the loom just as the tubes enter the warp shed. This has the effect of turning the free ends of the tufts somewhat upwards. The spool is then turned again so that the tubes are vertical, and are brought close against the fell of the cloth. The binding weft is then inserted, and the sley comes forward to carry the tufts up against the breast. At this stage, a toothed comb, made in two parts, one working over the other, comes up from below the breast to turn upwards the loose ends of the pile through the warp, one part of thedouble comb, called the dummy comb, slipping over the other so as to clear any tufts which might be pulled down on to the back. Then the second binding weft is put in, behind the tufts; and at the same time the tufts are cut. There is another beat-up of the sley, and the bottom weft is inserted. This completes the cycle; the warp chains change; and the process is repeated.

An alternative fashion of cutting to the double scissor or guillotine knives is sometimes employed, a circular knife in front engaging against a fixed straight knife at the back. This system has the advantage that the knives have not to be kept sharp, though they must be very accurately adjusted.

The weft motion is another ingenious piece of mechanism. The weft is inserted in the warp shed by a needle about 5/8 in. in diameter, entering from the right-hand side of the loom. The jute weft is conveyed from a ball, tensioned by suitable springs, and threaded through the eye of the needle. It is obvious that the weft shot must be double, and also that it would not stay in the shed after the withdrawal of the needle, unless it were caught in some way at the left hand of the loom. This is effected by a small shuttle carrying the edge-thread. This shuttle is similar to a sewing machine shuttle, but larger, being about 3 in. long and 1 in. in diameter. It runs backwards and forwards in a semicircular shuttle-race, and is so adjusted that it passes under a notch near the end of the needle, and over a loop of the weft, carrying the edge-thread through the loop, and holding it taut while the needle is receding in such a way as to prevent the weft slipping back, and to make a good selvedge to the carpet. When it is desired to use two different weft threads, the needle has an open eye, or hook near its end, instead of the ordinary eye, and the two wefts in turn are presentedto this eye by a rocking eyeletted weft-carrier, so that the needle picks up the weft just before it enters the shed.

There have been other developments of the Axminster principle of inserting tufts into the weave of the fabric, and variations from the method of the wide spool and tubes. Of these, the most successful has been based upon the idea of conveying the cut tufts by means of nippers or grippers into the fell of the cloth. This has been worked in combination with the wide spools, but more satisfactorily in combination with yarn carriers operated by a Jacquard with a differential lift mechanism for selecting the colours.

In this loom, which has been brought to perfection for various qualities, pitches, and widths, in recent years, the pile yarns are wound on to creel bobbins, which are arranged, in much the same way as in Brussels and Wilton, in creel frames behind the loom. A frame of bobbins is a set of bobbins of the same shade, equal in number to the pitch of the loom. The number of frames is limited in practice to about 16, which, however, aided by “planting,” admit of design and colour effects comparable with those obtainable in Royal Axminster.

The yarns are led between guide bars and through perforated plates into the carriers, which are vertical strips of steel or brass grooved back and front and drilled with a series of slots, through which the ends of the yarn pass, being held in position by small springs. The frames of yarn are threaded through the holes in the carriers in order, so that the yarns of the top frame pass through the highest hole in the carrier, the second frame through the second hole, and so on. Viewed from in front, the ends of each frame of yarn will be seen in horizontal lines one above the other in the front grooves of the carriers.

These carriers are connected by cords or wires with adifferential lift mechanism, which is actuated by the Jacquard, in such a way that the blank or perforation on the Jacquard card, corresponding with a certain colour, causes the carrier to be lifted until that colour is at the required height.

It can readily be understood that cards perforated in different ways, and presented to the Jacquard at once, can cause the carriers all across the loom to be lifted varying heights in such a way as to show at the required level a horizontal row of thread ends, corresponding to a row across the width of the paper design. The sequence of these rows, of course, forms the pattern.

It remains to cut off the tufts, to lay them in their place at the fell of the cloth, and weave them into the carpet.

There is a set of grippers, in shape very similar to the neck and beak of a bird, mounted on three shafts, and arranged so as to revolve in about a semicircle between the carriers and the fell of the carpet. The Jacquard, having operated so as to present the ends of the required colour in the carriers in a horizontal line, the grippers come up in front of them with open beaks, which are inserted just into the carrier grooves, and then close, nipping the ends of the yarn. The whole of the frame in which the carriers are mounted is then withdrawn away from the points of the grippers a sufficient distance to give the required length of tuft. A flat-toothed comb of hardened steel, of the same pitch as the grippers, carriers, and carpet, drops down with its points between the threads so as to hold them steady, while a travelling knife or set of knives, passing along the face of the comb, severs the tufts. The grippers then descend into the warp threads, laying the tufts against the fell of the carpet; the needle or shuttle passes over them andthrough the shed, carrying the binding weft, which is beaten up by the open sley, at the same time as the grippers open to release the end of the tuft, and double it upwards. Two other shots are inserted, while the grippers move in their semicircular path upwards to seize the next row of tufts, and again downwards to lay them in place.

The advantages claimed for this very ingenious method of Axminster weaving are: that the preparatory processes are considerably simpler than with the Royal and Crompton patents; that the quantity of any pattern to be woven can be better controlled; and that it involves less waste. There is no disadvantage in the weaving of a small quantity, if required, as 1 yard or 500 can be woven equally well; and the yarn left over at the end of an order can be cut off at the back of the carriers with a minimum of waste, and stored conveniently on creel bobbins. The cutting mechanism is also so good, that the surface waste is reduced to a negligible quantity, and a minimum of shearing and finishing is required.

However this may be, it is noteworthy that the principle has been applied with complete success to looms for weaving wide seamless carpets, where the gripper mechanism, though necessarily heavy, has probably a distinct advantage over the wide spool and tubes.

Axminster, like other carpet fabrics, has tended to develop in the direction of wide seamless goods; and this is a tendency that will be worth watching, leading as it does towards the evolution of the ideal carpet—a machine-made knotted fabric. Ideal, that is to say, in the sense that the knotting of a tuft on to a groundwork of warp and weft is the best way of putting a carpet together, and having regard for the facts that we live in a mechanical age; that we cannot afford timeor money to make our own carpets by hand; and that we ought not to buy foreign hand-made carpets. Experiments in mechanically knotted carpets have continually been made, and definite progress has been won in recent years; but the technical difficulties are considerable, and it will be interesting to see whether a carpet of so exceptional a weave can be put on the market, except at a price comparable only with that of a hand-tufted fabric. Meanwhile, the seamless tufted Axminster, as it is now made in two or three forms, with tufts as securely fastened for all practical purposes into the body of the fabric as if they were knotted, holds the field as the nearest approach to the ideal, and is deserving of a far larger measure of support from the British consumer that it has enjoyed hitherto.

CHAPTER VIIICHENILLE

ChenilleAxminster carpeting possesses one or two features which differentiate it sharply from other kinds of carpet. It is the product of two distinct processes: the formation of the chenille fur, and the weaving of that fur, which is the weft, into a carpet. It is, in fact, about the only cut-pile carpet fabric in which the pattern is distinctively formed by the weft; for in almost all other makes the weft only performs the function of combining with the chain to form the woven fabric.

Taking first the manufacture of the fur, the dyed yarn, which is normally a single woollen, about 55 yards per ounce, is wound on cops which fit inside the shuttles for the weft looms. Before starting to weave, the weaver will have a supply of cops of all the colours required in the carpet. The paper design will show full size, the whole of the pattern, filling and border, that repeats, in the colours that are to be used. The design is cut up horizontally into strips two squares wide; and the weaver works by this paper strip, which is attached to the fabric in its length, inserting and changing the shuttles carrying yarn of various colours. The warp of the loom consists of sets of ends of fine cotton at intervals of about ½ in. Thus the woven fabric consists of a woollen weft of various colours held together at intervals by a fine cotton warp.

The pitch of the warp varies, of course, according to the character and quality of the fur to be made, the scales, indicating the number of sets of warp threads tothe yard, being, normally, either 28, 38, 56, 76, or 112. On an ordinary weft loom, making a fabric 42 in. wide, on a 76 scale, there will be 88 strips, which will make two repeats of a certain portion, say 4½ in. long, of 44 carpets. The average length of the woven strip is about 48 yards.

Fig. 11CHENILLE DESIGN PAPER CUT UP

Fig. 11CHENILLE DESIGN PAPER CUT UP

The weaver has to insert by hand the shuttle carrying the required colour to match the square or squares on the painted strip of design paper, count the number of shots needed, stop the loom, change the shuttle and re-start the loom; so that it will be seen that quickness of eye and dexterity are required.

A mechanical device has been invented for changing the shuttles; but it is not automatic, and does not appear to present any distinct advantage over the method of changing by hand; and it can only be employed with a limited number of colours.

The fabric is beaten up from 12 to 20 shots per inch, according to the quality of the fur required; but the closer beats up are only suitable for worsted yarn.

Fig. 12CHENILLE CLOTH

Fig. 12CHENILLE CLOTH

The next process is the fur-cutting. The roll of cloth with its horizontal stripes is taken to the cutting machine,where it is cut into strips by a series of knives set upon a revolving cylinder, and spaced so that they sever the woollen weft-threads as the fabric passes over the cutting bed, and leave the independent strips of fur held together by the fine cotton warp.

Fig. 13FUR AFTER CUTTING. CUT AND FOLDED.TRANSVERSE SECTION SHOWING FUR INSERTED

Fig. 13FUR AFTER CUTTING. CUT AND FOLDED.TRANSVERSE SECTION SHOWING FUR INSERTED

Immediately after being cut free, these strips of fur pass over a jet of steam and a steam-heated cylinder, whose surface is formed with a series of V-shaped grooves. This hasthe result of folding upwards the cut ends of the woollen yarn, and giving a permanent V-shape in section to the fur. The object of this is that when the fur comes to be woven, its pile shall all be turned in one direction. The damping of the fur just before the grooved cylinder is sometimes effected by rollers revolving in a trough filled with water.

The newly formed fur is then reeled off into individual skeins. It is marked both with its pattern number and series number, and sorted into its proper sets.

For a carpet 9 ft. wide beaten up 4 shots per inch, it will be seen that each inch in the length of the carpet will require no less than 12 yards of fur weft, so that a strip of fur 48 yards long will only weave 4 inches; and if the repeat of a design be a yard long, 9 series of fur strips will be needed. The fur strips are, therefore, sorted into their sets and numbered from 1 to 9 for a 1 yard repeat, or as the case may be; and are stored in bundles of skeins until required.

We now come to the second part of Chenille manufacture, the weaving up of the fur into the carpet. This is done on a setting loom, which may be regarded for the present purpose as normally of a width of 9 ft. or upwards. This is not saying that Chenille is not woven in narrower widths, for Chenille is woven in pieces 27 in. and 36 in. wide, and a very large business is done in rugs of various widths between about the same limits.

When a carpet is ordered, the fur in bundles of skeins is handed out to the cop-winder, whose duty it is to wind the skeins on to cops for use in the setting loom, and to serve them to the weavers in their proper order. Cops are always the same size, but the length of carpet that a cop will weave depends, of course, on the width of the carpet.

The setting loom is prepared for work by the threading of ends of warp from various beams through eyelets carried on gear frames, in much the same way as in a Brussels or Wilton loom. Indeed, this principle is common to all woven fabrics, varying only in its application, that is to say, in the number and arrangement of the warp beams, the yarn employed, and the pitch.

Fig. 14SECTION OF CHENILLE AXMINSTER

Fig. 14SECTION OF CHENILLE AXMINSTER

In a typical Chenille carpet, such as that which is beaten up 4 to the inch, as above mentioned, the pitch of the design will be 12 or 13 per inch (the beat-up of the weft), and of the sley 7, though, indeed, the latter is arbitrary, and need bear no relation to the fur. There will be three warp beams, the catcher beam, the chain beam, and the stuffer beam. A fourth is often added, called the float. The catcher warp consists of fine cotton, coloured in some neutral shade, so as to be as nearly invisible as possible, its function being merely to hold down the fur weft when it is inserted into the fabric. The chain, or ground warp, which is generally of jute yarn, is double, and is threaded on to two gears, which rise and fall alternately as in Brussels. The stuffer or dead warp, also of jute, runs straight into the fabric, and gives it substance.

For a 3½ or 4 per inch Chenille carpet, of average quality, two shuttles will be used, one carrying the jute binding weft, and the other the fur. There are four picks of jute weft to one of fur, and at the end of the fifth pick the loom stops automatically with the chain and stuffer horizontal, and the catcher warp forming a shed, under which the fur has just been carried. The weavers, two to each wide loom, will then set the fur, taking care that it matches correctly against the last fur shot, and that the pile points upwards. They will also lightly comb up the fur, so that it beds against the last shot, and the catcher threads settle down neatly through the pile. This done, the loom is re-started: the first beat of the sley pushes the fur shot home, and the next four jute shots are put in.

For closer weaves than 4 per inch, two jute weft shots may suffice, while heavy woollen-backed carpets are produced by the employment of a shuttle carrying a woollen weft.

In the case of heavy-backed carpets, the double shed is usually employed, the adjoining chain ends rising alternately, so that they show on the back in diagonal lines.

The object of a float warp, which rises a little above the level of the stuffer warp just when the fur shot is being woven, is to support the fur shot, and give a fuller and more level effect to the carpet.

There is another method of inserting the weft adopted in looms of a different make, whereby it is carried between the catcher and the other gears by a travelling arm, which leads the fur from a basket or can in which it is placed loose. This has the advantage of enabling a long length of fur to be woven, while it also avoids the crushing of the fur which results from its being wound on to a cop. With this method the catcherbeam is placed high up in the middle of the loom, and the sley is made of stronger reeds, open at the top to allow the catcher warp ends to descend between them.

From the loom the complete carpet passes to the finishing room, where it is picked back and front, brushed, steamed, combed, and shorn; all these processes tending to fill out and level the surface. It is then passed or examined for any defects that may have escaped notice in the first mending. The ends of the carpet, which are woven without fur, are turned over and hemmed, preferably by machine. The carpet is then subjected to a final scrutiny before being swept, rolled, and dispatched to the packing room or warehouse.

As has been intimated, considerable variety of quality can be obtained in Chenille Axminster by altering the pitch and thickness of the fur in the weft loom, or the beat-up in the setting loom. In practice, however, competition has centred mainly round two standards of quality: one about 12 shots of yarn per inch in the fur, by 3½ or 4 per inch beat-up in the setting loom; and the other about 14 in the fur and 5 in the setting loom. Extra qualities, however, are also largely made, and heavy fabrics which give an excellent imitation of some Oriental carpets.

Chenille carpets have increased enormously in popularity during the past few years; and the cheaper quality may be considered to have challenged even Imperial Axminster in the consumer’s favour, and almost to have become the critical fabric of the industry. The reason for this is not far to seek. The taste of carpet users all over the world has tended in recent times more and more in the direction of seamless carpets; while the demand for piece goods, in body and border, has correspondingly declined. The evolution of the Chlidema square, woven in 27 in. breadths with aborder matching all round, has been to some extent the cause of the loss of the piece goods trade; and it succeeded in retaining the business, though in smaller bulk, for the 3-4 yd. looms, both in Brussels and Wilton, and later, in a less degree, for tufted Axminster. But the breadth square has had to give way before the seamless square, and in particular before the seamless Chenille Axminster square. The cheap Chenille fabric possesses several marked advantages over Brussels and Wilton, Tapestry, and even over, tufted Axminster breadth squares. It is without seam; it gives a comparatively luxurious surface with the absolute minimum of wool; and it is practically unlimited in colour. Further, the looms are not expensive to erect and run, and in this respect the Chenille square has an initial advantage over the seamless Wilton or tufted Axminster carpets, which necessitate costly and complicated machinery. On the other hand, it has its disadvantages. It is not made in a fineness of pitch which admits of effects of design obtainable readily in Wilton or even in tufted Axminster, while, however skilful the setting may be, there is an inherent tendency to irregularity in the pattern, which is apt to offend the critical eye. Further, in the cheaper qualities, which form the great bulk of the sale, the wearing qualities do not compare favourably with those of, say, Imperial Axminster. These disadvantages, however, do not deter that numerous class of consumers which demands an attractive carpet at a moderate price.

CHAPTER IXTAPESTRY

Tapestryis a fabric made alternatively with a looped pile or a cut pile, which possesses a close affinity to Brussels and Wilton respectively, in its appearance and texture. In its method of manufacture, however, it has something in common with Chenille, inasmuch as it is essentially a two-process fabric, while the pattern is wholly in the surface, and is the direct result of the preliminary and not of the weaving process. No Jacquard is used.

In comparison with its nearest competitors, Brussels and Wilton, Tapestry is simple in construction, and economical in the quantity of pile yarn consumed, as there is only one pile warp-thread carrying the pattern, as against four or five threads in the two fabrics named. It also has the advantage of a practically unlimited range of colours. On the other hand, Tapestry is expensive in the preparatory processes, and requires a high degree of technical knowledge and skill.

The underlying principle of the fabric, which was invented by Mr. Richard Whytock, of Edinburgh, in 1852, is the attainment of the economy of using one frame of worsted yarn by printing or painting the pattern on the threads, instead of using five frames, each of a different colour. Several methods have been tried for printing the pattern on the warp, such as printing upon the surface either white or dyed, after weaving; printing the warp threads collectively before weaving; and printing the warp threads individually. In the two last named cases the design or part of the design hasto be printed in an elongated form to allow for the reduction caused by the insertion of the wires in weaving.

Modern Tapestry manufacture, however, has practically concentrated upon the last-named method; so that the others can be disregarded for the present purpose.

Fig. 15DESIGN OF TAPESTRY CARPET

Fig. 15DESIGN OF TAPESTRY CARPET

In common with other carpet fabrics, the design for a Tapestry carpet must be put upon squared paper, which is preferably, at least, of the actual size. There is no limitation of colour beyond that imposed by considerations of taste and of expense. The pitch of the carpet varies from 7 to 9 per inch, and the beat-up about the same; but the average quality is about 8 each way.

The design having been prepared, it passes to theprinters, who are responsible for colouring the yarns in such a way that they can be assembled ready for producing the correct pattern in the weaving. As the warp carries the whole of the pattern, and the different colours of the design are printed on the warp threads, the design must be read lengthwise. Each square on the design paper represents a loop of the warp in the woven carpet.

Fig. 16DESIGN IN FIG. 15 ELONGATED AS PRINTED

Fig. 16DESIGN IN FIG. 15 ELONGATED AS PRINTED

The length of colour to be printed on the warp thread must, of course, bear an accurate relation to the height of the wire used and the number of wires per inch. This is a matter of calculation. The length of yarn consumed in 1 inch is determined. This length, divided by the number of wires, or loops per inch, gives the length of warp yarn to be coloured for each wire. Thus, for a carpet of nine wires to the inch, 3 inches of warp yarn are required for each inch of the carpet. The length of each unit of colour to be printed is, therefore, 1/3 in. The mechanism of the printing drum is adjusted accordingly, and can be varied for different qualities.

The normal yarn used in Tapestry varies in count from 10s 2 × 2 to 16s 2 × 3 worsted. It is scoured and dried, and then wound from hanks on to large bobbins. A set of six of these bobbins, or more or less, filled with the white yarn, is placed vertically on a stand in front of the printing drum; and the six ends of worsted are attached at equal intervals to a triple thread of worsted stretched across the width of the drum. The threads, properly tensioned, pass through guides, and are wound on to the face of the drum, the guides being mounted on a rod which is slowly moved laterally in such a manner that the threads are laid side by side on the surface of the drum. The revolution of the drum continues until the whole face is covered, or until the required length of yarn has been wound. In thelatter case, fewer bobbins are put on, and the drum is left partly uncovered. To fill a drum of ordinary size, then, there will be required 1,176 threads, which will be obtained from 196 revolutions. Each of the six divisions is called a hank, and is tied separately. Whatever the number of threads and length of the hank, the whole length of the yarn on the drum represents one warp thread only.

The printing drum is a large roller constructed with a wooden or tin face supported upon an iron frame and spokes, the central shaft and external mechanism being carried upon iron framework. Drums are of various sizes, varying in circumference from 12 ft. 6 in. to 40 ft., and in width of face from 18 in. to 72 in., capable of carrying from 700 to 1,200 threads side by side. The most usual width is 30 in. The size of drums is reckoned by the number of “scrolls” or “types,” that is, lines of colour, they will carry. These are commonly 216, 324, 432, 648, 864, or 1,072 scrolls; but an average size is 648.

An essential part of the drum is the double row of teeth cut on a metal edge attached to one of the outer rims of the drum. These are called indices and are of different pitch, say 648 and 432, corresponding to one or other of the scrolls. Each tooth is numbered consecutively, all round the rim; and the indices represent the total number of scrolls which can be printed, since the pitch of each tooth permits the drum to revolve just the width of the scroll pulley. A pawl or scotcher is arranged so as to engage in each tooth and stop the drum when required. Before printing, the drum is covered with strips of oilcloth, which are removable.

Fig. 17PRINTING DRUM, COVERED WITH YARN, PARTLY COLOURED

Fig. 17PRINTING DRUM, COVERED WITH YARN, PARTLY COLOURED

The actual printing or painting of the yarn is effected by means of the scroll pulley, which revolves in a box The arrows show where the repeats begincontaining the colour, the whole being borne by a carriage running on rails across the width of the drum at the bottom of the frame. The colours are made up by an expert colourist to match the required shades, and by the admixture of flour and water are brought to the necessary consistency, which is about that of a thin paste, so that the colouring matter is dense enough to adhere, but liquid enough to penetrate the yarn fibres. In the carriage, the colour roller, which revolves in the colour, is supported by springs which tend to give it elasticity and keep it up against the face of the drum. The carriage is drawn across the drum by a rope which is mechanically actuated, and, of course, harmonises with the revolution of the drum. At the end of each traverse of the colour carriage there is a pause, which gives the printer time to change the pawl into the new tooth of the index at which it is required.

The printer is guided in his selection of colours for each scroll that he prints by the “scale board” and the “design board.”

Scale boards vary according to the pitch of the design paper, and according to the length of the design, and the number of times in which a design repeats in one revolution of the printing drum. Thus, for a design on squared paper running seven per inch in its length, the scale board is marked into divisions of seven to the inch throughout its length, so as to correspond with the horizontal divisions on the design paper. Supposing a design repeats four times in the whole revolution, a quarter board is employed; if it repeats twice a half board, the total number of scrolls being divided into four or two respectively. Thus, if the size of the drum is 648 scrolls and the number of wires in one repeat of the pattern is 162, the quarter board will have fourvertical columns of figures, running respectively 1-162,163-324, 325-486, and 487-648. The scale board has a bevel edge, and is preferably arranged so that it can be moved over the design board and aligned with the vertical line of the design which the printer is reproducing.

Fig. 18SCALE AND DESIGN BOARD COMBINED

Fig. 18SCALE AND DESIGN BOARD COMBINED

Fig. 18 represents part of a scale and design board combined. The numbers along the top indicate the threads in the design, and the printer may be supposed to be ready to print the eighth thread. The numbers on the right-hand side represent the wires in the carpet, with which the numbers on the scale board and the scrolls in printing correspond. The design is 216 wires long; and as the number of scrolls the drum will take is 648, the design is repeated three times in one revolution. The scale board is numbered in three columns; and for the first, second, and third repeats of the design, the printer uses the first, second, and third divisions on his scale.

To minimise the danger of bad effects from a colour running, the rule is to begin printing with the lightest shade. In this instance, the lightest colour is yellow, represented (heraldically) by spots, and it occurs first at the fourth horizontal line. The printer, therefore, turns the drum by hand, and puts the pawl in tooth number 4. He then puts the mechanism in gear and prints the scroll in the manner described, following on immediately by printing a second scroll at number 5. He then reads further down the eighth vertical line of the design, and sees that the colour recurs at 10, 11, 18, 19, 24, and 25. He therefore puts the pawl in the corresponding teeth of the index consecutively and prints accordingly. When all the yellow squares corresponding to the first column of the scale board have been read, he will take the second column, and print 220, 221, 226, 227, 234, 235, 240, 241 and so on,and then those in the third column. The remaining colours will then follow on in order of their delicacy.

When the printing of a drum has been completed, the next process is scraping. The scroll pulley in the act of printing always conveys more pigment on to the yarn than is needed to colour it, a little wall of material being left on each side of the path of the roller. This has to be removed, or it would smudge. This is done by means of small vulcanite tools, bevelled to a blunt edge, from ½ in. to 2 in. wide, the operator being aided by a steel bar fixed across the face of the drum as a guide. Scraping has, however, a further purpose beyond the removal of superfluous colour, and one no less important; for by skilful pressure and rubbing, the colour is caused to penetrate more deeply into the yarn.


Back to IndexNext